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Abstract

Background: Identification of drug-target interactions acts as a key role in drug discovery. However, identifying
drug-target interactions via in-vitro, in-vivo experiments are very laborious, time-consuming. Thus, predicting drug-target
interactions by using computational approaches is a good alternative. In recent studies, many feature-based and
similarity-based machine learning approaches have shown promising results in drug-target interaction predictions. A
previous study showed that accounting connectivity information of drug-drug and protein-protein interactions increase
performances of prediction by the concept of ‘guilt-by-association’. However, the approach that only considers directly
connected nodes often misses the information that could be derived from distance nodes. Therefore, in this study, we
yield global network topology information by using a random walk with restart algorithm and apply the global topology
information to the prediction model.

Results: As a result, our prediction model demonstrates increased prediction performance compare to the
‘guilt-by-association’ approach (AUC 0.89 and 0.67 in the training and independent test, respectively). In
addition, we show how weighted features by a random walk with restart yields better performances than
original features. Also, we confirmed that drugs and proteins that have high-degree of connectivity on the
interactome network yield better performance in our model.

Conclusions: The prediction models with weighted features by considering global network topology
increased the prediction performances both in the training and testing compared to non-weighted models
and previous a ‘guilt-by-association method’. In conclusion, global network topology information on
protein-protein interaction and drug-drug interaction effects to the prediction performance of drug-target
interactions.
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Background
Drug-target interactions (DTIs) play a key role in drug dis-
covery. Most drugs activate or inhibit the biological func-
tions of a target by binding to the target directly. However,
the identification of drug targets by biological and chemical
experiments is very laborious and expensive despite the
small scale of most experiments [1]. Also, as many drugs
are discovered, researchers find that one drug can bind to

many targets, and vice versa, which impose systemic ap-
proach of DTIs identification [2]. Fortunately, the accumu-
lation of the large-scale of biological and genomic data,
such as that in the UniProtKB/Swiss-Prot protein database
[3] and the drug data like the DrugBank database [4],
allowed researchers to approach DTIs identification via
computational and data-driven perspectives.
Therefore, many studies have attempted to predict DTIs

by using computational methods to reduce the costs and
risks. One remarkable trend is to approach DTIs from a
network perspective [5]. Though this strategy has some
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limitations in that typically only considers the net-
work topology (e.g., interactions or associations of
molecules) while utilizing similarities between drugs
or proteins as a feature. Yamanashi et al. used bipartite
graph models of drug-target pairs in the pharmaceutical
space and trained the model with a kernel regression
method [6]. With a bipartite graph model integrated on
drug and protein space, they reduced heterogeneity be-
tween drug and target space. However, because this method
undertakes training with a large-scale entire bipartite graph
model, high computational power is needed. This computa-
tional complexity problem is solved by constructing a bi-
partite graph per a drug or a target separately, which is
called bipartite local model (BLM) [7]. Later, researchers
started to utilize more networks to help with predictions.
In Chen et al., authors appended protein-protein similarity
and drug-drug similarity network onto a bipartite
drug-target graph, thus constructing a heterogeneous net-
work. With a random walk with restart on the heteroge-
neous network, they predicted potential targets and drugs
(NRWRH) [8, 9]. However, because this approach con-
structed the model with only network information, thus in-
correct or insufficient information of the network structure
could lead inaccurate predictions. Recently, Li et al. used
the “guilt-by-association” principle, in which a target pro-
tein is likely to interact with a drug if the majority of the

protein’s neighbors also do [10]. They constructed a
feature-based model and utilized a protein-protein inter-
action interactome (PPI) network and drug-drug interac-
tions (DDIs) to help prediction by yielding network
topology information. With the PPI and DDI, they
weighted the features of the drugs and targets using their
direct neighbors with respect to edge weights to consider
the network topology. This method demonstrated high
performance capabilities results from ten cross-validation
AUC with a random forest algorithm [11].
However, this approach has a limitation. When integrat-

ing the graph topology with features of drug and target,
the researchers did not consider the holistic network top-
ology. The “guilt-by-association” principle only took into
account the direct neighbors’ information.
To overcome the limitation, we propose an algorithm

capable of considering the global network topology to
weight features of drugs and targets by applying the ran-
dom walk with restart algorithm (RWR) [11]. In this work,
we weight the features of drug-target pairs using the ran-
dom walk with restart algorithm on each interactome net-
work (Fig. 1). First, we utilize PPI information from the
HIPPIE database and DTI and DDI information from the
DrugBank. Second, we construct three networks, i.e., the
PPI network, the DDI network, the DTI network. Third,
we transform features of a drug-target pair into a vector

Fig. 1 Workflow of the proposed method. 1) We utilized PPI data from the HIPPIE database and DDI and DTI data from the DrugBank database. 2) From
both the interactome and DTI data, we constructed a heterogeneous network. 3) We then conducted a random walk with restart algorithm for all nodes
(drug and target nodes on each interactome) and weighted features of nodes with the result of the RWR. Weighted features are getting similar on feature
spaces for nodes which are closely connected in a network. 4) From the weighted features, we generated positive DTI pair vectors from a bipartite DTI
graph and random negative DTI pair vectors. We trained the cubic kNN with the positive and negative DTI pairs
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format which represents the characteristics of each drug
and target. After the transformation process, we run the
random walk with restart (RWR) algorithm for all nodes in
each PPI network and DDI network separately. With the af-
finity scores of all nodes for drug and target nodes from the
results of the RWR algorithm, we reweight the drug-target
feature vectors. Finally, we generate negative drug-target
pairs randomly and train a cubic kNN model with the
weighted features.

Methods
Constructing networks from a database
We constructed three subnetworks, the PPI network, DDI
network, and DTI network, which have different sources.
First, the PPI network stems from the HIPPIE database, an
integrated PPI database consisting of interaction confident
data [12, 13]. To construct a more confident PPI network,
we used more than 800 interactions to determine an inter-
action confidence score. As a result, 14,086 proteins and
153,749 PPIs were sourced from the HIPPIE. Second, we
constructed the DDI network from the DrugBank [4]. We
added edges among drugs if they had the same targets. For
3609 drugs, 77,713 DDIs were constructed. Finally, we con-
structed the DTI network from the DrugBank, which pro-
vides previously known targets of drugs [4]. As a result,
8838 drug-target pairs were sourced. Summarized statistics
are shown in Table 1. For training, we built 20 sets of nega-
tive samples, which consist of randomly generated 8838
DTI pairs that are not in sourced DTI, but each drug and
target are contained sourced drugs and targets.

Building independent test dataset
To evaluate the performance of our model in a stringent
manner, we created an independent test dataset from the
PubChem database [14]. We retrieved positive (active) data
from PubChem binding assays, especially using a dissoci-
ation constant, and retrieved negative (inactive) data from
the PubChem assays except for binding assay types. We
consider assays with Kd ≤ 10μm as positive as previous re-
searches did [15] and we treat assays as negative if they’re
annotated as inactive. Finally, we collected 6533 positive
and 6892 negative DTIs with 629 target proteins and 2635
target drugs.

Transformation of drug-target features into a vector
format
To make DTI understandable by computer and machine
learning models, we transformed features of a drug-target
pair into a vector. For drugs, we used PaDEL-descriptor
[16], which consist of a bit vector with a length of 1024
with the bits representing whether a specific sub-molecular
structure exists or not. For proteins, we calculated primary
structure descriptors consisting of amino acid compositions
(20 dimensions [17], dipeptide compositions (400 dimen-
sions) [18], normalized Moreau-Broto auto-correlations
(240 dimensions) [19, 20], Moran auto-correlations (240 di-
mensions) [21], Geary auto-correlations (240 dimensions)
[22], compositions (21 dimensions), transitions (21 dimen-
sions) and distribution (105 dimensions) [23, 24], for a total
of 1287 dimensions. Methods to generate drug and target
feature vector are summarized in the (Additional file 1
method) . Finally, we concatenated drug vector and target
vector to describe a drug-target interaction pair. With the
representation of DTIs in a vector format, the characteris-
tics of drugs and target proteins of each pair can be trained
for the machine learning model.

Random walk with restart with DDI-network and PPI-
network
To make predictions of DTIs from a network perspective,
we yielded affinity scores between the seed node and all
nodes using the random walk with restart algorithm
(RWR). In the RWR algorithm, starting at the seed node,
the random walker diffuses its resources by (1) moving to a
neighbor node and (2) restarting from the seed node while
restarting probability c. Mathematically, the affinity scores
of all nodes during each step are represented by the equa-
tion below.

r ¼ 1−cð Þ~Ar þ cq

Here, q is the starting vector whose seed node s is set to
1 while the others are set to 0, and ~A is the normalized ad-
jacent matrix. Consequently, by multiplying the adjacent
matrix, it diffuses its resources throughout the network.
Moreover, by adding the seed node vector q while to
restarting probability c, the method prevents the local accu-
mulation of resources in distant subnetworks. Finally, its re-
source distribution converges with affinity scores to the
seed node with a network topology. By stacking the ri
values, the result of RWR for seed node i, we can con-
struct W, the affinity score matrix, whose element Wij re-
fers to how closely node j is connected to seed node i.
Because we conducted the RWR with PPI and DDI separ-
ately, the Wp, (Np ×Np) affinity score matrix f or proteins
and the Wd, (Nd ×Nd) affinity score matrix for drugs are
constructed, where Np is the number of proteins and Nd

is the number of drugs. Specifically, we conducted the

Table 1 Statistics of the training set

Type Size

Proteins 14,086

Protein-Protein interactions 153,749

Drugs 3609

Drug-Drug interactions 77,713

Drug-Target interactions 8838
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RWR using BEARS, a MATLAB function module [25]. 2.4
Weighting drug-target pair feature vectors by the random
walk with restart algorithm.
To consider the network topology in greater detail than

in the previous method, we utilize the random walk with
restart algorithm, which provides affinity scores for a seed
node to all nodes in the network topology. At this stage,
we can set the weights of all nodes for the seed node using
the affinity scores. Because the resource flow diffuses from
1, the sum of the affinity scores is 1, which means that we
do not normalize the weights. As a result, we can easily
weight the drug and protein features. For the drug fea-
tures, they were weighted using the equation below.

Di ¼
XNd

i¼1

Wd
ij � Di

For the protein features, the following equation was
used.

Pi ¼
XNp

i¼1

Wp
ij � Pi

Summing up each feature of the nodes to the seed node
with the affinity scores from the RWR, we weighted the

drug and target feature vector from the network topology.
This weighting can be conducted merely by multiplying
feature matrix by affinity score matrix as depicted in Fig. 2.

Weighting features by the RWR algorithm introduce
features with the network topology
Weighting with the result of RWR, which introduces
the features of other nodes equal to the affinity
score, retrieves features with the network topology.
Because the RWR algorithm provides affinity scores
for all other nodes for a seed node, it will construct
a clique from the interactome network, with the
node’s value representing the affinity score of the
seed node, as shown in Fig. 1 (step 3). By adding the
features of the neighbor nodes in the clique to the
seed drug and protein features, the proteins and
drugs in the subnetwork would show similar features
with respect to the network topology. From a bio-
logical perspective, we assume that the protein tends
to interact with a drug which interacts with the tar-
get’s neighbor, and vice versa, in what is termed the
“guilt-by-association” principle [10]. We assume that
not only the target’s neighbors but also the direct
interactors of the neighbors can increase the prob-
ability of interaction. In the paper by Spirin et al., a

Affinity score matrix 
for protein

Affinity score matrix 
for drug

Protein features

Drug features

1287

1024

10

Weighted 
protein features

Weighted 
drug features

1287

1024

a

b

Fig. 2 Generation of the weighted features. Weighted features of each drug and target can be constructed by multiplying affinity score matrix
from the RWR algorithm with a feature matrix. a Protein features. b Drug features
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gene subnetwork densely connected to others and
sparsely connected to others corresponds to (1)
complexes and (2) the functional module [26], re-
spectively, where the other members are possible tar-
gets. By weighting the features with the RWR
algorithm, we can add the information of these
members and how close they are to the target
protein.

Training with the weighted features of drugs and
proteins
With the weighted feature vectors of the drugs and targets,
each known drug-target pair (di, pj) is represented as a
2311-dimensional vector. To train the machine-learning
classification model, we randomly generated drug-target
pairs equal to the number of known drug-target pairs,
which are assumed not to interact. To standardize our
model, we generated 20 negative datasets. We trained the
cubic k-nearest-neighbor (kNN) algorithm model with
positive data and randomly generated negative data. The
kNN algorithm predicts the class of the input vector by
selecting the k nearest vectors in the distance kernel. From
n vectors, the class with the most frequent representations
is predicted as the input vector. For our model, weighting
with RWR in each network topology reduces distances on
feature space between proteins or drugs which are closely
connected in interactome network. Among the many ker-
nels of the kNN algorithm, kNN with the cubic distance
metric shows the best performance. In cubic kNN, each
element of the distance matrix is defined as

d x; yð Þ ¼
Xn
i¼1

xi−yij j3
 !1

3

for different n-dimensional vectors x and y.
The cubic distance maximizes the effect of weighting

the features, scaling the difference in every feature.

Results
Performance evaluation along restarting probability c and
optimizing restarting probability c by the performance of
independent dataset
The RWR algorithm with seed node i will result in the af-
finity score row vector r, and the i-th element of r, ri, per-
tains to the restart probability c, as the resource flow will
restart with the restarting probability unconditionally. As a
result, the weighted features have at least c original features.
Therefore, the restarting probability c determines the de-
gree to which the original features of the target proteins or
drugs are preserved. Also, it determines how much features
of other nodes are retrieved. In Fig. 3a, in the evaluation of
the AUC each training and independent dataset, a low c in-
dicates high performance in the training dataset, although a
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Fig. 3 Prediction performances against to the restarting
probability c and examples of affinity scores with respect to c.
Performances of our model differ from restarting probability c
and with different restarting probability c affinity score of
neighbor nodes changes. a AUC scores from the independent
dataset along the restart probability c. Results of the affinity
scores of the proteins for the restart probability 0.25, 0.5, and
0.75 in subpanel (b, c, and d), respectively
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high c (similar to the original features) and a too low c (dif-
ferent from the original features) denote lower performance
with the independent dataset. For the training set, a low c
makes the features of training data gather on feature space
according to the network topology, for low c makes RWR
diffuse its resource more. In this study, we found that
the optimized restarting probability was 0.25 accord-
ing to the performance assessment with the independ-
ent dataset (Fig. 3a).

Affinity scores of neighboring nodes differ along
restarting probabilities
The random walk with restart (RWR) algorithm gives
the affinity scores of all nodes for the seed node, as
the resource flow restarts from the seed node, at least
as much as the restarting probability c retains re-
sources in the seed node, which prevents local accu-
mulation in distant a subnetwork. As a result, RWR
gives high scores for nodes that are closely connected
to the seed node and low scores for further nodes re-
gardless of their subnetwork topology. Unlike the
‘guilt-by-association’ principle, it considers not only
the target’s neighbors but also further nodes. In
Fig. 3b, we queried the target nodes whose affinity
scores exceed 0.01, as a result of the RWR with seed
node SULT2B1. SULT2B1 has two neighbors,
ALS2CR12 and ST1E1, in the network topology. In
addition to the neighbors, it shows two additional
nodes, SRC and PIK3R1, which are not direct neigh-
bors to the target but which create a clique with
ALS2CR12. We examined the affinity scores of these
nodes with a various restarting probability c. Figure 3b
shows the affinity scores for the queried nodes when
c = 0.25. In Fig. 3c, where restarting probability is 0.5,
affinity score for seed nodes, increased as 0.5, while
affinity scores of other nodes decrease. It means that
the relative affinity scores of seed node increase along
restarting probability c. In another word, low restart-
ing probability ensures to bring neighbors’ feature
more by topology. Similarly, when c = 0.75, weighting
considers the seed node’s features rather than the net-
work topology, as we can see in Fig. 3d.

Weighting features by RWR on network acts as feature
extraction
To examine how weighted features by RWR on inter-
actome network gives better performance than other
prediction models, we choose three drugs DB02482,
DB07186, DB07266, which bind to Aurora kinase A
(O14964, AURKA_HUMAN, AUKA). In the DDI net-
work, they are connected to each other because they
share the same target AURKA. We first visualized fin-
gerprints of these drugs as shown in the left column
of Fig. 4. We can confirm that the original fingerprint

features of the three drugs are different (0.4271, the
average Euclidean distance for feature). However, after
weighting the features by RWR with c = 0.25, they be-
come more similar to each other (Fig. 4, right col-
umn, 0.1580, the average Euclidean distance for
feature). Because the drugs targeting AURKA are fully
interconnected each other, weighting by network top-
ology makes some features as higher values those are
commonly shared in the drugs. On the other hand,
some features become to have lower values if they
are not commonly shared by the drugs. As a result,
we can assume that features that show high or low
value after weighting would play an important role in
the prediction of DTIs with the network perspective.
In this perspective, our method bringing features of
another node as much as affinity score is elaborated
way to yield important feature respect to graph top-
ology than previous ‘guilt-by-association’ method.

Comparison with the previous methods
To compare the performance capabilities with those
of the previous model, we implement model weight-
ing according to the “guilt-by-association” principle
[10]. Overall performance evaluation is shown in
Fig. 5. In the training dataset, our method shows
higher evaluation performances than “guilt-by-asso-
ciation” method for every evaluation type, which
means that our method does better weight with
the training dataset. In the independent dataset,
our method shows higher AUC 0.675(±0.018)
while “guilt-by-association” method shows AUC
0.628(±0.026), which gives statistically significant
p-value 6.17 × 10−6 in paired-sample T-test. On the
other hand, we compare our model with another
previous method, prioritization by Network-based
Random Walk with Restart on Heterogeneous net-
work (NRWRH) to show that not only graph top-
ology information but also protein and drug features
can improve the prediction performance. NRWRH
can predict DTIs only if drugs and targets are seen
in the training set. Therefore, we constructed the in-
dependent test dataset using DTIs that are not in-
cluded in the training set but whose drugs and
targets are seen in training. As a result, we yield 661
positive DTIs and 781 negative DTIs with 148 drugs
and 171 proteins. As a result, NRWRH methods give
AUC 0.6127, while our method gives AUC 0.6025.
We plotted the receiver operating characteristic curve
in (Additional file 2 Figure S1 ). Although NRWRH
gives slightly higher AUC than our method, our
method has an advantage, being able to predict inter-
actions of new drugs and targets that have not been
used in training.
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Newly predicted interactions
We calculated the average prediction scores of the
independent test set from the models trained with
20 training sets. The ten highest DTIs, which were
not seen in the training set, are shown in Table 2.
Interestingly, many kinase-inhibiting drug-kinase
protein pairs are predicted with high scores. For ex-
ample, pazopanib, a kinase inhibitor, has 169 positive
DTI pairs in the independent test dataset; in our
model, we correctly predicted 168 DTI pairs with
scores over 0.8 while threshold to classify whether
positive or negative is 0.62. To examine why pazopa-
nib showed target pairs which were predicted well
with high scores, we queried pazopanib and the cor-
responding positively predicted targets using
STITCH [27]. STITCH constructs the PPI and DTI
from their database and inputs, as shown in (Add-
itional file 2Figure S2). As a result, we note a
densely connected subnetwork consisting of the tar-
gets of pazopanib, likely why pazopanib and its tar-
gets are predicted well. Because targets of pazopanib
are densely connected, their features became similar
with graph topology, which gives prediction powers
to predict pazopanib as a drug for these targets.
Also, we predict several kinase inhibitors-kinase pro-
tein pairs for the drugs as tozasertib, axitinib, and
dasatinib, all with high scores. Furthermore, we
examine DTIs that are exclusively predicted by our
method compared to the “guilt-by-association”
method. For example, positive JNJ7706621-

Q9H4B4(PLK3, Polo like kinase 3) drug-target pairs
gives a positive result in our method, but previous
“guilt-by-association” gives a negative prediction. We
examine PPI of Q9H4B4, summarized in (Additional file 3
Table S1). Q9H4B4 has many PPI with high inter-
action confidence score, which means features of
Q9H4B4 are lost while being weighted by averaging
nearby features with interaction confident score.
However, in our method, features of Q9H4B4 remains
as much as restarting probability at least, and
remaining resource flows along network bringing fea-
tures of other nodes. In this perspective, our method
is a more elaborated way to weighting features by
network topology, being able to control maintenance
of original node.

Discussions
There are various methods for selecting an appropri-
ate PPI for establishing a heterogeneous network in a
network-based method using PPI data. For example,
PPI databases support confidence score because they
usually collect PPI data from not only reviewed data
but also various sources such as experimental results,
computational predictions and literature mining. In
this paper, only PPIs with a confidence score of 800
or higher are used, so that future studies can query
the PPI network with various PPI selection criteria
depending on the reliability. Also, because confidence
scores are only used to query PPI network, it could
be possible to use confidence score as prior

Fig. 4 Weighting effects on drug feature by RWR. The left column shows the original fingerprints of drugs, which is a binary vector format. The
right column shows fingerprints weighted by affinity scores generated from the RWR with each drug as a seed node
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knowledge for yielding affinity in the random walk
algorithm, which means probability for a random
walker to stop node j starting from i.
Similar to PPI, there are many ways to choose the

appropriate DDI to construct heterogeneous network.
In this work, we built edges between drugs sharing
the same target for DTI prediction. Although there
are many DDI databases such as DCDB and Drug-
Bank, it is hard to bring their DDI information for
DTI prediction, because their DDIs imply drug com-
bination. Thus, we should remind that selecting

appropriate PPI and DDI could be a crucial step for
the network-based DTI prediction studies.

Conclusions
In this work, we gathered PPI, DDI, and DTI data to
construct a heterogeneous network. Also, we weighted
the features of drugs and targets using the RWR algo-
rithm. Weighted features by the RWR algorithm
allowed the utilization of features with respect to a
global interacatome network topology, resulting in

Fig. 5 Performance comparison between the previous study and the proposed method. We compared performances of our method with the previous
method proposed by Li etl al.. Our method shows high performances in the training set overall. In the independent test dataset, our method shows
significantly high AUC comparing the previous method
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features getting similar on feature spaces for nodes
which are closely connected in a network.
As a result, our model shows increased cross-validation

performance compared to the previous model. At the op-
timized restarting probability, our method shows bet-
ter performance in AUC with an independent test
set with the cubic kNN as compared to the previous
method. Finally, we predicted positive DTIs in an in-
dependent dataset, with high scores, showing they
are closely connected in the interactome network.
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