
Wu et al. BMC Bioinformatics  (2018) 19:187 
https://doi.org/10.1186/s12859-018-2213-3

SOFTWARE Open Access

JCDSA: a joint covariate detection tool for
survival analysis on tumor expression profiles
Yiming Wu1, Yanan Liu1, Yueming Wang1, Yan Shi1,2 and Xudong Zhao1*

Abstract

Background: Survival analysis on tumor expression profiles has always been a key issue for subsequent biological
experimental validation. It is crucial how to select features which closely correspond to survival time. Furthermore, it is
important how to select features which best discriminate between low-risk and high-risk group of patients. Common
features derived from the two aspects may provide variable candidates for prognosis of cancer.

Results: Based on the provided two-step feature selection strategy, we develop a joint covariate detection tool for
survival analysis on tumor expression profiles. Significant features, which are not only consistent with survival time but
also associated with the categories of patients with different survival risks, are chosen. Using the miRNA expression
data (Level 3) of 548 patients with glioblastoma multiforme (GBM) as an example, miRNA candidates for prognosis of
cancer are selected. The reliability of selected miRNAs using this tool is demonstrated by 100 simulations.
Furthermore, It is discovered that significant covariates are not directly composed of individually significant variables.

Conclusions: Joint covariate detection provides a viewpoint for selecting variables which are not individually but
jointly significant. Besides, it helps to select features which are not only consistent with survival time but also
associated with prognosis risk. The software is available at http://bio-nefu.com/resource/jcdsa.
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Background
Due to the limited effectiveness of current clinical diag-
noses, expression profiles are utilized for informing vari-
ables, which are not only associated with the categories
of patients with different survival risks but also consistent
with survival time [1]. Commonly, Cox proportional haz-
ards regression analysis is used to seek relevant variables
considering the continuity of the patients’ survival out-
comes with right censoring [2]. As to small sample data
with high dimension, Cox proportional hazards regression
has to be combined with methods using dimension reduc-
tion or shrinkage such as partial least squares [3] and prin-
cipal component analysis [4]. However, these approaches
only provide a combination of variables. Besides, tree-
structured survival analysis [5], random survival forests
[6] and that associated with hazards regression [7] are
proposed for selection of features associated with survival
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outcomes. Anyway, these top-down strategies provide so
many variable candidates that the real features which may
reveal the possible molecular cause of different survival
risks are inevitably submerged.
In contrast, univariable hazards regression analyses

have been placed firmly in the mainstream. Bottom-up
strategies with different constraints such as least-angle
regression [8] and sparse kernel [9] are utilized for pro-
viding variables associated with survival time. To the
best of our knowledge, we are the first to present joint
covariate detection [1] that combines significant variables
consistent with survival time and associated with the cat-
egories of patients. Other than individually significant
variables, we concentrate on bottom-up enumeration of
feature tuples, each component of which is either indi-
vidually significant or not. This thought is inspired by
Integrative Hypothesis Testing [10], which is used for
selecting features differentially expressed between dif-
ferent groups of patients. Unlike Integrative Hypothesis
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Fig. 1 A schematic diagram to elucidate joint covariate detection

Testing, joint covariate detection is faced with continu-
ous survival time other than labels representing different
categories of patients.
In this paper, we further divide the provided feature

selection into two steps, i.e., selection of variables associ-
ated with survival outcomes and further feature selection

for discrimination between patients with different sur-
vival risks. In addition, we develop a joint covariate detec-
tion tool for survival analysis on tumor expression profiles
(i.e. JCDSA), which helps to conveniently select signifi-
cant features either on a cluster or a workstation, even
on a personal computer. Matlab R2012b and Python 3

Fig. 2 Selection of features associated with survival time
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Fig. 3 Selection of features for discriminating between two risk groups

are utilized as the development platform. miRNA expres-
sion data (Level 3) of 548 patients with GBM down-
loaded from TCGA (http://cancergenome.nih.gov) and
the simulated data are considered to be the examples.
Compared with the prevailing method named as random
survival forests (i.e. RSF), JCDSA shows better experimen-
tal results, which demonstrates the effectiveness of our
method.

Implementation
In order to elucidate joint covariate detection in brief, a
schematic diagram is illustrated in Fig. 1 (Notations: x(i)
and β denote the expression levels of sample i and the

Table 1 Individually significant miRNAs using joint covariate
detection (p<=0.001)

miRNA probe β(Cox) Z(Cox) P(Cox)

hsa-miR-148a 0.192 4.607 <0.001

hsa-miR-17-3p -0.308 -3.321 <0.001

hsa-miR-200a 0.465 3.563 <0.001

hsa-miR-20a -0.177 -3.163 <0.001

hsa-miR-221 0.284 5.396 <0.001

hsa-miR-222 0.246 6.332 <0.001

hsa-miR-340 -0.468 -3.498 <0.001

hsa-miR-34a 0.182 4.287 <0.001

regression coefficients of the detected variables, respec-
tively. The summation in the denominator is over all sub-
jects in the risk set at ordered survival time t(i), denoted
by R(t(i)). z0k denotes a null statistics by a random rear-
rangement of survival outcomes. The estimator of the
expected number of deaths in high-risk group is denoted
by ê1i, expressed as ê1i = n1idi

ni , where ni and di repre-
sent the number at risk and of deaths at the observation
of ordered survival time t(i), n1i denotes the number at
risk in high-risk group. The estimator of the variance of
d1i on the hypergeometric distribution is defined as v̂1i =
n1in0idi(ni−di)

n2i (ni−1) , where n0i denotes the number at risk in low-
risk group. Q0

r denotes a null statistics by a random rear-
rangement of survival outcomes). Input data is considered
as expression profiles with survival time and censoring
states of patients. Output data refers to selected features.
Joint covariate detection corresponds to two-step feature
selection, i.e., selection of features associated with sur-
vival outcomes and selection of features for discriminating
between two risk groups.

Features associated with survival outcomes
We first consider to select features associated with sur-
vival time. A bottom-up enumeration on k-tuple with k
variables is made. As to each k-tuple, Cox proportional
hazards regression analysis [2] is introduced. By making
the maximum partial likelihood estimation on the partial

http://cancergenome.nih.gov


Wu et al. BMC Bioinformatics  (2018) 19:187 Page 4 of 8

Table 2 Significant miRNAs in pairs using joint covariate detection (p<0.001)

miRNA probe miRNA probe β(Cox) β(Cox) Z(Cox) Z(Cox) P(Cox) P(Cox)

hsa-miR-10b hsa-miR-222 0.1412 0.3061 3.6472 7.1789 0.0004 <0.0001

hsa-miR-140 hsa-miR-148a -0.2450 0.1956 -3.3193 4.7179 0.0004 <0.0001

hsa-miR-143 hsa-miR-34a -0.2452 0.2326 -3.5230 5.2069 0.0004 <0.0001

hsa-miR-182 hsa-miR-204 -0.1186 0.1482 -3.4971 4.2846 0.0004 <0.0001

hsa-miR-340 hsa-miR-801 -0.7523 -0.2290 -4.7672 -4.0426 <0.0001 0.0002

hsa-miR-198 hsa-miR-671 0.6433 -0.6435 3.7746 -3.9295 0.0002 0.0002

hsa-miR-196a hsa-miR-20a 0.2191 -0.2120 3.4284 -3.6662 0.0007 0.0002

hsa-miR-340 hsa-miR-452 -0.7811 -0.2872 -4.8128 -3.6202 <0.0001 0.0003

hsa-miR-196a hsa-miR-20b 0.2159 -0.2582 3.3972 -3.6163 0.0008 0.0003

hsa-miR-196a hsa-miR-340 0.2115 -0.5325 3.2889 -3.8183 0.0010 0.0003

hsa-miR-374 hsa-miR-671 -0.3845 -0.2770 -4.1883 -3.5837 0.0002 0.0004

hsa-miR-140 hsa-miR-801 -0.3620 -0.2002 -4.2702 -3.6236 <0.0001 0.0005

hsa-miR-340 hsa-miR-671 -0.7553 -0.2512 -4.6673 -3.4952 0.0002 0.0005

hsa-miR-340 hsa-miR-765 -0.7652 -0.2524 -4.6791 -3.4679 <0.0001 0.0006

hsa-miR-17-5p hsa-miR-196a -0.2635 0.2226 -3.8666 3.4765 <0.0001 0.0006

hsa-miR-222 hsa-miR-422b 0.2911 -0.3619 7.0607 -3.5045 <0.0001 0.0007

hsa-miR-140 hsa-miR-671 -0.3948 -0.2333 -4.2886 -3.3077 <0.0001 0.0007

hsa-miR-340 hsa-miR-370 -0.7885 -0.1201 -4.6899 -3.4386 <0.0001 0.0007

hsa-miR-374 hsa-miR-663 -0.3226 -0.2551 -3.9265 -3.4033 0.0002 0.0007

hsa-miR-190 hsa-miR-374 0.9479 -0.2649 3.4665 -3.5370 0.0004 0.0007

hsa-miR-148a hsa-miR-30e-3p 0.2287 -0.3551 5.1831 -3.1949 <0.0001 0.0008

hsa-miR-374 hsa-miR-801 -0.2932 -0.1921 -3.7141 -3.4390 0.0005 0.0008

hsa-miR-374 hsa-miR-765 -0.3481 -0.2457 -3.9480 -3.2346 0.0002 0.0009

hsa-miR-30e-3p hsa-miR-663 -0.4564 -0.2517 -3.4388 -3.2166 0.0005 0.0009

hsa-miR-181c hsa-miR-675 -0.2618 -2.9279 -3.6755 -3.3646 0.0003 0.0010

hsa-miR-200b hsa-miR-487b 0.4543 0.2424 4.0048 3.2972 0.0007 0.0010

Fig. 4 Kaplan-Meier analysis
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Fig. 5 Risk score analysis

likelihood function, we obtain k estimated regression
coefficients on which Wald statistics are made. Further-
more, a permutation test is made on each Wald statistic.
The k-tuple with each component corresponding to a
significant p value is regarded as a candidate feature asso-
ciated with survival outcomes. More details can be seen
in [1].

Features for discriminating between two risk groups
We then intend to select features for discriminating
between low-risk and high-risk group of patients, which
conforms to doctors’ daily decision making process. As
to each patient, a risk score which is the linear portion
of the expression values using the Cox regression coef-
ficients is calculated. A preassigned risk score is utilized
as a cut-off value for stratification between high-risk and
low-risk group of patients. Log-rank test is made. Fur-
thermore, a permutation test is presented on each tuple,
which has been selected to be associated with survival out-
comes. The k-tuple with a significant p value is regarded

Table 3 Significant miRNAs using random survival forests (VIMP
score>=0.001)

miRNA probe VIMP score

hsa-miR-222 0.0103

hsa-miR-148a 0.0027

hsa-miR-30d 0.0012

hsa-miR-27a 0.0011

hsa-miR-422b 0.0011

as a candidate feature for discriminating between two risk
groups. More details can be also seen in [1].

Brief overview of the software
Our software, which is implemented in Matlab R2012b
or other later versions, can work on different compu-
tational platforms (e.g., a cluster, a workstation, even a
personal computer). Therefore, it contains two parts,
i.e., client and server. Selection of features associated
with survival outcomes is accomplished by two Mat-
lab m-files (i.e., ’/Client/S1_feature_selection.m’ and
’/Server/S1_feature_selection_on_server.m’). A further
selection of features for stratification of patients is
fulfilled by a Matlab m-file ’Client/S2_plot_draw.m’.
If this program is implemented on a workstation or
a personal computer, only the client part is needed.
That is to say, users only need to concentrate on
two GUIs (i.e., ’/Client/S1_feature_selection.m’ and
’Client/S2_plot_draw.m’) on the client part. Otherwise,
the server part is also in demand. Data communications
and environment configurations are actualized using
Python 3. More details can be seen in the user’s guide on
the website: http://bio-nefu.com/resource/jcdsa.

Table 4 Individually significant miRNAs using joint covariate
detection on the simulated data (p<=0.05)

miRNA probe β(Cox) Z(Cox) P(Cox)

miRNA-alternative 1 4.739 5.929 <0.001

miRNA-null 33 -0.3583 -1.9486 0.023

http://bio-nefu.com/resource/jcdsa
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Table 5 Significant miRNAs in pairs using joint covariate detection on the simulated data (p<=0.001)

miRNA probe miRNA probe β(Cox) β(Cox) Z(Cox) Z(Cox) P(Cox) P(Cox)

miRNA-alternative 1 miRNA-alternative 2 7.6975 0.8455 5.1236 3.6895 <0.001 <0.001

Results
According to the presented two-step feature selection
strategy, we first consider selecting features associated
with survival outcomes. Figure 2 illustrates this step. Can-
cer type can be selected or input by clicking the right
side arrow if it is not supported in the type list. Other
selections in the setting frame can be also made, details
of which are listed in user’s guide. Before running at
full speed, JCDSA estimates the finishing seconds which
helps to make a further decision. After its completion, the
result which records p value(s) of each k-tuple is stored
in ’/Client/Data/S1’. Figure 3 further illustrates the step of
selecting features associated with survival outcomes (i.e.,
Step 2.1). By setting the threshold of the p value corre-
sponding to permutation test on Wald statistic, features
associated with survival outcomes are selected.
Using the miRNA expression data (Level 3) of 548

patients with GBM as an example, individually signifi-
cant miRNAs and significant miRNAs in pairs are listed in
Tables 1 and 2, respectively. After making careful compar-
isons between Tables 1 and 2, we conclude that significant
features in high dimension may not be composed of indi-
vidually significant miRNAs. Taking the significant pair
miR-10b andmiR-222 as an example, miR-10b is not listed
in Table 1, which shows that it is not individually signif-
icant. This phenomenon reveals the advantage of using
joint covariate detection.
Together, Figs. 3, 4 and 5 illustrate the feature selection

step for discriminating between two risk groups. In Fig. 3,
after choosing the files that represent the original data and
the result corresponding to significant features associated
with survival time at Step 2.2, the software runs to Step 2.3
and Step 2.4.
As shown in Fig. 4, Kaplan-Meier analysis with param-

eters derived from log-rank test and Harrell’s con-
cordance index is made for further selection of fea-
tures, which helps to discriminate between high-risk
and low-risk group of patients. Meanwhile, the result
of risk score analysis is illustrated in Fig. 5. Corre-
spondingly, results which refer to significant features are
stored in ’Client/Data/S2/S2_3’ and ’Client/Data/S2/S2_4’,
respectively.
In order to show the effectiveness of our method, we

implemented the prevailing method named as random
survival forests (i.e. RSF) on the miRNA expression data
(Level 3) of 548 patients with GBM for comparison. 1000
binary survival trees were made, with each terminal node
containing a minimum of d0=10 unique deaths. We made
1000 permutations on each variable, and obtained the

variable importance (VIMP) for each variable. The result
is listed in Table 3.
After making careful comparisons between Tables 2

and 3, we find that miR-10b is still unimportant, as it
is not listed in Table 3. This phenomenon reveals the
advantage of using joint covariate detection other than
RSF. In fact, the individually significant miR-222 keeps
a p=0.0012 corresponding to log-rank test with 10000
rounds of permutation. As to significant pair (i.e., miR-
222 and miR-10b), it keeps a p=0.0002 which corresponds
to log-rank test with 10000 rounds of permutation. As
to miR-10b, it keeps a p=0.285, which is individually
insignificant.
We simulated data under 40 independent dimensions,

from which we assigned two to be significant. That is,
the survival time S is defined as S = exp(−Xβ + ε),
where X is the simulated gene expression matrix and β =
[ 0.9, 0.1, 0.001, ..., 0.001]40 denotes the coefficient param-
eter. ε ∼ N(0, 2). The sample size n is 50. The censoring
states are generated, and yield 10 percent censoring for the
simulated data.
The experimental results on simulated data are listed in

Tables 4, 5 and 6, respectively. The significant pair closely
associated with simulated survival outcomes are selected
out, as shown in Table 5. In contrast, miRNA-alternative
2 which is in absence in Table 4 shows insignificant
(p=0.939), and illustrates less important in Table 6. These
results demonstrate the effectiveness of our method. The
simulated data and full tables corresponding to Tables 4, 5
and 6 can be downloaded on the website: http://bio-nefu.
com/resource/jcdsa.
In order to show that selected variables are improba-

ble false positive or false negative ones, we repeated the
simulations above for 100 times with an enlarged sam-
ple size (n=500). The experimental results are illustrated
in Fig. 6. Figure 6a denotes the p values (p < 1e − 3)
of the significant pair through 100 times of simulation.
However, miRNA-alternative 2 individually shows less
important, as illustrated in Fig. 6b. Comparisons between

Table 6 Significant miRNAs using random survival forests on the
simulated data (VIMP score>=0.001)

miRNA probe VIMP score

miRNA-alternative 1 0.1887

miRNA-null 32 0.0016

miRNA-alternative 2 0.0013

miRNA-null 10 0.0013

http://bio-nefu.com/resource/jcdsa
http://bio-nefu.com/resource/jcdsa
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Fig. 6 Simulation results. a p values of the significant pair through 100 times of simulation. b p values of the significant individual through 100 times
of simulation. c The number of positive pairs through 100 times of simulation. d The number of positive individuals through 100 times of simulation

Fig. 6a and b indicate that the significant features are
probably not composed of individually significant uni-
variables. Figure 6c and d report the number of positive
pairs and individuals through 100 times of simulation,
respectively. No false negative results are discovered. In
Fig. 6c, the maximum number of false positive pair is
three, which indicates a small probability of false pos-
itive pair 0.0038 (i.e., 3/C2

40). As to Fig. 6d, the maxi-
mum number of false positive individual is also three;
yet, the probability of false positive individual is 0.075
(i.e., 3/40).

Discussion
There are several states needed to be discussed. First,
it is the significant multi-variable other than combina-
tions of individually significant uni-variables that con-
tributes to selection of features not only consistent with

survival outcomes but also associated with stratification
of patients under different survival risks. This fact has
been demonstrated by our experimental results in this
paper. Second, components of each significant multi-
variable may keep a low correlation. This phenomenon
has been discovered when experiments on the simulated
data were made. Further evidence is still needed. Third,
the correction for multiple hypothesis testing is absent,
considering the computational cost of calculating FDR,
q value, the adjusted p values, etc. on each pair or each
high-dimension tuple of variables. However, simulations
are made, which demonstrate the effectiveness of our
method.

Conclusion
Our joint covariate detection for survival analysis pro-
vides a new viewpoint for selecting variable candidates
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which are not individually but jointly significant. Follow-
ing a two-step variable selection strategy, we propose a
software (i.e., JCDSA) in order to help users to select fea-
tures which are not only consistent with survival time but
also associated with prognosis risk. JCDSA can be adapted
for many categories of cancer. Users can easily operate
it and conveniently obtain the experimental results for
subsequent biological experimental validation.
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