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Abstract

Background: The single cell RNA sequencing (scRNA-seq) technique begin a new era by allowing the observation
of gene expression at the single cell level. However, there is also a large amount of technical and biological noise.
Because of the low number of RNA transcriptomes and the stochastic nature of the gene expression pattern, there
is a high chance of missing nonzero entries as zero, which are called dropout events.

Results: We develop DrImpute to impute dropout events in scRNA-seq data. We show that DrImpute has significantly
better performance on the separation of the dropout zeros from true zeros than existing imputation algorithms. We
also demonstrate that DrImpute can significantly improve the performance of existing tools for clustering, visualization
and lineage reconstruction of nine published scRNA-seq datasets.

Conclusions: DrImpute can serve as a very useful addition to the currently existing statistical tools for single
cell RNA-seq analysis. DrImpute is implemented in R and is available at https://github.com/gongx030/DrImpute.
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Background
DNA sequencing technology and next generation sequen-
cing approaches for high-throughput RNA sequencing are
experiencing tremendous growth. Bulk RNA sequencing
(bulk RNA-seq) technology performs high throughput
sequencing of RNA isolated from millions of cells, which
implies that the resulting expression value for each gene is
the average expression value of a large population of input
cells [1, 2]. Thus, bulk RNA-seq is suitable for revealing a
global view of averaged gene expression levels. However,
the bulk RNA-seq method is not capable of quantifying
the RNA contents of a limited number of cells and yields
bias the results when samples consist of heterogeneous
cell populations. For example, bulk RNA-seq is unable to
accurately reveal the transcriptome of the cells from the
early embryonic developmental stage where there exists
multiple lineages with a relatively limited number of cells.
Recently, scRNA-seq was developed to enable a wide
variety of transcriptomic analyses at the single cell level
[3–5]. The major areas in scRNA-seq research include
characterization of the global expression profiles of rare

cell types, the discovery of novel cell populations, and
the reconstruction of cellular developmental trajector-
ies [6–9]. Accordingly, many statistical methods have
been developed for the clustering of cell populations,
the visualization of cell-wise hierarchical relationships,
and the prediction of lineage trajectories [9–22].
However, scRNA-seq has a relatively higher noise level

than bulk RNA-seq especially due to so-called dropout
events [10–14]. The observed zeros in the gene-cell
expression matrix of the scRNA-seq datasets consist of
true zeros, where the genes are not expressed at all, and
the dropout zeros are due to the so-called dropout events
[10]. Dropout events are special types of missing values
(a missing value is an instance wherein no data are
present for the variable), caused both by low RNA input
in the sequencing experiments and by the stochastic
nature of the gene expression pattern at the single cell
level. However, most statistical tools developed for
scRNA-seq analysis do not explicitly address these
dropout events [2]. We hypothesize that imputing the
missing expression values caused by the dropout events
will improve the performance of cell clustering, data
visualization, and lineage reconstruction.
The gene expression data from bulk RNA-seq (or micro-

arrays) are also challenged from a missing value problem
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[15]. Various statistical methods have been proposed to
estimate the missing values in the data [16, 17]. These miss-
ing value imputation methods can be categorized as five
general strategies, as follows: (1) mean imputation esti-
mates missing entries by averaging gene-level or cell-level
expression levels [16–19]; (2) hot deck imputation predicts
missing values from similar entries using a similarity metric
among genes (KNNImpute [17]); (3) model based imput-
ation employs statistical modeling to estimate missing
values (GMCimpute [16]); (4) multiple imputationmethods
predict missing entries multiple times and the combination
of the results to produce final imputation (SEQimpute
[18]); and (5) cold deck imputation uses side information
such as gene ontology to facilitate the imputation process
(GOkNN, GOLLS [19]).
However, the imputation methods developed for bulk

RNA-seq data may not be directly applicable to scRNA-seq
data. First, much larger cell-level variability exists in
scRNA-seq, because scRNA-seq has cell-level records
for gene expression; on the other hand, bulk RNA-seq
data have the averaged gene expression of the population
of cells. Second, dropout events in scRNA-seq are not
exactly missing values; dropout events have zero expres-
sion, and they are mixed with real zeros. In addition, the
proportion of missing values in bulk RNA-seq data is
much smaller. Therefore, a dropout imputation model for
scRNA-seq is needed.
There are a few previous studies for imputing dropout

events [20–24]. BISCUIT iteratively normalizes, imputes,
and clusters cells using the Dirichlet process mixture
model [22]. Zhu et al. proposed a unified statistical frame-
work for both single cell and bulk RNA-seq data [20]. In
their method, the bulk and single cell RNA-seq data are
linked together by a latent profile matrix representing un-
known cell types. The bulk RNA-seq datasets are modeled
as a proportional mixture of the profile matrix and the
scRNA-seq datasets are sampled from the profile matrix,
considering the dropout events. The scImpute infers drop-
out events with high dropout probability and only perform
imputation on these values [23]. MAGIC imputes the miss-
ing values by considering similar cells based on heat diffu-
sion, though MAGIC would alter all gene expression levels
including those non-zero values [24]. However, none of
these studies have systematically demonstrated how imput-
ing dropout events could improve the current statistical
methods that do not account for dropout events.
In the present study, we designed a simple, fast hot

deck imputation approach, called DrImpute, for estimat-
ing dropout events in scRNA-seq data. DrImpute first
identifies similar cells based on clustering, and imput-
ation is performed by averaging the expression values
from similar cells. To achieve robust estimations, the
imputation is performed multiple times using different
cell clustering results followed by averaging multiple

estimations for final imputation. We demonstrated using
nine published scRNA-seq datasets that imputing the
dropout entries significantly improved the performance of
existing tools, including pcaReduce [25], SC3 [26], t-SNE
[27], PCA, Monocle [28], and TSCAN [29], with regards
to cell clustering, visualization, and lineage reconstruction.
Moreover, DrImpute also performed better than CIDR
[30], ZIFA [31], scImpute [23] and MAGIC [24] in ac-
counting for dropout events in scRNA-seq data.

Results
scRNA-seq datasets
In this study, we used nine published scRNA-seq data-
sets to comprehensively examine the performance of
DrImpute on imputing the zeros in the scRNA-seq data
and whether the imputation would improve the perform-
ance of existing analysis tools. Table 1 summarized these
nine scRNA-seq datasets. We grouped these datasets into
three levels (gold, silver and bronze) based on the support-
ing evidence of the reported cell labels [26]. The “gold
standard” dataset included: Pollen [8], Blakeley [32] and
Zheng [33] datasets, where the cell labels were defined
based on experimental conditions or cell lines. Thus, the
cells within each condition were relatively homogenous.
The “silver standard” datasets included: Usoskin [34] and
Hrvatin [35] datasets, where the cell labels were com-
putationally derived and assigned based on the authors’
knowledge of the underlying biology. The cell labels of
the remaining four “bronze standard” datasets (Deng
[6], Treutlein [36], Scialdone [37] and Petropoulos [38])
were developmental stages (time labels). Although the
single cell populations from different time points usually
have distinct expression patterns and biological character-
istics, the time labels per se were unable to separate the
distinct populations within each time point. Thus, for the
“bronze standard” datasets, the cell labels (time labels)
may understate the existing cell populations.

DrImpute has significantly better performance on the
separation of the dropout zeros from true zeros
Figure 1 summarized the general computational framework
of DrImpute. First, the cell-cell distance matrix was com-
puted using Spearman and Pearson correlations, followed
by the cell-wise clustering based upon the distance matrix
over a range of expected number of clusters k (k ranging
from 10 to 15 by default). For each combination of distance
metric (Spearman or Pearson) and k, we estimated the zero
values in the input gene-cell matrix. The averaged estima-
tion over all combinations were taken as the final imputed
values (see Methods).
We first investigated the performance of DrImpute on

discriminating true zeros and dropout zeros in the
scRNA-seq data matrix using a down-sampling based
simulation method. We defined the true zeros as the
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genes where expression levels are consistently zero across
all cells belonging to one cell cluster (Additional file 1:
Figure S2). To generate the dropout zero, we randomly
down-sampled the raw sequencing reads to 10, 15, 25, 40
and 63% (10− 1, 10–0.8, 10–0.6, 10–0.4 and 10–0.2) of the total
number of reads, mapped the sampled reads onto the

genome and computed the corresponding gene-cell read
count matrices. We defined dropout zero as the genes
where expression levels were zero in the down-sampled
datasets, but were positive in the full dataset.
Then, we utilized DrImpute, along with two other pub-

lished scRNA-seq imputation tools scImpute and MAGIC
to impute zero events in the down-sampled dataset. The
imputed zero events could therefore be grouped into four
situations: (1) true positive (TP, imputed dropout zeros), (2)
true negative (TN, non-imputed true zeros), (3) false posi-
tive (FP, imputed true zeros) and (4) false negative (FN,
non-imputed dropout zeros). The F1 score (the harmonic
mean of precision and recall) was used to evaluate the im-
putation performance of each method on down-sampled
datasets. We found that DrImpute had consistently better
performance of discriminating the true zeros and the drop-
out zeros at various down-sampling ratio on both Pollen
and Usoskin datasets (Fig. 1b and c).

DrImpute significantly improved the performance of
existing tools for cell type identification
Discovering distinct cell types from a heterogeneous cell
population (cell clustering) is one of the most important
applications of scRNA-seq. Several methods, such as
pcaReduce [25], SC3 [26], and t-SNE followed by k-means
(t-SNE/kms), have been developed and utilized for cluster-
ing scRNA-seq data. However, these methods did not ex-
plicitly address the dropout events or the missing values
existing in the scRNA-seq data. We hypothesized that (1)
preprocessing the scRNA-seq data by imputing the drop-
out events via DrImpute will improve the accuracy of
these clustering methods and (2) the performance of the
existing tools combined with DrImpute will perform bet-
ter than existing scRNA-seq imputation tools such as
CIDR [30], scImpute [23] and MAGIC [24] in addressing
dropout events.

Table 1 The scRNA-seq datasets used for comparing the performance of different tools

Dataset k # cells Standard Cell Label Definition UMI Ref

Pollen 11 301 gold human cell lines No [8]

Deng 10 286 bronze Stages of mouse preimplantation development No [6]

Usoskin 4 622 silver Clusters of mouse lumbar DRG (dorsal root ganglion) No [35]

Blakeley 3 30 gold Human pluripotent epiblast cells, extraembryonic trophectoderm
cells and primitive endoderm cells

No [32]

Treutlein 8 405 bronze Cell populations from direct reprogramming from fibroblast to
neuron (MEF, day 2, 5, and 22)

No [36]

Zheng 10 94,655 gold Cell populations from human immune system Yes [33]

Hrvatin 8 48,266 silver Cell populations from mouse visual cortex Yes [34]

Scialdone 4 1205 bronze Stages of mouse mesodermal development No [37]

Petropoulos 5 1529 bronze Stages of human preimplantation development No [38]

k represents the number of cell clusters reported in the original study. Datasets were grouped into three levels (gold, silver and bronze standards) based on the
supporting evidence of the reported cell labels

b

a

c

Fig. 1 DrImpute has significantly better performance on discriminating
dropout zeros from true zeros than existing methods. (a) Overview of
DrImpute pipeline: (1) data cleansing, normalization, and log
transformation; (2) calculating the distance matrix among cells; (3)
imputing the dropout entries based on the clustering results; and
(4) averaging all imputation results to determine the final imputation.
b-c Three scRNA-seq imputation algorithms DrImpute, scImpute and
MAGIC were used to discriminating the dropout zeros from the true
zeros in the simulation studies. The full scRNA-seq datasets from (b)
Pollen et al. and (c) Usoskin et al. were down-sampled at 10, 15%, 25,
40 and 63% of the total number of reads. The discriminative
performance was measured by F1 score (the harmonic mean of
precision and recall)
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First, we evaluated whether imputing the dropout events
using DrImpute before applying pcaReduce, SC3, and
t-SNE would improve the accuracy of cell type identifica-
tion. We compared the clustering performance of these
methods with and without imputing dropout events by
DrImpute, on seven published scRNA-seq datasets. Using
the cell types reported in the original publications as the
ground truth and the Adjusted Rand Index (ARI) as the
performance metric, we observed that preprocessing the
scRNA-seq datasets with DrImpute significantly improved
the clustering performance of pcaReduce with the M and
S options (pcaR_M: merging based on largest probability;
pcaR_S: sampling based merging) on all seven tested data-
sets; improved the performance of t-SNE followed by
k-means (t-SNE/kms) on five datasets; and improved the
performance of SC3 on three datasets (Fig. 2a). Second,
we also found that combining DrImpute with t-SNE/kms
showed significantly better clustering performance than
CIDR on five of seven datasets, scImpute followed by
t-SNE/kms on five of seven datasets, MAGIC followed by
t-SNE/kms on six of seven datasets (Fig. 2a).
Figure 2b shows a confusion matrix of the ground truth

cell labels and cell clusters predicted by pcaReduce (option
S) on the scRNA-seq dataset of induced neuronal (iN) re-
programing, without (left panel) and with (right panel) im-
puting the dropout events using DrImpute. We observed
a clearer diagonal pattern in the confusion matrix with the
imputation, as supported by an improvement of ARI, from
0.55 to 0.72. As another example, Fig. 2c showed the con-
fusion matrix of the ground truth labels and cell clusters
predicted by t-SNE/kms on a dataset of mouse preimplan-
tation embryos. We found that imputing the dropout
events facilitated t-SNE/kms more accurately to cluster
the cells from the blastocyst stages, as evidenced by an in-
crease in mean ARI from 0.50 to 0.66.
We further assessed whether preprocessing scRNA-seq

by imputing dropout events would produce more consist-
ent clustering results. We evaluated the robustness of the
clustering results with and without imputing the dropout
events using DrImpute. We hypothesized that preprocess-
ing the scRNA-seq with DrImpute would facilitate the
clustering methods to detect more robust and consistent
subpopulations. For each dataset, we randomly sampled
100 genes (gene level down-sampling), or one-third of the
total cells (cell level down-sampling), and we clustered the
cells using each of the clustering methods with and
without preprocessing the down-sampled dataset using
DrImpute. This process was repeated 100 times, and
we compared how consistent the clustering results were
after down-sampling the genes or cells as measured by
cross ARI (see Methods). For both the gene and cell
down-sampling experiments, we found that preprocessing
of the scRNA-seq datasets with DrImpute significantly im-
proved the robustness of the cell type identification of

SC3, t-SNE/kms, and pcaR_M/pcaR_S on 80% of the
tested cases (Additional file 1: Figure S5a and b).
In summary, these results suggested that in 55 out of

66 (83%) tested cases, preprocessing the scRNA-seq
datasets by imputing the dropout events using DrImpute
significantly improved the accuracy or the robustness of
clustering methods that did not specifically address
dropout events. Compared with other scRNA-seq imput-
ation tools such as scImpute, CIDR and MAGIC, DrIm-
pute combined with t-SNE/kms had improved clustering
performance on 16 of 21 (76.2%) tested cases.

a

b

c

Fig. 2 DrImpute significantly improved the performance of the
existing tools for cell type identification. (a) The average adjusted
Rand index (ARI) of 100 repeated runs of pcaR_M (pcaReduce with
the M option), pcaR_S (pcaReduce with the S option), SC3, t-SNE/
kms (t-SNE followed by k-means), CIDR, scImpute and MAGIC, on seven
scRNA-seq datasets. For Zheng and Hrvatin datasets, 1000 cells were
randomly sampled from the full datasets and used for the clustering
analysis for each method. Black interval represents one plus or minus
standard error of the category. Wilcoxon rank sum test was utilized to
compare the ARIs from different tools (∗∗: 0.01 ≤ p value < 0.001,
∗∗∗ p value < 0.001). b-c The confusion matrix for (b) iN reprograming
using pcaReduce (option S) and (c) mouse preimplantation embryo
using t-SNE followed by k-means. Y axis represents ground truth cluster
groups reported in the original study and X axis represents predicted
groups. Left and right panels, respectively, represent the confusion matrix
according to the clustering results without and with preprocessing the
scRNA-seq data using DrImpute. The ARI was computed between the
original and predicted cell groups
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DrImpute significantly improved the performance of PCA
and t-SNE in visualizing scRNA-seq data
Principal component analysis (PCA) and t-SNE are among
the most popular methods for visualizing scRNA-seq in a
two- (2D) or three-dimensional (3D) space. However, nei-
ther PCA nor t-SNE explicitly addressed dropout events.
Zero Inflated Factor Analysis (ZIFA) was the first specific
tool designed for factorizing and visualizing scRNA-seq
data [31], followed by a few recent methods [39, 40]. We
hypothesized that with the preprocessing of scRNA-seq
data by imputing the dropout events using DrImpute, the
generic dimension reduction methods (PCA and t-SNE)
would generate better factorization or visualization results
than without imputation.
To evaluate the accuracy of the dimension reduction

in 2D space, we first estimated how discriminatively the
cells from one population (using the class label reported
in the original publication) separated from other popula-
tions in 2D space. For each dimension reduction result,
we used the 2D coordinates of 90% of cells as the feature
to train a linear support vector machine (SVM) classifier,
and we predicted the class label for the remaining 10%
of the cells. The above process was repeated ten times,
and the overall prediction accuracy (10-fold cross valid-
ation accuracy) was used to quantitatively measure the
separation of different populations in 2D space.
We compared the performance of PCA and t-SNE with

and without DrImpute preprocessing as well as ZIFA and
t-SNE with scImpute on seven published scRNA-seq data-
sets. We observed significant improvements in PCA or
t-SNE with DrImpute on 9 of 14 (64.3%) tested cases
(Fig. 3a). Moreover, using three datasets (Pollen, Usoskin
and Treutlein) where ZIFA had better separation than
PCA, preprocessing the data with imputation employing
DrImpute helped PCA achieve significantly better per-
formance than ZIFA in separating the cell populations
(Fig. 3a). Comparison with imputing data with scIm-
pute and MAGIC followed by t-SNE, DrImpute showed
significantly better visualization performance on 12 of
14 (85.7%) tested cases (Fig. 3a).
Figure 3b depicted the cell expression profiles of four

types of neurons (non-peptidergic nociceptors (NP), tyro-
sine hydroxylase containing (TH), peptidergic nociceptors
(PEP), and neurofilament containing (NF)) in mice using
PCA without (left) and with (right) imputing the dropout
events using DrImpute. Without imputing the dropout
events with DrImpute, the NP, TH, and PEP groups were
visually indistinguishable in the 2D space. However, after
applying DrImpute, all four groups were visually sepa-
rated, as demonstrated by an accuracy increase from 62 to
93%. Fig. 3c showed the cell expression profiles of mouse
preimplantation embryos using t-SNE. As seen in the red
circled area, the stages of early, mid, and late blastocyst
were more clearly distinguished after preprocessing the

scRNA-seq data with DrImpute, as supported by an accur-
acy increase from 84 to 96%.
In summary, we found that preprocessing the scRNA-seq

datasets by imputing the dropout events using DrImpute
significantly improved the accuracy of visualization. The
generic dimension reduction methods (PCA and t-SNE) on
imputed datasets using DrImpute also performed signifi-
cantly better than ZIFA, which was specifically designed for
scRNA-seq data considering dropout events.

DrImpute significantly improved the performance of
monocle and TSCAN in lineage reconstruction
The third common task for single cell RNA-seq analysis
is to reconstruct the lineage trajectories and infer the
differentiated and progenitor states of the single cells.
For example, Monocle [28] and TSCAN [29] were de-
signed to infer pseudotime from the biological cellular
process. However, neither method accounted for dropout
events. We hypothesized that inferring the pseudotime on
scRNA-seq data preprocessed using DrImpute could im-
prove the accuracy of pseudotime ordering.
We compared the performance of pseudotime infer-

ence with and without imputing the dropout events on
three published temporal scRNA-seq datasets, mouse
preimplantation embryonic development data (Deng [6]),
human preimplantation embryonic development data (Pet-
ropoulos [38]), and mouse early mesodermal development
data (Scialdone [37]). The Deng dataset included the single
cells from ten early mouse developmental stages from zyg-
ote, 2−/4−/8−/16- cell stages to blastocyst. The Petropoulos
dataset included the single cells from five stages of human
preimplantation embryonic development from develop-
mental day (E) 3 to day 7. The Scialdone dataset included
the single cells from four stages of early mesodermal devel-
opment at E6.5, E7.0, E7.5 and E7.75 in the mouse. It
should be noted that although the cells within each of the
time points may not be homogenous, the time labels could
be used to represent the overall developmental trajectory,
and to evaluate the performance of pseudotime inference
algorithms [41–45]. Thus, we used the reported time labels
as the ground truth and evaluated the performance of
pseudotime inference by comparing the time labels and
pseudotime. The consistency between the time labels and
pseudotime ordering was measured by the Pseudo-temporal
Ordering Score (POS) and Kendall’s rank correlation score.
We found that both Monocle and TSCAN had signifi-

cantly improved performance on pseudotime inference
on all three tested datasets if the scRNA-seq data were
preprocessed by DrImpute, as supported by the significant
increase of both POS and Kendall’s rank correlation score
(Fig. 4a). Figure 4b showed single cells of mouse early
mesodermal development data in 2D space using PCA
without (left panel) and with (right panel) imputing the
dropout events using DrImpute, and a pseudotime
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trajectory was constructed using TSCAN. Without imput-
ation (left panel), the pseudotime trajectory started from
E7.75 and ended at E7.75, which was not consistent with
the known biological observations. In contrast, with im-
putation (right), the pseudotime trajectory started from
E6.5 and ended at E7.75, and both POS and Kendall’s rank
correlation score significantly increased (POS increased
from 0.66 to 0.89, and Kendall’s rank correlation increased
from 0.5 to 0.63).
As another example, Fig. 4c depicted single cells of

human preimplantation embryo data in 2D space using
independent component analysis (ICA), with the pseu-
dotime trajectory inferred by Monocle. When imputing
dropout events using DrImpute (right panel), not only

did the trajectory start from E3 and end at E7, but the
trajectory was also clearer in the sense that the E5, E6,
and E7 stages were more easily separated compared to the
trajectory inference results from non-imputed data (left
panel). Consequently, the POS and Kendall’s rank correl-
ation score were significantly increased (POS from 0.61 to
0.94; Kendall’s rank correlation from 0.44 to 0.77).
In summary, these results suggested that imputing drop-

out events using DrImpute also improved the perform-
ance of pseudotime inference using Monocle and TSCAN.

Discussion
Dropout events and large cell-level variability are char-
acteristic of scRNA-seq data, which are different from

a

b

c

Fig. 3 DrImpute significantly improved the performance of PCA and t-SNE in visualizing scRNA-seq data. a The barplots of average accuracy of
separating the cell subpopulations in 2D space. For Zheng and Hrvatin datasets, 1000 cells were randomly sampled from the full datasets and
used for the clustering analysis for each method. Black interval represents one plus or minus standard error of the category. Wilcoxon rank sum
test was utilized to compare the accuracy from different tools (***p value <0.001). b Visualization of four groups of mouse neural single cells (NP,
TH, PEP, and NF) using PCA. Left and right panels, respectively, show the 2D visualization of single cells without and with preprocessing the
scRNA-seq data using DrImpute. c Visualization of mouse preimplantation embryo using t-SNE. Left and right panels, respectively, show the 2D
visualization of single cells without and with preprocessing the scRNA-seq data using DrImpute. The classification accuracy was computed by
using the 2D coordinates of each dimension reduction results
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bulk RNA-seq data. However, many statistical tools de-
rived for scRNA-seq data in cell type identification,
visualization, and lineage reconstruction did not model
for dropout events. Thus, we proposed a method for im-
puting dropout events considering cell-level correlation
and systematically compared the performance without
and with the imputation of dropout events. Our results
on nine scRNA-seq datasets showed that imputing the
dropout events using DrImpute significantly improved
the performance of existing tools on cell type identifica-
tion, visualization, and lineage reconstruction.

We would like to emphasize that DrImpute is the very
first algorithm that sequentially utilizes dropout imputation
with existing tools for more effective analysis. There are
some statistical tools that model dropout events for specific
purposes, such as BISCUIT, ZIFA, CIDR, scImpute and
MAGIC. However, none of these suggest and compare the
sequential use of dropout imputation and existing methods.
We developed DrImpute to impute dropout events and
demonstrated that the sequential use of dropout imputation
employing DrImpute followed by the use of existing tools
greatly improved the performance of the existing tools.

b

c

a

Fig. 4 DrImpute greatly improved the performance of Monocle and TSCAN in lineage reconstruction. a The barplots of averaged Kendall’s rank
correlation score and POS of 100 repeated runs of Monocle and TSCAN on three time series scRNA-seq datasets. Blue interval represents one plus
or minus standard deviation of the category. Black interval represents one plus or minus standard error of the category. Both TSCAN and
Monocle are deterministic with 0 variation before imputation. Wilcoxon rank sum test was utilized to compare Kendall’s rank correlation score
and POS from different tools (***p value <0.001). b Visualization of lineage reconstruction of mouse early mesoderm using TSCAN. The left and
right panels, respectively, show the results of lineage reconstruction by TSCAN using the un-imputed scRNA-seq data or data preprocessed using
DrImpute. The “Flk1+” cell population represents mesodermal cells. “Epiblast” is the outermost layer of an embryo before it differentiates into
ectoderm and mesoderm around mouse developmental day (E) 6.5. The CD41+/Flk1- cell population represents the mature hematopoietic
lineage, and CD41+/Flk1+ cell population represents an early hematopoietic lineage where CD41 and Flk1 are co-expressed. c Visualization of
lineage reconstruction for human preimplantation embryo using Monocle. The left and right panels, respectively, show the results of lineage
reconstruction by Monocle without and with preprocessing the scRNA-seq data using DrImpute
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One of the limitations of DrImpute is that it considers
only cell-level correlation using a simple hot deck ap-
proach. The gene-level correlation also exists, and more
sophisticated modeling would improve the performance
of the imputation. Most missing value imputation
methods in bulk RNA-seq utilize gene-level correlation
to impute missing values; for example, LLSimpute uses a
local gene-level correlation structure to build local linear
regression models to estimate missing values [46]. One
may improve the performance of DrImpute by modeling
both cell-level and gene-level correlation.

Conclusions
The main goal of the current study was to de-noise the
biological noise in scRNA-seq data by imputing dropout
events. We developed DrImpute and proposed the sequen-
tial use of DrImpute on existing tools that do not address
dropout events. The results suggested that DrImpute
greatly improved many existing statistical tools (pcaRe-
duce, SC3, PCA, t-SNE, Monocle, and TSCAN) that do
not address the dropout events in three popular research
areas in scRNA-seq—cell clustering, visualization, and
lineage reconstruction. In addition, DrImpute combined
with pcaReduce, SC3 or t-SNE/kms showed higher per-
formance in cell clustering than CIDR, which was specific-
ally designed for the cell clustering of scRNA-seq data.
DrImpute combined with PCA or t-SNE also demon-
strated higher performance in 2D visualization than did
ZIFA, which was specifically designed for the dimensional
reduction of scRNA-seq data considering dropout events.
Moreover, DrImpute imputed dropout events better than
scImpute and MAGIC, as we have shown that the per-
formance of t-SNE increased greatly in regard to cell clus-
tering and visualization with DrImpute compared to that
with scImpute. In summary, DrImpute can serve as a very
useful addition to the currently existing statistical tools for
single cell RNA-seq analysis.

Methods
Data preprocessing
Seven scRNA-seq datasets (Pollen, Usoskin, Deng, Blakeley,
Treutlein, Zheng and Hrvatin) were used for cell clustering
and visualization. Three temporal scRNA-seq datasets
(Deng, Scialdone, and Petropoulos) were used for lineage
reconstruction. Genes that were expressed in fewer than 2
cells were removed. The raw read counts were normalized
by size factor [47], followed by log transformations
(log10(X + 1)). Table 1 summarized the nine datasets
used in this study.

Imputation strategy
Specifically, let X be a n by p log transformed gene ex-
pression matrix, where n is the number of rows (genes)
and p is the number of columns (cells). The (i, j)th

component of X is represented as xij. Let H be the num-
ber of clustering configurations (e.g. combinations of
distance metric and number of clusters), and C1, C2, …,
Ch are each clustering results. Given that the clustering
of Ch is a true hidden cell classification, the expected
value of a dropout event can be obtained by averaging
the entries in the given cell cluster:
E(xij|Ch) =mean(xij ∣ xij are in the same cell group in

clustering Ch).
This step was also schematized in Additional file 1:

Figure S1. The E(xij|Ch) was computed for each cluster-
ing result C1, C2, …, CH, and the final imputation for the
putative dropout events xij, and E(xij), was computed as
a simple averaging:

E xij
� � ¼ mean E xijjC

� �� � ¼ 1
H

XH

h¼1

E xijjCh
� �

Base clustering
For the default clustering of C1, C2, …, CH, we used an
approach similar to that of SC3. We first created a simi-
larity matrix among cells using Pearson and Spearman
correlations. K-means clustering was performed on the
first 5% of the principal components of the similarity
matrix and the number of clusters ranged from 10 to 15.
Thus, the default setting had a total of 12 clustering results
(two distance construction methods (Pearson, Spearman)
times six numbers of clusters (10 to 15) for k-means
clustering). This default setting was used for all the data
analysis in this manuscript except for the down-sampling
cells for the Blakeley dataset, which only had 30 cells. Its
sample size was too low to use a default range for the
number of clusters, so in this case, we used a clustering
group size of 6 to 10.

Choices of number clusters and k-means initialization
We evaluated the robustness of imputation results on
different choices of the number of clusters: k = 10 − 15
(default), k = 10 − 20, k = 10 − 25 and k = 10 − 30, as well
as different random number seeds for k-means initialization.
The robustness was quantitatively measured as Pearson’s
correlation coefficient of imputed zero entries between any
two conditions (choices of k ranges and random seeds).
We found that on two tested datasets (Pollen and Usoskin),
the imputed results were generally robust on different
choices of k ranges and random seeds (Additional file 1:
Figure S4a and b). We therefore chose k = 10 − 15 as the
default parameters since it needed less running time and
would be more efficient for processing large-scale datasets.
Moreover, our experience with DrImpute suggested that

the range of k needed to be no less than the real number
of cell clusters (though unlike other methods such as
scImpute, pcaReduce or SIMLR, the exact number of
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expected clusters do not need to be specified) [23, 25, 48].
For heterogeneous scRNA-seq datasets where more than
10 cell clusters are expected, a higher range of k may be
necessary to obtain most accurate imputation results.

Imputing large-scale scRNA-seq datasets
In order for DrImpute efficiently imputing large-scale
scRNA-seq datasets, we have improved the running effi-
ciency in two ways. First, for large scRNA-seq datasets,
we adopted a sampling-based algorithm without com-
puting the full cell-cell distance matrices [49]. Second, in
order to speed up k-means for very large scRNA-seq data-
sets, we have implemented a mini-batch k-means [50]. Both
sampling-based PCA of distance matrix and mini-batch
k-means could be performed in parallel and therefore
greatly improve the running time of DrImpute. It took
on average 750 s for DrImpute imputing a scRNA-seq
datasets with 10,000 cells (Additional file 1: Figure S6).
It should be noted that for large-scale sparse scRNA-seq
datasets, DrImpute imputed significantly less zero entries
in the gene-cell expression matrix (Additional file 1:
Figure S3).

Software implementations and applications
The pcaReduce software was downloaded from the authors’
GitHub (https://github.com/JustinaZ/pcaReduce). We per-
formed the analysis using the S and M options with the
default setting.
The SC3 package was downloaded from R Bioconduc-

tor (http://bioconductor.org/packages/release/bioc/html/
SC3.html). To ensure the consistency of the comparison
with other tools, the gene filtering option was turned off
(gene.filter = FALSE). Other options were set as default.
The Rtsne package and kmeans function in R program

were used for t-SNE (perplexity = 9) followed by k-means.
The log transformed expression data were centered as the
gene level. We used the R kmeans function with the op-
tion iter.max = 1e + 09 and nstart = 1000 for stable results.
ZIFA software was then downloaded (https://github.

com/epierson9/ZIFA). We used block_ZIFA with k = 15
for all data analysis, and we used the first two dimen-
sions for visualization and evaluation.
Monocle was downloaded from the R Bioconductor

page (https://bioconductor.org/packages/release/bioc/
html/monocle.html). In Monocle analysis, we first
selected genes expressed in at least 50 cells and then
selected differentially expressed genes using the differ-
entialGeneTest() function (qval < 0.01). If there were
no differentially expressed genes using the provided
test, all genes expressing at least 50 cells were used for
the subsequent analysis.
TSCAN was downloaded from the R Bioconductor page

(https://www.bioconductor.org/packages/release/bioc/html/
TSCAN.html). All default settings were used for TSCAN.

The MAGIC package was downloaded from GitHub
(https://github.com/KrishnaswamyLab/magic), and the R
version of MAGIC was used for the analysis. As sug-
gested in their manual page, we used settings t = 6 and
rescale_percent = 0.99.
The scImpute package was downloaded from GitHub

(https://github.com/Vivianstats/scImpute). We used the
settings drop_three = 0.5 and four CPU cores for the
analysis. The Kcluster parameter was set as the expected
number of cell clusters in each dataset (e.g. Kcluster = 11
for Pollen dataset).

Evaluating the robustness of cell clustering
To evaluate the robustness of various cell clustering
methods (Additional file 1: Figure S5a and b), we
down-sampled 100 genes (or about one-third of the
cells) at random. PcaReduce, SC3, and t-SNE followed
by k-means were applied to the down-sampled datasets,
with or without imputing the dropout events using
DrImpute and CIDR. The above processes were repeated
100 times. The mean pairwise ARI of the clustering re-
sults from a total of 100 × 99/2 pairs of repeated runs
was used as a robustness criterion using down-sampled
genes (or cells). Note that when the cells were
down-sampled, the overlapped cells were used for com-
puting partial ARIs.

Additional file

Additional file 1: Supplementary Information. A pdf file that contains
additional figures and figure legends omitted from the main paper.
(PDF 1217 kb)
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