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Abstract

Background: PacBio sequencing platform offers longer read lengths than the second-generation sequencing
technologies. It has revolutionized de novo genome assembly and enabled the automated reconstruction of
reference-quality genomes. Due to its extremely wide range of application areas, fast sequencing simulation
systems with high fidelity are in great demand to facilitate the development and comparison of subsequent
analysis tools. Although there are several available simulators (e.g., PBSIM, SimLoRD and FASTQSim) that target

the specific generation of PacBio libraries, the error rate of simulated sequences is not well matched to the quality
value of raw PacBio datasets, especially for PacBio’s continuous long reads (CLR).

Results: By analyzing the characteristic features of CLR data from PacBio SMRT (single molecule real time)
sequencing, we developed a new PacBio sequencing simulator (called NPBSS) for producing CLR reads. NPBSS
simulator firstly samples the read sequences according to the read length logarithmic normal distribution, and

choses different base quality values with different proportions. Then, NPBSS computes the overall error probability
of each base in the read sequence with an empirical model, and calculates the deletion, substitution and insertion
probabilities with the overall error probability to generate the PacBio CLR reads. Alignment results demonstrate that
NPBSS fits the error rate of the PacBio CLR reads better than PBSIM and FASTQSIm. In addition, the assembly results

also show that simulated sequences of NPBSS are more like real PacBio CLR data.

Conclusion: NPBSS simulator is convenient to use with efficient computation and flexible parameters setting.
lts generating PacBio CLR reads are more like real PacBio datasets.
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Background

The single molecule real-time (SMRT) sequencing, devel-
oped by Pacific Biosciences (PacBio), is a newly emerging
third-generation DNA sequencing technology [1]. PacBio’s
SMRT sequencing is also the first commercially available
long-read sequencing technology currently in use [2, 3].
Compared with second generation sequencing (also called
high-throughput sequencing), such as Illumina [4], Roche
454 [5] and SOLID [6], the PacBio sequencing system is
significantly less expensive per run, does not rely on amp-
lification for library generation, and supports shorter
turn-around time [7]. PacBio produces two types of reads.
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One is the continuous long reads (CLR) with an aver-
age error rate of ~ 15%, and the other one is the circu-
lar consensus sequencing (CCS) short reads with high
accuracy of > 97% from multiple passes across insert se-
quences [3]. The requirement that three or more full
passes across insert sequences for CCS reads limits the
insert size to < 2.5 kb, but the CLR reads can rang up
to ~40 kb by using a DNA polymerase anchored in a
zero-mode waveguides [4, 8—10]. In contrast, the sec-
ond generation sequencers typically generate much
shorter reads with median lengths of ~ 100-250 bp for
[lumina and ~ 500 bp for Roche 454 [11, 12]. There-
fore, the CLR reads generated by the PacBio platform is
a key progression in the high-throughput sequencing
technologies, which is expected to benefit many aspects
of genomic projects in near future [13-15]. The long
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sequence can span extended repetitive regions and thereby
have more power to reveal complex structural variations
presenting in the DNA samples, such as pinpointing pre-
cisely where copy number variations occur relative to the
reference sequence [16]. The de novo genome assembly will
also benefit from PacBio sequencing because long reads
can provide large scaffolds, and it is becoming routine for
bacterial genomes to be completely assembled using PacBio
sequencing platform [17].

So far, many computational methods and efficient soft-
ware tools have been developed to process sequences
produced by PacBio. Generally, these methods need to
be benchmarked using simulated data. Because the sim-
ulated data can be generated as much similar as desired
and under controlled situations with predefined parame-
ters [18]. In addition, it’s also low-cost and time efficient
to generate simulation datasets [19, 20]. As a result, the
genome sequencing simulators have become increasingly
popular for assessing and validating computational
methods or for gaining an understanding of specific data
sets [18]. Sequence simulators can be applied to help
develop and evaluate downstream analysis tools, such as
the correctness of an assembly [21], the accuracy of gene
prediction [22] and sequence clustering [23, 24], or the
power to reconstruct accurate genotypes and haplotypes
[25]. Therefore, sequence simulators will benefit for
many relevant bioinformatics applications.

There are several read simulators targeted to generate
the PacBio reads, such as, SimLoRD [26], PBSIM [27] and
FASTQSim [28]. SimLoRD [26] software is specially
designed for PacBio CCS reads generation. It offers the
options of choosing the read length distribution and mod-
elling the error probabilities depending on the number of
passes through the sequencer. Therefore, SimLoRD is
more convenient than PBSIM and FASTQSim for param-
eters setting to simulate PacBio CCS reads. PBSIM [27]
and FASTQSim [28] can simulate CCS reads and CLR
reads. Although PBSIM [27] simulates PacBio reads well,
there are the following two limitations. First, the quality
value (QV, also called the Phred quality score) at each
position for a simulated read is randomly chosen, but we
found that the proportions of different QVs in real PacBio
reads are different (see Methods for details). Second, we
also observed that the error rate of simulated reads is
higher than QV (see Methods for details). FASTQSim [28]
provides both read analysis and simulation for the second
generation and PacBio sequencing platforms. By charac-
terizing the error profiles from datasets provided by users,
FASTQSim generates the simulated reads. However, FAS-
TQSim takes long time in simulating, and it is not flexibly
to directly change parameters. In addition, the error rate
of simulated sequences produced by PBSIM and FAS-
TQSim is not well matched to the QV [26]. It is note-
worthy that QV is a measurement of the identification
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quality of nucleobases. The QV of each base in a sequence
reflects the error probability of each position. Therefore, it
is crucial to deal with the sequencing errors and QVs for a
sequencing simulation tool.

To improve upon the existing solutions, by analyzing
some characteristics (i.e., the distribution of sequence
length, different types of sequencing errors) on several
real datasets generated by the PacBio sequencing plat-
form, and uncovering the relationship between QV and
sequencing error rate, we developed a new PacBio
sequence simulator (called NPBSS) to generate PacBio
CLR reads. NPBSS uses an empirical error model de-
rived from the real datasets to simulate different errors
for each sequence. Alignment and assembly tests show
that the simulated CLR length and quality distributions
of NPBSS agree well with the real PacBio data.

Implementation

NPBSS was written in MATLAB (a free version of NPBSS
under Octave is also available) and has a command line
user interface. As shown in Fig. 1, a single run of NPBSS
command line consists of four main steps: i) modeling
read length distribution, ii) selecting QVs, iii) calculating
overall base error probability and iv) assigning different
base error probabilities. The required input file, com-
mands and the resulting output files are described below.
NPBSS just requires one reference genome input file in
FASTA format. The users can adjust the parameters ac-
cording to their project or directly apply the defaults in
NPBSS (see Methods for detail parameter settings). For
read length generation, there are four ways: i) providing
the mean and standard deviation value for a log-normal
distribution (-lg mean std); ii) giving a sequencing depth
(~dep); iii) sampling the read length from a FASTA or
FASTQ file provided by users (-samp) and iv) offering a
sequence number (-n). And users also can set —len
(default value: 8500) to determine the value of average
read length for —n and —dep options. For QVs selection,
NPBSS will choose different QVs from the default QVs
table (see Methods), or from the users defined QVs
table (—qv table). The default QVs table is recom-
mended to use, because it fits well with the raw PacBio
data (see Methods). Based on the empirical model, the
base overall error probability is calculated from the QV
in each position. For different base error probability
assignment, the base error probabilities for reads can
be specified individually for substitutions (-sub), inser-
tions (-ins) and deletions (-del). For the following ex-
ample using the default parameters, where 10,000 reads
are simulated, the command line is: NPBSS(‘genome.-
faj-n 10,000 —sub 0.06 —ins 0.03 —del 0.06"), NPBSS
sampled from random positions of the reference ‘geno-
me.fa) and the different average base error probabilities
assigned in simulated reads are 6, 3 and 6% for
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substitutions, insertions and deletions, respectively (~ 15%
base total error probability), the default average length
(~len) is 8500. Then, the CLR simulated reads can be
found in the ‘npbss_simulated.fq’ file and the correct reads
are saved in ‘reads_correct.fa’ file.

Results and discussion

Analyses of real PacBio datasets

Four different CLR read datasets and two CCS read data-
sets sequenced with PacBio’s instrument were used to
analyze the hidden features of PacBio long reads. These
datasets can be free downloaded from the website links
listed in Tables S1-S2 (see Additional file 1). Additional file
1: Tables S3-S6 report some brief statistics of these
datasets, and Additional file 1: Figures S1-S2 present the
length distribution. To learn how to simulate different
errors introduced to reads, we need to analyze real PacBio
reads by aligning them to corresponding reference se-
quences. Here, we adopted the Blast alignment tool
[29] to obtain the alignment results and the accuracy.
Additional file 1: Figures S3-S5 present the distribu-
tions of insertion, deletion and substitution errors,
which show a nice uniform layout.

NPBSS simulator performance

Accuracy of NPBSS simulator

In order to evaluate the accuracy of NPBSS simulation,
the simulated CLR reads need to be mapped to the ref-
erence genomes. For genomes of E. coli K12, C. elegans,
A. thaliana and D. melanogaster, the NPBSS error pa-
rameters were set equally to the error rate of raw CLR
data (Additional file 1: Table S5). The error profiles of

FASTQSim are characterized by the raw CLR data. In
total, 12 CLR datasets were simulated with NPBSS,
PBSIM and FASTQSim. Blast alignment tool [29] was
utilized to map these simulated reads back to the corre-
sponding genomes with default parameters. The results
in Additional file 1: Tables S7-S10 for E. coli K12, C.
elegans, A. thaliana and D. melanogaster show that the
error rate and length of simulated reads with NPBSS,
PBSIM and FASTQSim are similar to the raw data,
which preliminarily demonstrates that NPBSS could
simulate PacBio reads with necessary sequencing errors
and fidelity as well.

Error rate and quality values

Next, we want to assess another important fidelity of
the sequencing simulators, that is, the relationship be-
tween error rate and QVs. We applied above simulated
CLR datasets and investigated the error rates. Figure 2
shows the trend between error rate and QVs for
NPBSS, PBSIM and FASTQSim. It can be evidently
seen that the curve of NPBSS is close to the trend of
the four raw data, while PBSIM presents a diverse trend
with the growth of QVs, which cannot reflect the true
relationship between error rates and QVs. The results
of PBSIM can be explained by the fact that the error
probability (P,,,,,) of a QV in the PBSIM pipeline is

directly defined by the QV ( Py, = 10~ %) values.
Although the error profiles are estimated from the raw
sequence data, the error rate of simulated reads from
FASTQSim does not agree well with the raw data.
Therefore, compared with both PBSIM and FASTQSim
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tools, NPBSS can capture this characterization better
and simulate PacBio sequences more reasonably.

Computational complexity

To test the computational complexity of NPBSS, E. coli
K12 genome was used as the reference sequence, and we
simulated PacBio CLR reads from 10 to 10° reads num-
ber with an average sequence length of 8500. Here we
report the computational time and memory require-
ments for CLR reads simulated by NPBSS, PBSIM and
FASTQSim in Fig. 3, from which we can see that with
the sequence number increases, the speed of NPBSS is
lower than PBSIM, but faster than FASTQSim. The
memory usage of NPBSS and FASTQSim is larger than
PBSIM, and the memory requirement of NSSPB is a
little larger than FASTQSim when sequence number
increases to 10°,

Assembly test for simulated reads

Finally, we conducted several assembly tests on the
datasets simulated by NPBSS and PBSIM. Canu [30] tool
is specifically designed for single-molecule sequences,

and it continues to improve with increasing PacBio
sequencing depth, reaching its maximum assembly
continuity around 50X (depth). Thus, Canu tool was
used to get the assembly results. We simulated PacBio
CLR reads with NPBSS and PBSIM by fixing the sequen-
cing depth as 5, 10, 15, 20, 25, 30, 35, 40, 45 and 50 for
each reference genome, and setting the parameters of
accuracy identically with the raw data.

The assembly results (i.e., contigs number, N50) for
E.coli K12 are shown in Fig. 4. N50 is the contig length
such that using equal or longer contigs produces half
the bases of the genome. From Fig. 4, we can see that
with the depth increase, the number of contigs of raw
data, PBSIM and NPBSS becomes smaller, while NPBSS
obtained less contigs than PBSIM at each depth. It is
evidently observed that the contigs number of NPBSS is
much closer to the raw data than that of PBSIM. In
addition, the N50 also shows that NPBSS gained similar
contig length to the raw PacBio data, and the contig
lengths of NPBSS are longer than that of PBSIM. These
results show that the sequence simulation system of
NPBSS is more realistic to real PacBio CLR data than
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PBSIM. Similar assembly results can be found in
Additional file 1: Figures S6-S8 for genomes of A.
thaliana, D. melanogaster and C. elegans, respectively.

Extensibility of NPBSS
In order to test the reliability and generalization of
NPBSS for a new PacBio sequencing data, we simulated
PacBio CLR reads using Neurospora crassa genome, a
fungus organism. The raw PacBio CLR dataset of N.
crassa can be download from PacBio DevNet (https://
github.com/PacificBiosciences/DevNet/wiki/Datasets).
We generated PacBio CLR reads using NPBSS, and
aligned the simulated reads to N. crassa reference genome
to obtain different error rates. Table 1 reports the align-
ment results, from which we can see that the error rate of
insertion, deletion and substitution are consistent with the
raw data. Figure 5 represents the curve between error rate
and different QVs, which is close to the raw data. These

results show that NBPSS has a reliable extensibility to
generate PacBio CLR reads for a new reference genome.
We further used the Homo sapiens genome to test the
reliability and generalization of NPBSS. The raw PacBio
CLR dataset of H. sapiens can be download from http://
datasets.pacb.com/2013/Human10x/READS/index.html.
Additional file 1: Figure S9 describes the curve between
error rate and different QVs for NPBSS, which shows
the similar result in Fig. 5.

NPBSS for CCS reads generating

Additionally, NPBSS can also generate PacBio CCS reads
by using a sampling-based simulation (see Section 1 in
Additional file 1). Two PacBio CCS datasets (E. coli K12
MG1655 and E. coli C227-11) in Additional file 1: Table
S4 were applied to compare the simulation results.
Figure 6 shows the scatter plot of read length and
average base quality per read on E. coli K12 MG1655
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Table 1 Statistics of the simulated reads with NPBSS for genome of N. crassa

Methods Match rate (%) Insertion rate (%) Deletion rate (%) Substitution rate (%) Total error rate (%) Average length (bp)
Raw Data 83.354 2.878 8.758 5.010 16.646 5812
NPBSS 83516 2934 8.497 5.103 16.534 5889

raw dataset, and four CCS read datasets generated by
NPBSS, FASTQSim, PBSIM and SimLoRD. It can be seen
that NPBSS provides more realistic simulation results
than FASTQSim and PBSIM. The output sequences of
SimLoRD tool shown in Fig. 6e are the raw subreads
with high errors, not the final corrected CCS reads with
high accuracy. Similar simulation results can be found
for E. coli C227-11 in Additional file 1: Figure S10.

Although SimLoRD tool is specialized for CCS reads,
the simulation of CLR reads is also possible through set-
ting the maximum number of passes to 1 and choosing
the base error probabilities for substitution, deletion and
insertion accordingly. And Fig. 7 shows the scatter plot
of CLR read length and average base quality per read on
E. coli KI2 raw dataset and four CLR read datasets
generated by NPBSS, FASTQSim, PBSIM and SimLoRD.
It can be seen that NPBSS provides more realistic simu-
lation results than other tools. Similar simulation results
can be found in Additional file 1: Figures S11-S13 for
genomes of A. thaliana, C. elegans and D. melanogaster,
respectively.

Conclusions

The SMRT sequencing technology, developed by PacBio,
has been widely used in the resequencing and de novo as-
sembly studies. And more and more relevant computa-
tional applications have been developed for sequence
analysis tasks from SMRT data, such as genome assembly,
SNP calling and structural variant discovery. It becomes

essential that these methods need to be benchmarked
against other similar tools to show their superiority at
least in some certain aspects. A genome sequencing
simulation system can be very helpful for development
and evaluation of these analysis tools. In addition, since
no gold standard is available for sequencing data
analysis, performance evaluation based on simulated
sequencing is still the most effective way. Therefore,
PacBio reads simulator becomes essential for facilitat-
ing the improvement of metagenomic tools and plan-
ning metagenomic projects. Although some simulators
(e.g., PBSIM, FASTQSim and SimLoRD) targeted the
PacBio platform have been proposed, neither of them
considers the relationship between error rate and QVs.
In this article, we designed and implemented an effect-
ive sequence simulator (NPBSS) for generating PacBio
reads that are more like real PacBio data. NPBSS firstly
samples the read sequences according to the read
length logarithmic normal distribution, and choses
different base QVs with different proportions. Then,
NPBSS computes the overall error probability of each
base in the read sequence with an empirical model, and
calculates the deletion, substitution and insertion prob-
abilities with the overall error probability to generate
the PacBio sequences. The main advantage of NPBSS tool
is that NPBSS applies an empirical model to capture the
relationship between the error rate and QVs. Compared
with existing PacBio reads simulators, alignment results
demonstrate that NPBSS can fit the error rate of PacBio
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Fig. 5 The relationship between error rate and QVs in simulated CLR reads generated by NPBSS for N. crassa genome
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sequence data better. In addition, assembly tests on the
simulated sequences of NPBSS also show that the number
and length of contigs are more like real PacBio datasets.
NPBSS can be very helpful to develop and evaluate subse-
quent analysis tools based on PacBio sequencing.

Methods

NPBSS’s processing pipeline mainly consists of the
following four phases: 1) Modeling the length of CLR
and CCS reads according to the logarithmic normal
distribution; 2) Selecting the different QVs based on the
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different proportions; 3) Calculating an overall error
probability of each position based on the empirical
model; and 4) Obtaining the deletion, substitution and
insertion probabilities based on the overall error prob-
ability. A detail description for each parameter setting
of NPBSS is presented in Additional file 1: Table S11,
which will be convenient for usage.

1) Modeling the length distribution

According to observed distributions of read length in
(Additional file 1 Figures S1-S2 ), the logarithmic normal
distribution (Eq.1) was used to model the length of CLR
reads.

(% p,0) = ! ex —(lrzx—ﬂ)z
p ,//l, _JCO‘\/E p 20,2

(1)

where variable x is the read length.yandoare the mean
value and standard deviation of the variable x natural
logarithm, which can be estimated with the observed
reads length (see Additional file 1 Section 1).

2) Selecting QV

QVs measure the probability that a base is sequenced
incorrectly, revealing the error probability of each base.
In order to find the proportions of different QVs, we
counted the number of each QV for every real CLR
datasets, providing the proportion of different QVs of
the four CLR datasets in Additional file 1: Figure S14
and Table S12. Then, NPBSS will select different QVs
according to the average proportion in Additional file 1:
Figure S14 for each read.

3) Error model

Theoretically, the QV of each base in read sequence
is logarithmically related to the base error probability
P,,, that is, the P,, value of each base can be calcu-
lated by:

Py, =10 T (2)

In fact, the actual error probability P,,,,, is lower than
the theoretical value P,,. In order to obtain the actual
P,,,,, we first took the four CLR raw datasets analyzed
in Additional file 1: Table S4 to get the relationship (see
Additional file 1: Figure S15 and Table S13) between
error rate and QVs hidden in PacBio sequences. Then,
by using the least square method, we found the follow-
ing Eq. 3 of fitting curve (i.e., thick dark-gray line in
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Additional file 1: Figure S15) to estimate the actual over-
all error probability of each base in sequences.

Pepror = 0.3942 107%/ + 0.0041 (3)

where P,,,,, is the actual overall error probability when a
QV is given. This model is more consistent with the error
rate of real PacBio sequencing data. The P,,,,, value of
each QV is shown in Additional file 1: Table S14

4) Deletion, substitution and insertion errors

After getting the overall error probability (P,,,,,) of
each position base, the deletion, substitution and in-
sertion probabilities can be calculated by the Eq. 3-5
(in Additional file 1 Section 1).

Availability and requirements
Project name: NPBSS

Project home page:

Octave version:
NPBSS_Octave

MATLAB version: https://github.com/NWPU-903PR/
NPBSS_MATLAB

Operating system(s): Windows

Programming language: MATLAB and Octave

Other requirements: MATLAB and Octave Environment

License: GNU GPL v.3

Any restrictions to use by non-academics: None

https://github.com/NWPU-903PR/

Additional file

Additional file 1: Supplementary Material (including supplementary
figures and tables) for NPBSS. (PDF 2331 kb)

Abbreviations

CCS: Circular consensus sequencing; CLR: Continuous long reads;
PacBio: Pacific Biosciences; QV: Quality value (the Phred quality score);
SMRT: Single molecule, real-time;
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