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Abstract

Background: High-throughput bioinformatics analyses of next generation sequencing (NGS) data often require
challenging pipeline optimization. The key problem is choosing appropriate tools and selecting the best parameters
for optimal precision and recall.

Results: Here we introduce ToTem, a tool for automated pipeline optimization. ToTem is a stand-alone web application
with a comprehensive graphical user interface (GUI). ToTem is written in Java and PHP with an underlying connection to
a MySQL database. Its primary role is to automatically generate, execute and benchmark different variant calling pipeline
settings. Our tool allows an analysis to be started from any level of the process and with the possibility of plugging
almost any tool or code. To prevent an over-fitting of pipeline parameters, ToTem ensures the reproducibility of these by
using cross validation techniques that penalize the final precision, recall and F-measure. The results are interpreted as
interactive graphs and tables allowing an optimal pipeline to be selected, based on the user’s priorities. Using ToTem, we
were able to optimize somatic variant calling from ultra-deep targeted gene sequencing (TGS) data and germline variant
detection in whole genome sequencing (WGS) data.

Conclusions: ToTem is a tool for automated pipeline optimization which is freely available as a web application at
https://totem.software.
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Background
NGS is becoming the method of choice for an
ever-growing number of applications in both research and
clinics [1]. However, obtaining unbiased and accurate
NGS analysis results usually requires a complex
multi-step processing pipeline, specifically tailored to the
data and experimental design. In the case of variant
detection from DNA sequencing data, the analytical pipe-
line includes pre-processing, read alignment and variant
calling. Multiple tools are available for each of these steps,
each using its own set of modifiable parameters, creating a
vast amount of possible distinct pipelines which vary
greatly in the resulting called variants [2]. Selecting an ad-
equate pipeline is a daunting task for a non-professional,

and even an experienced bioinformatician needs to test
many configurations in order to optimize the analysis.
To resolve this complexity, modern variant calling

approaches utilize machine learning algorithms to auto-
matically tune the analysis. However, the machine learning
approaches often require a large number of samples.
According to GATK Best practices, Variant Quality Score
Recalibration (VQSR) [3, 4], which is widely used for vari-
ant filtration, requires > 30 whole exomes and at least
basic parameter optimization. Variant calling on small
scale data, e.g. gene panels which are very often used in
diagnostics, still needs to be done with fixed thresholds,
reiterating the aforementioned problem of an optimal
workflow configuration.
The evaluation of current variant calling pipelines [5,

6] and the development of benchmarking toolkits [7, 8]
have helped to resolve this task, but to the best of our
knowledge, there is no tool enabling automated pipeline
parameter configuration using a ground truth data set.
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In this paper, we present ToTem, a method for pipeline
optimization which can automatically configure and
benchmark individual tools or entire workflows, based on a
set of validated ground truth variants. In this way, ToTem
helps to choose the optimal pipeline for specific needs. The
applicability of ToTem was demonstrated using two
common NGS variant calling tasks: (1) Optimal somatic
variant calling using ultra-deep TGS data and (2) optimal
germline variant calling using WGS data. In both scenarios,
we were able to significantly improve the variant calling
performance in comparison to the tools’ default settings.

Implementation
ToTem is a stand-alone web application with a compre-
hensive GUI which allows ToTem to be used even by
non-bioinformaticians, and for advanced users it features
a convenient pipeline editor which takes care of
parallelization and process control. The server backend
is implemented in Java and PHP with an underlying
connection to the MySQL database. All communication
with the server is encrypted.
ToTem is primarily intended for testing variant calling

pipelines with the ability to start an analysis from any
level of the process. This allows testing either whole
pipelines starting from raw sequencing data or focussing
only on the final variant filtering phases. The results are
visualized as interactive graphs and tables. ToTem also
provides several convenient auxiliary tools that facilitate
maintenance, backup and input data source handling.

Pipeline configuration and execution
The core principle of pipeline optimization in ToTem is to
automatically test pipeline performance for all the param-
eter combinations in a user defined range. Pipelines are
defined through consecutively linked “processes”, where
each process can execute one or more tools, functions or
code. ToTem is optimized to test the pipelines represented
as linear sequences of commands, but also supports
branching at the level of tested processes, e.g. to simultan-
eously optimize two variant callers in one pipeline. To fa-
cilitate pipeline definition, common steps shared by
multiple pipelines can be easily copied or moved using drag
and drop function.
Processes are constructed from template scripts that use

bash script code with special syntax to include placeholders
for automatic testing. From ToTem’s pipeline optimization
concept’s point of view, the most important placeholder,
called “params”, is dedicated to inserting the tested param-
eters to be optimized. Each parameter can be represented
simply by their presence or absence, one value, more
values, intervals or even mathematical functions. Parameter
ranges can be easily set through GUI without the necessity
to scan or modify a code. Therefore, with prepared tem-
plates, the scope and focus of the optimization can easily

be changed without informatics proficiency. ToTem pro-
vides predefined templates for the tools most commonly
used in variant-calling pipelines.
When a pipeline framework for testing is prepared,

input data can be uploaded to the attached storage via
GUI, where they are accessible through several place-
holders designed for particular data types. When the
analysis is started, ToTem creates all possible pipelines
within the preset parameter ranges and executes them on
the attached computational server. All the processes for
combined settings are executed in parallel, limited by a
defined maximal number of threads. The parallelization,
resource control and asynchronous communication with
the application server are managed by ToTem’s backend.
The results are imported into ToTem’s internal database
for final evaluation and benchmarking. The analysis time
depends on the available computational power, the level of
parallelization, performance of the particular tool, the
number of tested configurations and the size and nature
of the input data. For technical details and practical exam-
ples, see Additional file 1 and watch step-by-step tutorial
on totem.software web pages.

Pipeline benchmarking
The benchmarking of each pipeline is done using ground
truth data and is based on an evaluation of true positives,
false positives, false negative rates and performance quality
metrics derived from them. Ground truth data generally
consists of raw sequencing data or alignments and an
associated set of validated variants [9, 10].
ToTem provides two benchmarking approaches, with

each focusing on different applications and having different
advantages:

� The first approach is using ToTem’s filtering tool to
filter (stratified) performance reports generated by
external benchmarking tools, which are incorporated
as a final part of tested analytical pipelines. This allows
an evaluation of many parameter combinations and
simple setting selection that produce the best results
considering e.g. quality metrics, variant type and
region of interest (variables depend on the report).
This approach is particularly useful for optimizing the
pipeline for WGS or whole exome sequencing (WES)
and also TGS.

� Little Profet (LP) is ToTem’s genuine benchmarking
method, which compares variant calls generated by
tested pipelines to the gold standard variant call set.
LP calculates standard quality metrics (precision,
recall and F-measure) and most importantly – the
reproducibility of each quality metric, which is the
main advantage over the standard Genome in a
Bottle (GIAB) approach. ToTem thus allows the
best pipelines to be selected considering the selected
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quality metrics and its consistency over multiple
data subsets. The LP approach is designed primarily
for TGS data harbouring a limited number of se-
quence variants and suffering from high a risk of
pipeline over-fitting.

ToTem’s filtering tool for Genome in a Bottle benchmarking
approach
The GIAB benchmarking approach, which combines RTG
Tools [11, 12] and hap.py [13], is best suited to variant
calling pipelines designed for the data which might
harbour complex variants and require variant and region
stratification, e. g. WGS data. RTG Tools use complex
matching algorithms and standardized counting applied
for variant normalization and comparison to the ground
truth. Hap.py is applied for variant and region annotation/
stratification [14]. These tools serve as reference imple-
mentations of the benchmarking standards agreed upon
by the ga4gh data working group [15]. Regarding ToTem’s
pipeline optimization concept, RTG Tools and hap.py are
used to be a final part of the pipeline providing, as a result,
a regionally stratified performance (precision, recall,
F-measure, etc.) report for several variant types.
The reports from all pipeline configurations are

imported into the internal database and processed by To-
Tem’s filtering tool, allowing easy selection of an optimal
pipeline based on the user’s needs and priorities. This
could be extremely useful while ranking the pipelines for a
specific variant type, e.g. single nucleotide variant (SNV)
versus insertion or deletion (InDel), variant calling filters
and/or specific regions of the genome such as low-mapp-
ability regions, low-complexity regions, AT-rich regions,
homopolymers, etc. described as significantly influencing
variant calling performance [16–18]. The complete list of
filtered results describing the performance qualities for
the selected variant type and region for all the pipelines
can be exported into a csv table for deeper evaluation.
ToTem’s filtering tool utility is not only restricted to

the GIAB approach but can also be applied to other
table formats describing pipeline performance. The spe-
cific format, e.g. column names, column separator, needs
to be set through the ToTem GUI before importing
pipeline results into the database. ToTem’s fitering
workflow is described in Fig. 1, part A. For technical de-
tails and practical examples, see Additional file 1 and
watch step-by-step tutorial on totem.software web pages.

Benchmarking by Little Profet
The weakness of pipeline optimization using a ground
truth data set is that it may lead to an over-fit of the pa-
rameters causing inaccuracies when analyzing a different
dataset. This negative effect is even more pronounced
when using small scale data like TGS, usually harboring
a relatively small number of ground truth variants.

To address this task, ToTem proposes its genuine bench-
marking algorithm, LP, which prevents over-fitting and en-
sures the pipeline reproducibility. LP therefore represents
an alternative to the GIAB approach with the added value
of taking additional measures to guarantee robust results.
The LP benchmarking is based on the comparison of

the normalized variants detected by each pipeline to the
ground truth reference variants in the regions of interest
and the inferred precision, recall and F-measure.
The over-fitting correction utilizes cross validation ap-

proaches that penalize the precision, recall and F-measure
scores based on the result variation over different data
subsets. The assumption is that the pipelines showing the
least variability of results among data subsets will also
prove to be more robust when applied to unknown data.
The reproducibility is calculated from all the samples

(> 3) going into the analysis, while a repeated (number
of repeats = ½ of samples) random sub-sampling (num-
ber of samples in one sampling group = ½ of samples)
validation is performed to estimate the sub-sampling
standard deviation (SMSD) of the validation results for
individual performance quality metrics (precision, recall
and F-measure). The reproducibility may also be inferred
from the min/max values for a given performance qual-
ity measure calculated for each sub-sampling group. If
multiple distinct data sets are provided (at least 2),
standard deviation between the selected data set results
(DSD) can be used to assess reproducibility as well.
Additionally, to improve the precision and consistency

of variant detection [19], the intersection of the results
from each pair of 10 best performing pipelines (5 pipelines
with higher precision, 5 with higher recall) is done by
default. The detailed information about pipeline perform-
ance including over-fitting correction can be exported to
excel file for further evaluations. Little Profet workflow is
described in Fig. 1, part B. To better understand LP
method, pseudo code is provided in Additional file 2. For
other technical details and practical examples, see
Additional file 1 and watch step-by-step tutorial on
totem.software web pages.

Results
To showcase the advantages and versatility of ToTem,
we performed the optimization test of variant calling
pipelines for two very diverse experimental settings:

� somatic variant calling on ultra-deep TGS data
� germline variant calling onWGS data.

In the first setting, we used ultra-deep targeted gene
sequencing data from the TP53 gene (exons 2–11) from
220 patient samples divided into 3 data sets based on differ-
ences in diagnosis, verification status and mutation load. A
combination of three datasets was used in the context of
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the Little Profet over-fitting control capability, ensuring the
robustness of the particular pipeline settings applied to a
slightly different type of data. One thousand twelve manu-
ally curated variants with a variant allele frequency (VAF)
ranging from 0.1 to 100% were used as ground truth variant
calls for pipeline benchmarking [20, 21].

All DNA samples were sequenced with ultra-high
coverage (min. coverage depth > 5000×, average depth of
coverage approx. 35 000×) using Nextera XT DNA Sam-
ple Preparation Kit and MiSeq Reagent Kit v2 (300 cy-
cles) (Illumina, San Diego, CA, USA) on a MiSeq
instrument, as described previously [20]. Reads’ quality

Fig. 1 a Once the pipeline is set up for the optimization, all the configurations are run in parallel using raw input data. In this particular example,
the emphasis is placed on optimizing the variant calling filters, however, the pipeline design depends on the user’s needs. In the case of the
GIAB approach, the benchmarking step is part of the pipeline done by RTG Tools and hap.py. The pipeline results in the form of the stratified
performance reports (csv) provided by hap.py are imported into ToTem’s internal database and filtered using ToTem’s filtering tool. This allows
the best performing pipeline to be selected based on the chosen quality metrics, variant type and genomic region. b Similar to the previous
diagram, the optimization is focused on tuning the variant filtering. Contrary to the previous case, Little Profet requires the pipeline results to be
represented as tables of normalized variants with mandatory headers (CHROM, POS, REF, ALT). Such data are imported into ToTem’s internal
database for pipeline benchmarking by the Little Profet method. Benchmarking is done by comparing the results of each pipeline to the ground
truth reference variant calls in the given regions of interest and by estimating TP, FP, FN; and quality metrics derived from them - precision, recall
and F-measure. To prevent overfitting of the pipelines, Little Profet also calculates the reproducibility of each quality metric over different data
subsets. The results are provided in the form of interactive graphs and tables
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trimming, merging and mapping onto the reference gen-
ome (GRCh37) as well as variant calling, was done using
CLC Genomic Workbench. The Shearwater algorithm
from the R-package DeepSNV, computing a Bayes classi-
fier based on a beta-binomial model for variant calling
with multiple samples to precisely estimate model pa-
rameters - such as local error rates and dispersion, [22]
was used as the second variant calling approach. The
minimum variant read count was set to 10. Only vari-
ants detected either by both variant calling algorithms or
confirmed by a technical or biological replicate were
added to the list of candidate ground truth variants. To
remove remaining FP, filtering was applied according to
VAF present in an in-house database containing all the
samples processed in our laboratory. Because an
in-house database accumulates false-positive variants
specific for the used sequencing platform, sequencer and
analysis pipeline, it could be used to identify and remove
these FP. All computationally predicted variants were
manually checked by expert users and confirmed by bio-
logical findings [20, 21]. This approach allowed us to de-
tect variants down to 0.1% VAF.
Only SNV were considered during the analysis. Short

InDels were not included in the ground truth set due to
their insufficient quantity.
Dataset TGS 1 was represented by 355 SNVs detected in

103 samples from patients diagnosed with chronic lympho-
cytic leukemia (CLL). The dataset represented variants
detected in VAF ranging from 0.1–100%. Variant calling
was done by CLC Genomic Workbench and Shearwater
algorithm. Only variants confirmed by both algorithms or
by a biological/technical replicate were taken into account.
The dataset should not contain any false positive variants.
Dataset TGS 2 consisted of 248 SNVs present in 77 pa-

tient samples with myeloproliferative neoplasm (MPN).
With the exception of known germline polymorphisms,
variants representing low burden sub-clones up to 10%
VAF prevailed, as fully expanded (> 20%VAF) TP53 muta-
tions are rare in MPN [21]. Only variants detected by
CLC Genomic Workbench, confirmed by technical repli-
cates or by independent sampling were used. The dataset
should not contain any false positives variants.
Dataset TGS 3 was represented by 409 SNVs detected

in 40 patient samples with CLL with VAF 0.1–100%. Vari-
ant calling was done using CLC Genomic Workbench
only and false positive variants may rarely occur as some
of the low frequency variants were not confirmed by a
technical replicate, for more details see Additional file 3.
In the first experiment, three variant callers were opti-

mized: Mutect2 [3, 4], VarDict [23] and VarScan2 [24, 25],
using all 3 TGS datasets. Aligned reads generated outside
of ToTem with the BWA-MEM algorithm [26] were used
as input data for the pipeline optimization, which was fo-
cused on tuning the variant callers’ hard filters. As part of

the optimized pipeline, variants passing filters were nor-
malized by vcflib [27], imported into the internal database
and processed using Little Profet. The pipelines’ perform-
ance was sorted by F-measure corrected by SMSD. A de-
tailed description of the pipelines including their
configurations can be found in Additional file 3.
The best results were achieved using optimized VarS-

can2, specifically by intersecting the results generated by
two different settings, reaching a precision of 0.8833, re-
call of 0.8903 and an F-measure of 0.8868. This preci-
sion is high considering the tested datasets contained
624 variants with very low VAF (< 1%), which are gener-
ally problematic to identify because of sequencing errors.
The importance of ToTem is even more pronounced
when compared to the median scoring pipeline, which
had a precision of 0.5405, a recall of 0.7527 and an
F-measure of 0.6292, and compared to the baseline
VarScan2 pipeline using its default parameters, which
had a precision of 0.9916, recall of 0.2312 and an
F-measure of 0.3763. The best-scoring pipeline thus
identified 3.84-fold more true positive variants and
showed only an 11% lower precision than the VarScan2
pipeline using default parameters.
The input mpileup files were generated using very sen-

sitive settings allowing the optimization of 4 parameters
in 54 different combinations including their default
values, for details, see Additional file 3. Compared to the
default settings, the detection quality of the best scoring
pipeline was affected by tuning all 4 parameters. Higher
recall was caused by lowering the parameters for the
minimum variant allele frequency and p-value. High
precision was maintained by increasing the parameter
values for the minimum base quality and the minimum
number of variant supporting reads.
The second best performing variant caller in our test

was VarDict. VarDict parameter optimization was, in
principle, similar to VarScan2 – raw variant calling was
done using very sensitive settings allowing the testing of
hard filter parameters.
The optimized settings achieved a precision of 0.8903,

recall of 7468 and an F-measure of 0.8123. Compared to
the default settings (a precision of 0.9483, recall of
0.3083 and an F-measure of 0.4653), the quality of detec-
tion (F-measure) was improved by 42.7%.
In total, 7 parameters were optimized by assessing 192

of their combinations, including the default values, for
details, see Additional file 3. Compared to the default
settings, the optimized caller had a decreased parameter
for the minimum allele frequency, which led to its higher
recall. This setting was apparently balanced by increas-
ing the minimum high quality variant depth, which
works towards a higher precision. The parameters for
the maximal distance for proximity filter, the minimum
mean base quality and the maximum mean mismatches
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performed best with their default values. The other pa-
rameters had no impact on the analysis results in the
tested ranges.
Mutect2 variant calling optimization was done without

applying the “FilterMutectCalls” function, because testing
several of this function’s parameters, including the default
settings, led in our case to rapidly decreased recall and
thus to decreased overall performance. Some of the pa-
rameters from the “FilterMutectCalls” function are also
available as a part of the Mutect2 raw variant calling and
were the subject of testing. The best optimized settings
thus reached a precision of 0.8397, recall of 0.7567 and an
F-measure of 0.7960, whereas the default settings offered
a precision of 0.4826, recall of 0.7714 and an F-measure of
0.5937, which was the highest recall and F-measure of all
the default settings for all the tested variant callers.
The variant calling optimization tested 36 combina-

tions of 4 parameters including their default values. For
details, see Additional file 3. The best Mutect2 pipeline
was very similar to the default settings with only one
parameter value increased (the minimum base quality
required to consider a base for calling) towards higher
precision. The values of the other parameters remained
unchanged or had no effect on the results.
The graphical interpretation for different pipeline con-

figuration performance for all 3 variant callers and the

demonstration of the optimization effect is visualized in
Fig. 2; for a detailed performance report exported from
LP, see Additional file 4.
In the second experiment, we tested pipeline

optimization for germline variant calling using GATK
HaplotypeCaller followed by VQSR and VarDict on 2
whole genomes. As reference samples with high-confident
variant calls were used NA12878 and HG002 genomes an-
alyzed by GIAB, hosted by the National Institute of Stan-
dards and Technology (NIST) which creates reference
materials and data for human genome sequencing [10].
As an input for the WGS analysis, BAM files down-

loaded from the GIAB ftp server were used. Alignments
were preprocessed using GATK best practices (removing
duplicates, adding read groups, base quality score recali-
bration) and downsampled to 30× coverage, for details
see Additional file 3.
Raw variant calling was done by each variant caller to

produce intermediate results representing an input for
variant filtering optimization in ToTem, considering both,
SNV and InDels. In the case of GATK HaplotypeCaller,
the emphasis was placed on tuning the VQSR using ma-
chine learning algorithms. In the case of VarDict, hard fil-
ters were tuned, for details see Additional file 3.
The filtered variants were compared to the ground truth

variant calls by RTG Tools in given high confidence

Fig. 2 Each dot represents an arithmetic mean of recall (X-axis) and precision (Y-axis) for one pipeline configuration calculated based on repeated
random sub-sampling of 3 input datasets (220 samples). The crosshair lines show the standard deviation of the respective results across the sub-
sampled sets. Individual variant callers (Mutect2, VarDict and VarScan2) are colour coded with a distinguished default setting for each. The default
settings and the best performing configurations for each variant caller are also enlarged. Based on our experiment, the largest variant calling
improvement (2.36× higher F-measure compared to default settings, highlighted by an arrow) and also the highest overall recall, precision,
precision-recall, and F-measure were registered for VarScan2. In case of VarDict, a significant improvement in variant detection, mainly for recall
(2.42×) was observed. The optimization effect on Mutect2 had a great effect on increasing the precision (1.74×). Although the F-measure after
optimization did not reach as high values as VarScan2 and VarDict, Mutect2’s default setting provided the best results, mainly in a sense of recall
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regions. Information about the pipelines’ performance
(precision, recall, F-measure, etc.) was stratified into vari-
ant sub-types and genomic regions by hap.py. The results
in the form of a quality report for each pipeline were
imported into ToTem’s internal database and filtered
using ToTem’s filtering tool, which allows the best per-
forming pipeline to be selected based on region, variant
type and quality metrics.
The best results were achieved by GATK HaplotypeCal-

ler, with a precision of 0.9993, recall of 0.9989 and
F-measure of 0.9991 for SNV, and 0.9867, 0.9816 and
0.9842 for InDels, respectively. In comparison to the default
settings, a total of 123,716 more TP and 1889 less FP were
registered after the optimization by ToTem, where 40 com-
binations of 2 parameters were tested for both variant
types, for details, see Additional file 3. An evident impact
on the results’ quality was proven by both of them. In-
creased values of the parameter for the truth sensitivity level
influenced the detection of SNP and InDels towards higher
recall. The parameter for the maximal number of Gauss-
ians only needed to be optimised for InDel detection to-
wards the lower values, otherwise the first VQSR step
would not finish successfully for the NA12878 sample.
In the case of VarDict, the best pipeline setting reached

a precision of 0.9977, a recall of 0.8597 and F-measure of
0.9236 for SNP; and 0.8859, 0.8697 and 0.8778 for InDels,
respectively. Compared to the default settings, the results
were improved by identifying 17,985 more TP and
183,850 less FP. In total, 6 parameters were tested in 216
combinations. For details, see Additional file 3.
The improved variant quality detection was affected

mainly by the increasing the minimum allele frequency
values, leading towards higher precision while increasing
the maximum mean mismatches was responsible for
higher recall in SNP detection. InDels calling was also im-
proved by increasing the minimum mean position of the
variants in the read, which supported higher pipeline pre-
cision. The other parameters remained unchanged for the
best performing pipeline. The difference between the best
pipeline for every tool and the baseline for that tool using
default parameters is described in Additional file 5.
The TGS experiment optimizing 3 variant callers was

run in parallel by 15 threads (15 parameter combinations
running simultaneously) and was completed in approxi-
mately 60 h; WGS experiment optimizing 2 variant callers
was run using 5 threads and lasted approximately 30 h.
The experiments were performed separately on a server
with 100 CPU cores and 216 GB RAM memory available,
however the server was not used to its full capacity.

Discussion
ToTem is a web application with an intuitive GUI primar-
ily designed for automated configuration and evaluation
of variant calling pipeline performance using validated

ground truth material. Once the pipeline is optimized for
specific data, project, kit or diagnosis, it can be effortlessly
run through ToTem for routine data analysis with no add-
itional need for ground truth material. From this perspec-
tive, ToTem represents a unique hybrid between a
workflow manager like bcbio [28], SeqMule [19] or Galaxy
[29] and a pipeline benchmarking tool like SMaSH [7],
with the added value of an automated pipeline generator.
To meet the latest best practices in variant calling

benchmarking, ToTem is perfectly suited and fully com-
patible with the current GIAB approach using RTG
Tools and hap.py. This allows comfortable automated
parameter optimization, benchmarking and selection of
the best pipeline based on variant type, region stratifica-
tion and preferred performance quality metrics.
The Little Profet benchmarking approach introduces

novel estimates of pipeline reproducibility based on a
cross validation technique allowing the selection of a ro-
bust pipeline that will be less susceptible to over-fitting.
ToTem is also very robust in terms of implement-

ing various tools by its “template approach” allowing
the integration and running of any tool or even more
importantly, custom or novel code without having to
create a special wrapper. These properties enable
automatic and significantly less biased testing for new
or existing variant calling pipelines than standard pro-
cedures, testing only the default or just a few alterna-
tive settings [5, 6].
The results are visualized through several interactive

graphs and tables enabling users to easily choose the
best pipeline or to help adapt and optimize the paramet-
rization of the tested pipelines.
At the moment, ToTem’s core function is to effi-

ciently trigger many pipeline configurations and
streamline their benchmarking. However, the
optimization process itself is not fully automated.
Selecting tools and their parameter ranges needs to
be done manually, according to the particular data
type and thus, this task relies mostly on the knowhow
of an experienced user. The primary objective for
future development is to provide the option of opti-
mizing the pipeline settings automatically using more
complex machine learning algorithms. Implementation
will be based on the results collection, mainly from
the optimization of pipelines for a specific data type,
which can be detected based on their quality control.
The data will be anonymized and transformed for the
purposes of machine learning applications, which will
both select candidates for optimization settings and
also select configurations suitable for a specific data
type’s routine analysis. Routine analysis results could
eventually be used for benchmarking if the user pro-
vides feedback. We are also considering installing
ToTem using a docker image.
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Conclusion
NGS data analysis workflow quality is significantly af-
fected by the selection of tools and their respective pa-
rameters. In this study we present ToTem, a tool
enabling the integration of a broad variety of tools and
pipelines and their automatic optimization based on
benchmarking results controlled through efficient ana-
lysis management.
We demonstrated ToTem’s usefulness in increasing the

performance of variant calling in two distinct NGS experi-
ments. In the case of somatic variant detection on
ultra-deep TGS data, we reached a 2.36-fold improvement
in F-measure compared to best performing variant caller’s
default settings. In the case of germline variant calling
using WGS data, we were able to discover 123,716 add-
itional true positive variants than GATK HaplotypeCaller’s
default settings, among those 147 were coding and 70
non-synonymous and of likely functional importance.

Availability and requirements
Project name: ToTem
Project home page: https://totem.software
Operating system(s): Platform independent
Programming language: Java, PHP, MySQL
Other requirements: No
License: Free for academic use.
Any restrictions to use by non-academics: License

needed.

Additional files

Additional file 1: ToTem’s technical documentation. ToTem’s technical
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Profet. The detailed report describing pipeline performance including
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Additional file 5: Performance comparison of 2 variant callers with
default and optimized pipelines applied on WGS dataset. The difference
between the best pipeline for every tool and the default settings. These
data were generated as a part of WGS experiment. (XLSX 14 kb)
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