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Abstract

Background: Structural variants (SVs) in human genomes are implicated in a variety of human diseases. Long-read
sequencing delivers much longer read lengths than short-read sequencing and may greatly improve SV detection.
However, due to the relatively high cost of long-read sequencing, it is unclear what coverage is needed and how
to optimally use the aligners and SV callers.

Results: In this study, we developed NextSV, a meta-caller to perform SV calling from low coverage long-read
sequencing data. NextSV integrates three aligners and three SV callers and generates two integrated call sets
(sensitive/stringent) for different analysis purposes. We evaluated SV calling performance of NextSV under different
PacBio coverages on two personal genomes, NA12878 and HX1. Our results showed that, compared with running
any single SV caller, NextSV stringent call set had higher precision and balanced accuracy (F1 score) while NextSV
sensitive call set had a higher recall. At 10X coverage, the recall of NextSV sensitive call set was 93.5 to 94.1% for
deletions and 87.9 to 93.2% for insertions, indicating that ~10X coverage might be an optimal coverage to use in
practice, considering the balance between the sequencing costs and the recall rates. We further evaluated the
Mendelian errors on an Ashkenazi Jewish trio dataset.

Conclusions: Our results provide useful guidelines for SV detection from low coverage whole-genome PacBio data
and we expect that NextSV will facilitate the analysis of SVs on long-read sequencing data.
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Background
Structural variants (SVs) represent genomic rearrange-
ments (typically defined as longer than 50 bp), and SVs
may play important roles in human diversity and disease
susceptibility [1–3]. Many inherited diseases and cancers
have been associated with a large number of SVs in recent
years [4–9]. Recent advances in next-generation sequen-
cing (NGS) technologies have facilitated the analysis of
variations such as SNPs and small indels in unprecedented
details, but the discovery of SVs using short-read sequen-
cing still remains challenging [10]. Single-molecule,
real-time (SMRT) sequencing developed by Pacific

Biosciences (PacBio) produces long-read sequencing data,
making it potentially well-suited for SV detection in
personal genomes [10, 11]. Most recently, Merker et al.
reported the application of low coverage whole genome
PacBio sequencing to identify pathogenic structural vari-
ants from a patient with autosomal dominant Carney
complex, for whom targeted clinical gene testing and
whole genome short-read sequencing were both negative
[12]. This represents a clear example that long-read
sequencing may solve some negative cases in clinical diag-
nostic settings.
Two popular SV software tools have been developed

specifically for long-read sequencing: PBHoney [13] and
Sniffles [14]. PBHoney identifies genomic variants via two
algorithms, long-read discordance (PBHoney-Spots) and
interrupted mapping (PBHoney-Tails). Sniffles is a SV
caller written in C++ and it detects SVs using evidence
from split-read alignments, high-mismatch regions, and
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coverage analysis [14]. PBHoney uses BAM files generated
by BLASR [15] as input while Sniffles requires BAM files
from BWA-MEM [16] or NGMLR [14], a new long-read
aligner. Due to the relatively high cost of PacBio sequen-
cing, users are often faced with issues such as what cover-
age is needed and how to get the best use of the available
aligners and SV callers. In addition, it is unclear which
software tool performs the best in low-coverage settings,
and whether the combination of software tools can im-
prove performance of SV calls. Finally, the execution of
these software tools is often not straightforward and re-
quires careful re-parameterization given specific coverage
of the source data.
To address these challenges, we developed NextSV, an

automated SV detection pipeline integrating multiple
tools. NextSV automatically execute these software tools
with optimized parameters for user-specified coverage,
then integrates results of each caller and generates a
sensitive call set and a stringent call set, for different
analysis purposes.
Recently, the Genome in a Bottle (GIAB) consortium

and the 1000 Genome Project Consortium released
high-confidence SV calls for the NA12878 genome, an
extensively sequenced genome by different platforms,
enabling benchmarking of SV callers [17, 18]. They also
published sequencing data of seven human genomes, in-
cluding PacBio data of an Ashkenazi Jewish (AJ) family
trio [19]. Previously, we sequenced a Chinese individual
HX1 on the PacBio platform with over 100X coverage,
and generated assembly-based SV call sets [20]. Using data
sets of NA12878, HX1 and the AJ family trio, we evalu-
ated the performance of four aligner/SV caller combina-
tions (BLASR/PBHoney-Spots, BLASR/PBHoney-Tails,
BWA/Sniffles and NGMLR/Sniffles) as well as NextSV
under different PacBio coverages. We expect that NextSV
will facilitate the detection and analysis of SVs on
long-read sequencing data.

Materials and methods
PacBio data sets used for this study
Five whole-genome PacBio sequencing data sets were
used to test the performance of SV calling pipelines
(Table 1). Data sets of NA12878 and HX1 genome were
downloaded from NCBI SRA database (Accession:
SRX627421, SRX1424851). Data sets of the AJ family
trio were downloaded from the FTP site of National In-
stitute of Standards and Technology (NIST) [21]. After
we obtained raw data, we extracted subreads (reads that
can be used for analysis) using the SMRT Portal soft-
ware (Pacific Biosciences, Menlo Park, CA) with filtering
parameters (minReadScore = 0.75, minLength = 500).
The subreads were mapped to the reference genome
using BLASR [15], BWA-MEM [16] or NGMLR [14].
The BAM files were down-sampled to different

coverages using SAMtools (samtools view -s). We per-
formed five subsampling replicates at each coverage.
The down-sampled coverages and mean read lengths of
the data sets were shown in Table 1.

SV detection using BLASR / PBHoney-spots and BLASR /
PBHoney-tails
PacBio subreads were iteratively aligned to the human
reference genome (GRCh38 for HX1, GRCh37 for
NA12878 and AJ trio genomes, depending on the refer-
ence of high-confidence set) using the BLASR aligner
(parameter: -bestn 1). Each read’s single best alignment
was stored in the SAM output. Unmapped portions of
each read were extracted from the alignments and re-
mapped to the reference genome. The alignments in
SAM format were converted to BAM format and sorted
by SAMtools. PBHoney-Tails and PBHoney-Spots (from
PBSuite-15.8.24) were run with slightly modified param-
eters (minimal read support 2, instead of 3 and consen-
sus polishing disabled) to increase sensitivity and to
discover SVs under low coverages (2-15X). The reference
FASTA files used in this study were downloaded from
the FTP sites of 1000 Genome Project [22] (GRCh37)
and NCBI [23] (GRCh38). The FASTA files contain as-
sembled chromosomes with unlocalized, unplaced and
decoy sequences.

SV detection using BWA / sniffles and NGMLR / sniffles
PacBio subreads were aligned to the reference genome,
using BWA-MEM (bwa mem -M -x pacbio) or NGMLR
(default parameters) to generate the BAM file. The BAM
file was sorted by SAMtools, then used as input of Snif-
fles (version 1.0.5). Sniffles was run with slightly modi-
fied parameters (minimal read support 2, instead of 10)
to increase sensitivity and discover SVs under low fold
of coverages (2-15X).

NextSV analysis pipeline
As shown in Fig. 1, NextSV currently supports four
aligner/SV caller combinations: BLASR/PBHoney-Spots,
BLASR/PBHoney-Tails, BWA/Sniffles and NGMLR/Snif-
fles. NextSV extracts FASTQ files from PacBio raw data

Table 1 Description of PacBio data sets used for this study

Data
Source

Genome Original
Coverage

Down-sampled
Coverage

Mean Read
Length

Reference

NCBI
SRA

NA12878 22X 2-15X 4.9 kb [26]

NCBI
SRA

HX1 103X 6-15X 7.0 kb [20]

NIST AJ son 69X 10X 8.0 kb [19]

NIST AJ father 32X 10X 7.3 kb [19]

NIST AJ
mother

30X 10X 7.8 kb [19]
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(.hdf5 or .bam) and performs QC according to users spe-
cified settings. Once the aligner/SV caller combination is
selected by user, NextSV automatically generates the
scripts for alignment, sorting, and SV calling with appro-
priate parameters. When the analysis is finished, NextSV
will format the raw result files (.tails, .spots, or .vcf files)
into BED files. If multiple aligner/SV caller combinations
are selected, NextSV will integrate the calls to generate a
sensitive (by union) and a stringent (by intersection) call
set. The output of NextSV is ANNOVAR-compatible, so
that users can easily perform downstream annotation
using ANNOVAR [24]. In addition, NextSV also
supports job submitting via Sun Grid Engine (SGE), a
popular batch-queuing system in cluster environment.
Users can choose to run any of the four aligner/SV

caller combination. By default, NextSV will enable
BLASR/PBHoney-Spots, BLASR/PBHoney-Tails and
NGMLR/Sniffles and integrate the results to generate
the sensitive calls and stringent calls. We do not enable
BWA/Sniffles by default because Sniffles works better
with NGMLR in our evaluation and alignment is a time
consuming step. SVs that are shorter than reads may re-
sult in intra-read discordances while larger SVs may re-
sult in soft-clipped tails of long reads. We suggest
running both PBHoney-Spots and PBHoney-Tails be-
cause they are two complementary algorithms designed
to detect intra-read discordances and soft-clipped tails,
respectively. Sniffles uses multiple evidences to detect
SV so it should be suitable for both types of SVs.
NextSV sensitive call set is generated as:
SNIF ∪ (SPOT ∪ TAIL),
and NextSV stringent call set is generated as:
SNIF ∩ (SPOT ∪ TAIL),

where SNIF denotes the call set of Sniffles (the aligner
can be BWA or NGMLR, whichever is enabled; if both
aligners are enabled, the call set of NGMLR/Sniffles will

be used), SPOT denotes the call set of BLASR /
PBHoney-Spots and TAIL denotes the call set of BLASR
/ PBHoney-Tails.

Comparing two SV call sets
The criteria for merging two SV calls were chosen to fol-
low what was done by the NIST/GIAB analysis team
[25] and a previous study [26]. Two deletion calls were
considered the same if they had at least 50% reciprocal
overlap (the overlapped region was more than 50% of
both calls). The insertion call had a single breakpoint
position so the criterion for insertion calls should be dif-
ferent from that of deletion calls. Two insertion calls
were considered the same if the two breakpoints were
within a distance delta. Delta used by NIST/GIAB
analysis team was 1000 bp and used by Pendleton et al.
(reference [26]) was 100 bp. However, 100 bp was too
small for our analysis since the coverages (2-15X) were
far lower than that of Pendleton’s data set (46X in total).
On the other hand, 1000 bp might be too large to in-
clude distant calls as the same merged call. Therefore,
we chose 500 bp as a compromise. When merging two
SVs, the average start and end positions were taken.

High-confidence SV call sets
The high-confidence deletion call set of the NA12878
genome was release by the Genome In A Bottle (GIAB)
consortium [17], in which most of the calls were refined
by experimental validation or other independent tech-
nologies. The high-confidence insertion call set of the
NA12878 genome was obtained by merging the
high-confidence insertion calls of 1000 Genome phase 3
[18] and high-confidence insertion calls from GIAB. For
the HX1 genome, we generated the high-confidence SV
call set via two steps. First, we used the SV calls from a
previously validated local assembly-based approach [11]

Fig. 1 Scheme of NextSV workflow
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as the initial high-quality calls. Next, we detected SVs on
103X coverage PacBio data set of the HX1 genome using
BLASR / PBHoney-Spots, BLASR / PBHoney-Tails,
BWA / Sniffles and NGMLR / Sniffles (minimal read
support = 20 for each SV caller). The initial high-quality
calls (from step 1) that overlapped with one of the four
103X call sets (from step 2) were retained as final
high-confidence calls. SVs are generally defined as
genomic rearrangements that are larger than 50 bp.
However, we do not consider SVs that are less than
200 bp. There are two reasons. First, SVs that are smaller
than 200 bp are within the library size of paired-end
short-read sequencing. Therefore, they may be readily
detected by short-read sequencing. Second, PacBio se-
quencing has a fairly high per-base error rate and we
found it has a very low precision on detection of small
SVs from coverage data sets. Therefore, we believe that
the advantage of PacBio sequencing may be the detec-
tion of large SVs that are more than 200 bp. The number
of SVs in the high-confidence sets is shown in Table 2.

Performance evaluation of SV callers
The SV calls of each caller were compared with the
high-confidence SV set. Precision, recall, and F1 score
were used to evaluate the performance of the callers.
Precision, recall, and F1 were calculated as

Precision ¼ TP
TP þ FP

;

Recall ¼ TP
TP þ FN

;

F1 ¼ 2∙
precision∙recall

precisionþ recall
;

where TP is the number of true positives (variants called
by a variant caller and matching the high-confidence
set), FP is the number of false positives (variants called
by a variant caller but not in the high-confidence set),
and FN is the number of false negatives (variants in the
high-confidence set but not called by a variant caller).

Results
Performance of SV calling on different coverages of the
NA12878 genome
To determine the optimal coverage for SV detection on
PacBio data, we evaluated the performance of NextSV

under several different coverages. We downloaded a re-
cently published PacBio data set of NA12878 [26] and
down-sampled the data set to 2X, 4X, 6X, 8X, 10X, 12X,
and 15X. SV calling was performed using NextSV under
each coverage. We performed five subsampling replicates
for each coverage so that the down-sampling errors could
be estimated. All supported aligner/SV caller combinations
were evaluated. At least two supporting reads was required
for all SV calls. The resulting calls were compared with the
high-confidence SV set (including 2094 deletion calls and
1114 insertion calls) described in the Method section.
First, we examined how many calls in the high-confidence

set can be discovered. As shown in Fig. 2, the recall in-
creased rapidly before 10X coverage but the slope of in-
crease slowed down after 10X. The standard deviations of
recall values of the down-sampling replicates were very
small (shown as error bars in the Figure). Among the four
aligner / SV caller combinations, BLASR / PBHoney-Spots
had the highest recall for insertions while NGMLR / Sniffles
had the highest recall for deletions. At 10X coverage,
BLASR / PBHoney-Spots had an average recall of 76.2% for
deletions and an average recall of 81.5% for insertions;
NGMLR / Sniffles had an average recall of 91.1% for dele-
tions and an average recall of 76.3% for insertions. BWA /
Sniffles had a lower recall for deletions (72.6%) and inser-
tions (50.8%) than NGMLR / Sniffles, indicating that
NGMLR was a better aligner for Sniffles. PBHoney-Tails
only detected 26.3% deletions and 0.1% insertions. NextSV
sensitive call set, which was generated by the union call
set of BLASR / PBHoney-Spots, BLASR / PBHoney-Tails,
and NGMLR / Sniffles, had the highest recall. At 10X
coverage, the average recall of NextSV sensitive call set is
94.7% for deletions and 87.8% for insertions. At 15X
coverage, the recall of NextSV sensitive call set increased
slightly. Therefore, 10X coverage might be an optimal
coverage to use in practice, considering the relatively high
sequencing costs and the generally high recall rates.
Second, we examined the precision and balanced ac-

curacy (F1 scores) under different coverages (Fig. 3). The
precision was calculated as the fraction of detected SVs
which matching the high-confidence set. For deletions
calls, NextSV stringent call set had the second highest
precision and highest F1 score. For insertion calls,
NextSV stringent call set had the highest precision and
F1 score at each coverage. Therefore, NextSV stringent
call set performs the best, considering the balance be-
tween recall and precision. We observed that the preci-
sion decreased as the coverage increased from 2X to
15X. This was because we used the same parameter (at
least two supporting reads) to generate the calls for each
coverage. Therefore, the false positive rates increased as
the coverage increased. A stricter parameter (e.g. at least
three supporting reads) for 10X and 15X coverages may in-
crease the precision, but decrease the recall. We discussed

Table 2 Number of calls in the high-confidence SV sets

Genome Platform Number of
Deletions
(≥ 200 bp)

Number of
Insertions
(≥ 200 bp)

Reference

NA12878 Illumina 2094 1114 [17, 18]

HX1 PacBio 2387 2937 [20]

Fang et al. BMC Bioinformatics  (2018) 19:180 Page 4 of 11



the trade-off between recall and precision in the Discussion
section. Detailed values of recall rates, precisions and F1
scores on differrent coverages of the NA12878 genome were
shown in Table S1-S12 (see Additional file 1).

Performance of SV calling on different coverages on the
HX1 genome
To verify the performance of SV detection on different
individuals, we also performed evaluation on a Chinese
genome HX1, which was sequenced by us recently [20]
at 103X PacBio coverage. The genome was sequenced
using a newer version of chemical reagents and thus the
mean read length of HX1 was 40% longer than that
of NA12878 (Table 1). The total data set was
down-sampled to three representative coverages
(6X, 10X and 15X). We also performed five subsampling
replicates at each coverage. SVs were called using the
four pipelines described above and compared to the
high-confidence set. The results were similar to those of
the NA12878 data set (Fig. 4). At 10X coverage, NextSV
sensitive call set had an average recall of 95.5% for dele-
tions and 90.3% for insertions, highest among all the call
sets. NextSV stringent call set had the highest precisions
and F1 scores. Among the four aligner / SV caller

combinations, NGMLR / Sniffles discovered the most
deletions (91.6%) and BLASR / PBHoney-Spots discov-
ered the most insertions (81.5%) at 10X coverage. BWA
/ Sniffles had a higher precision but a lower recall and
F1 score than NGMLR / Sniffles. Detailed values of re-
call rates, precisions and F1 scores on differrent cover-
ages of the HX1 genome were shown in Table S13-S24
(see Additional file 1).

Evaluation on Mendelian errors
As the de novo mutation rate is very low [27, 28],
Mendelian errors are more likely a result of genotyping
errors and can be used as a quality control criteria in
genome sequencing [29]. Due to the lack of gold stand-
ard call sets, here we evaluated the errors of allele
drop-in (ADI), which means the presence of an allele in
offspring that does not appear in either parent. The ADI
rate is calculated as the ratio of ADI events to SV calls
detected in the offspring. We used a whole genome Pac-
Bio sequencing data set of an AJ family trio released by
NIST [19] to do the evaluation. The sequencing data for
father, mother and son are 32X, 29X, and 63X, respect-
ively. First, we did the ADI rate analysis using all the
available data. Since the coverages were high, 8

Fig. 2 Evaluation of recall rates under different coverages on the NA12878 genome. Five down-sampling replicates were performed at each
coverage. (a) Recall rates of deletion calls. (b) Recall rates of insertion calls. Data shown represent mean ± SD
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Fig. 3 Evaluation of precisions and F1 scores under different coverages on the NA12878 genome. Five down-sampling replicates were
performed. (a) Precisions of deletion calls. (b) F1 scores of deletion calls. (c) Precisions of insertion calls. (d) F1 scores of insertion calls. Data
shown represent mean ± SD
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supporting reads were required for SV calls of the par-
ents and 15 supporting reads were required for SV calls
of the son. Among the four aligner/SV caller
combinations, NGMLR/Sniffles had the lowest ADI rate
(12.0%) for deletions, while BLASR/PBHoney-Tails had
the lowest ADI rate (10%) for insertions (Fig. 5). Next,
we down-sampled the sequencing data of the son to 10X
coverage and analyzed the ADI rate at this low coverage.
Five down-sampling replicates were performed. The ADI
rates at 10X coverage were generally higher than those
at 63X coverage. NGMLR/Sniffles achieved lowest ADI
rate for both deletions (19.0%) and insertions (25.2%)
among the four aligner/SV caller combinations. NextSV
stringent call set had the lowest ADI rate for insertions
(15.7%) and second lowest ADI rate for deletions
(20.0%). The standard deviations of ADI rates of the
down-sampling replicates were very small (shown as
error bars in the Figure).

Computational performance of NextSV
To evaluate the computational resources consumed by
NextSV, we used the whole genome sequencing data set
of HX1 (10X coverage) for benchmarking. All aligners and
SV callers in NextSV were tested using a machine
equipped with 12-core Intel Xeon 2.66 GHz CPU and 48
Gigabytes of memory. As shown in Table 3, mapping is
the most time-consuming step. BLASR takes about 80 h
to map the reads, whereas NGMLR needs only 11.2 h.
The SV calling step is much faster. PBHoney-Spots and
Sniffles take about 1 h, while PBHoney-Tails needs 0.27 h.
In total, the BLASR / PBHoney combination takes 80.8 h
while the NGMLR / Sniffles combination takes 12.5 h,
84.5% less than the former one. Since BLASR/PBHoney--
Spots and NGMLR / Sniffles have good performance on
SV calling and running PBHoney-Tails is very fast given
the BLASR output, the NextSV pipeline will execute the
three methods by default for generating the final results.

Fig. 4 SV calling performance on the HX1 genome. Five down-sampling replicates were performed. (a-c) Recall rates, precisions and F1 scores of
deletion calls. (d-e) Recall rates, precisions and F1 scores of insertion calls. Data shown represent mean ± SD
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Discussion
Long-read sequencing such as PacBio sequencing has
clear advantages over short-read sequencing on SV dis-
covery [10]. However, its application in real-world set-
ting is often limited due to the relatively high
sequencing cost and hence the relatively low sequencing
coverage. Some efforts have been made to improve SV
detection from low coverage short-read data [30], but
methods for improving SV detection from long-read se-
quencing data have not been reported. In this study, we
developed NextSV, a meta SV caller integrating multiple
aligners and SV callers to improve SV discovery on
low-coverage PacBio data sets. Our results showed that,
NextSV stringent call set had the highest precisions and
F1 scores while NextSV sensitive call set had the highest
recall. At 10X coverage, the recall of NextSV sensitive

call set was 94.7 to 95.5% for deletions and 87.8 to 90.3%
for insertions. At 15X coverage, there was only a slight
increase in recall. Therefore, ~10X coverage can be an
optimal coverage to use in practice, considering the bal-
ance between the sequencing costs and the recall rates.
The high-confidence call set of HX1 genome was gen-

erated using two steps. First, we used a call set from a
previously validated local assembly-based approach [11,
20, 31] as the initial high-quality calls. Second, we de-
tected SVs on 103X coverage PacBio data set of the HX1
genome using the four aligner/SV caller combinations
described above. The calls were filtered using a strict
parameter (minimal read support = 20 for each SV
caller). The initial high-quality calls that overlapped with
one of the four 103X call sets were retained as final
high-confidence calls. Since the aligners/SV callers con-
tribute to generation of the high-confidence call sets,
there may be some biases on the comparison of aligner/
SV callers. However, it would be less biased on compari-
son of the performances on different coverages, which is
an important goal of our study.
There is often a trade-off between recall and precision.

NextSV generates a sensitive call set and a stringent call
set, for different purposes. NextSV sensitive call set is
suitable for users who consider recall more important
than precision and who can afford extensive downstream

Fig. 5 Comparison of allele drop-in rate. For evaluation of ADI rate at 10X coverage, five down-sampling replicates were performed. (a) ADI rates
of deletion call. (b) ADI rate of insertion calls. Data shown represent mean ± SD.

Table 3 Time consumption for each steps in the NextSV
pipeline for 10X PacBio data set

SV caller Aligner CPU (number
of threads)

Alignment
time (hour)

SV calling
time (hour)

Total
Time
(hour)

PBHoney BLASR 12 79.6 0.27 (Tails)
0.96 (Spots)

80.8

Sniffles BWA-MEM 12 27.0 1.1 28.1

Sniffles NGMLR 12 11.2 1.3 12.5
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analysis (such as Sanger sequencing) to validate the can-
didate variants. This is often the case when doing
disease-casual variant discovery on personal genomes.
NextSV stringent call set has the highest precision, F1
score. It is suitable for users who aim to perform
genome-wide analysis of SVs on a collection of samples,
with limited downstream validation.
The performance of SV callers are affected by the par-

ameter settings. The number of supporting reads is a
key parameter that affect the trade-off between recall
and precision. By default, PBHoney requires a minimal
read support of 3 for an SV event and Sniffles requires a
minimal read support of 10 for an SV event. However,
this may be too high for low coverage data set. In our
evaluation of recall and precision, we changed this set-
ting to require a minimal read support of 2. This allows
detection of SVs from very low coverage regions, with an
acceptable precision. Thus, substantially higher number
of true positives would be detected and less variants of
interest would be missed. For users who consider
precision to be more important than recall, they can
either use the NextSV stringent call set or specify a stric-
ter parameter (e.g. requiring more supporting reads)
when running the NextSV pipeline. The F1 score is a
balance between recall and precision. Therefore, its cor-
relation with coverage is affected by the two aspects. In
general, as the coverage increases, the recall increases
but the precision decreases. Therefore, the F1 score may
either increase or decrease as the coverage increases.
In addition to test recalls and precisions, we examined

the allele drop-in (ADI) errors, which represent the SV
calls that in the offspring but not appear in either parent.
Since the de novo mutation rate is very low, the ADI er-
rors may mainly come from errors of sequencing and
subsequent SV detection. In our results, the ADI rates of
insertions are higher than those of deletion calls, which
is consistent with the fact that PacBio sequencing has
higher per-base insertion errors than deletion errors.
Another source of ADI may come from the SV callers.
SV detection from PacBio data set is still in its early
stage. The currently available SV callers are not carefully
designed for low-coverage data sets. For example, Snif-
fles requires 10 reads to support a SV under default set-
tings, which means at least 20X coverage is required to
detect a heterozygous SV. We expect the improvement
of SV callers in the future.
NextSV currently supports four aligner / SV caller

combinations: BLASR / PBHoney-Spots, BLASR /
PBHoney-Tails, BWA / Sniffles, NGMLR / Sniffles, but
we expect to continuously expand the support for other
aligner / caller combinations. In the future, if more
aligners/SV callers are supported, we will evaluate the
performance of each combination and find the best
aligner for each SV caller. The NextSV sensitive call will

be the union call set of all SV callers; the NextSV strin-
gent calls will be the calls that are detected by at least
two SV callers. If one SV caller can work with multiple
aligners, only the call set of its best aligner will be used.
In this study, we only evaluated the performance

for insertions and deletions because we only have the
high-confidence calls of insertions and deletions. This
is another limitation of the study. We will evaluate
the performance on other types of SVs in the future
when more high-confidence SV calls are available.
Nonetheless, NextSV generates SV calls of all types.
The output of NextSV is in ANNOVAR-compatible
format. Users can easily perform downstream annota-
tion using ANNOVAR and disease gene discovery
using Phenolyzer [32]. NextSV is available on GitHub
[33] and can be installed by one simple command.

Conclusion
In this study, we proposed NextSV, a comprehensive,
user-friendly and efficient meta-caller to perform SV
calling from low coverage long-read sequencing data.
NextSV integrates multiple aligners and SV callers and
performs better than running a single SV caller. We also
showed that ~10X PacBio coverage can be an optimal
coverage to use in practice, considering the balance be-
tween the sequencing costs and the recall rates. Our re-
sults provide useful guidelines for SV detection from low
coverage whole-genome PacBio data and we expect that
NextSV will facilitate the analysis of SVs on long-read
sequencing data.
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