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Abstract

Background: Bilingual lexicon induction (BLI) is an important task in the biomedical domain as translation resources
are usually available for general language usage, but are often lacking in domain-specific settings. In this article we
consider BLI as a classification problem and train a neural network composed of a combination of recurrent long
short-termmemory and deep feed-forward networks in order to obtain word-level and character-level representations.

Results: The results show that the word-level and character-level representations each improve state-of-the-art
results for BLI and biomedical translation mining. The best results are obtained by exploiting the synergy between
these word-level and character-level representations in the classification model. We evaluate the models both
quantitatively and qualitatively.

Conclusions: Translation of domain-specific biomedical terminology benefits from the character-level
representations compared to relying solely on word-level representations. It is beneficial to take a deep learning
approach and learn character-level representations rather than relying on handcrafted representations that are
typically used. Our combined model captures the semantics at the word level while also taking into account that
specialized terminology often originates from a common root form (e.g., from Greek or Latin).

Keywords: Bilingual lexicon induction, Medical terminology, Representation learning, Biomedical text mining

Introduction
As a result of the steadily growing process of globalization,
there is a pressing need to keep pace with the challenges of
multilingual international communication. New technical
specialized terms such as biomedical terms are generated
on almost a daily basis, and they in turn require adequate
translations across a plethora of different languages. Even
in local medical practices we witness a rising demand for
translation of clinical reports or medical histories [1]. In
addition, the most comprehensive specialized biomedical
lexicons in the English language such as the Unified Med-
ical Language System (UMLS) thesaurus lack translations
into other languages for many of the terms1.
Translation dictionaries and thesauri are available for

most language pairs, but they typically do not cover
domain-specific terminology such as biomedical terms.
Building bilingual lexicons that contain such terminology
by hand is time-consuming and requires trained experts.
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As a consequence, we observe interest in automatically
learning the translation of terminology from a corpus of
domain-specific bilingual texts [2]. What is more, in spe-
cialized domains such as biomedicine, parallel corpora
are often not readily available: therefore, translations are
mined from non-parallel comparable bilingual corpora
[3, 4]. In a parallel corpus every sentence in the source
language is linked to a translation of that sentence in the
target language, while in a comparable corpus, the texts
in source and target language contain similar content, but
are not exact translations of each other: as an illustration,
Fig. 1 shows a fragment of the biomedical comparable cor-
pus we used in our experiments. In this article we propose
a deep learning approach to bilingual lexicon induction
(BLI) from a comparable biomedical corpus.
Neural network based deep learning models [5] have

become popular in natural language processing tasks. One
motivation is to ease feature engineering by making it
more automatic or by learning end-to-end. In natural
language processing it is difficult to hand-craft good lexi-
cal and morpho-syntactic features, which often results in
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Fig. 1 Comparable corpora. Excerpts of the English-Dutch comparable corpus in the biomedical domain that we used in the experiments with a
few domain-specific translations indicated in red

complex feature extraction pipelines. Deep learning mod-
els have also made their breakthrough in machine transla-
tion [6, 7], hence our interest in using deep learning mod-
els for the BLI task. Neural networks are typically trained
using a large collection of texts to learn distributed rep-
resentations that capture the contexts of a word. In these
models, a word can be represented as a low-dimensional
vector (often referred to as a word embedding) which
embeds the contextual knowledge and encodes seman-
tic and syntactic properties of words stemming from the
contextual distributional knowledge [8].
Lately, we also witness an increased interest in learning

character representations, which better capture morpho-
syntactic properties and complexities of a language. What
is more, the character-level information seems to be
especially important for translation mining in specialized

domains such as biomedicine as such terms often share
common roots from Greek and Latin (see Fig. 1), or relate
to similar abbreviations and acronyms.
Following these assumptions, in this article we pro-

pose a novel method for mining translations of biomedical
terminology: the method integrates character-level and
word-level representations to induce an improved bilin-
gual biomedical lexicon.

Background and contributions
BLI in the biomedical domain Bilingual lexicon induc-
tion (BLI) is the task of inducing word translations from
raw textual corpora across different languages. Many
information retrieval and natural language processing
tasks benefit from automatically induced bilingual lexi-
cons, including multilingual terminology extraction [2],
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cross-lingual information retrieval [9–12], statistical
machine translation [13, 14], or cross-lingual entity link-
ing [15]. Most existing works in the biomedical domain
have focused on terminology extraction from biomedi-
cal documents but not on terminology translation. For
instance, [16] use a combination of off-the-shelf com-
ponents for multilingual terminology extraction but do
not focus on learning terminology translations. The
OntoLearn system extracts terminology from a corpus
of domain texts and then filters the terminology using
natural language processing and statistical techniques,
including the use of lexical resources such as Word-
Net to segregate domain-general and domain-specific
terminology [17]. The use of word embeddings for the
extraction of domain-specific synonyms was probed by
Wang et al. [18].
Other works have focused on machine translation of

biomedical documents. For instance, [19] compared the
performance of neural-based machine translation with
classical statistical machine translation when trained
on European Medicines Agency leaflet texts, but did
not focus on learning translations of medical terminol-
ogy. Recently, [20] explored the use of existing word-
based automated translators, such as Google Translate
and Microsoft Translator, to translate English UMLS
terms into French and to expand the French terminol-
ogy, but do not construct a novel methodology based
on character-level representations as we propose in this
paper. Most closely related to our work is perhaps [21],
where a label propagation algorithm was used to find
terminology translations in an English-Chinese com-
parable corpus of electronic medical records. Differ-
ent from the work presented in this paper, they relied
on traditional co-occurrence counts to induce trans-
lations and did not incorporate information on the
character level.

BLI and word-level information Traditional bilingual
lexicon induction approaches aim to derive cross-lingual
word similarity from either context vectors, or bilingual
word embeddings. The context vector of a word can
be constructed from (1) weighted co-occurrence counts
([2, 22–27], inter alia), or (2) monolingual similarities
[28–31] with other words.
The most recent BLI models significantly outperform

traditional context vector-based baselines using bilingual
word embeddings (BWE) [24, 32, 33]. All BWE mod-
els learn a distributed representation for each word in
the source- and target-language vocabularies as a low-
dimensional, dense, real-valued vector. These properties
stand in contrast to traditional count-based representa-
tions, which are high-dimensional and sparse. The words
from both languages are represented in the same vec-
tor space by using some form of bilingual supervision

(e.g., word-, sentence- or document-level alignments)
([14, 34–41], inter alia)2. In this cross-lingual space, simi-
lar words, regardless of the actual language, obtain similar
representations.
To compute the semantic similarity between any two

words, a similarity function, for instance cosine, is applied
on their bilingual representations. The target language
word with the highest similarity score to a given source
language word is considered the correct translation for
that source language word. For the experiments in this
paper, we use two BWE models that have obtained strong
BLI performance using a small set of translation pairs [34],
or document alignments [40] as their bilingual signals.
The literature has investigated other types of word-level

translation features such as raw word frequencies, word
burstiness, and temporal word variations [44]. The archi-
tecture we propose enables incorporating these additional
word-level signals. However, as this is not the main focus
of our paper, it is left for future work.

BLI and character-level information Etymologically
similar languages with shared roots such as English-
French or English-German often contain word translation
pairs with shared character-level features and regulari-
ties (e.g., accomplir:accomplish, inverse:inverse, Fisch:fish).
This orthographic evidence comes to the fore especially
in domains such as legal domain or biomedicine. In
such expert domains, words sharing their roots, typi-
cally from Greek and Latin, as well as acronyms and
abbreviations are abundant. For instance, the follow-
ing pairs are English-Dutch translation pairs in the
biomedical domain: angiography:angiografie, intracra-
nial:intracranieel, cell membrane:celmembraan, or epithe-
lium:epitheel. As already suggested in prior work, such
character-level evidence often serves as a strong trans-
lation signal [45, 46]. BLI typically exploits this through
string distance metrics: for instance, Longest Common
Subsequence Ratio (LCSR) has been used [28, 47], as well
as edit distance [45, 48]. What is more, these metrics are
not limited to languages with the same script: their gen-
eralization to languages with different writing systems has
been introduced by Irvine and Callison-Burch [44]. Their
key idea is to calculate normalized edit distance only after
transliterating words to the Latin script.
As mentioned, previous work on character-level infor-

mation for BLI has already indicated that character-level
features often signal strong translation links between simi-
larly spelled words. However, to the best of our knowledge
our work is the first which learns bilingual character-level
representations from the data in an automatic fashion.
These representations are then used as one important
source of translation knowledge in our novel BLI frame-
work. We believe that character-level bilingual represen-
tations are well suited to model biomedical terminology
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in bilingual settings, where words with common Latin or
Greek roots are typically encountered [49]. In contrast to
prior work, which typically resorts to simple string sim-
ilarity metrics (e.g., edit distance [50]), we demonstrate
that one can induce bilingual character-level representa-
tions from the data using state-of-the-art neural networks.

Framing BLI as a classification task Bilingual lexicon
induction may be framed as a discriminative classification
problem, as recently proposed by Irvine and Callison-
Burch [44]. In their work, a linear classifier is trained
which blends translation signals as similarity scores from
heterogeneous sources. For instance, they combine trans-
lation indicators such as normalized edit distance, word
burstiness, geospatial information, and temporal word
variation. The classifier is trained using a set of known
translation pairs (i.e., training pairs). This combination
of translation signals in the supervised setting achieves
better BLI results than a model which combines signals
by aggregating mean reciprocal ranks for each transla-
tion signal in an unsupervised setting. Their model also
outperforms a well-known BLI model based on matching
canonical correlation analysis from Haghighi et al. [45].
One important drawback of Irvine and Callison-Burch’s
approach concerns the actual fusion of heterogeneous
translation signals: they are transformed to a similar-
ity score and weighted independently. Our classification
approach, on the other hand, detects word translation
pairs by learning to combine word-level and character-
level signals in the joint training phase.

Contributions The main contribution of this work is a
novel bilingual lexicon induction framework. It combines
character-level and word-level representations, where
both are automatically extracted from the data, within
a discriminative classification framework3. Similarly to a
variety of bilingual embedding models [52], our model
requires translation pairs as a bilingual signal for train-
ing. However, we show that word-level and character-level
translation evidence can be effectively combined within a
classification framework based on deep neural nets. Our
state-of-the-art methodology yields strong BLI results in
the biomedical domain. We show that incomplete transla-
tion lists (e.g., from general translation resources) may be
used to mine additional domain-specific translation pairs
in specialized areas such as biomedicine, where seed gen-
eral translation resources are unable to cover all expert
terminology. In sum, the list of contributions is as follows.
First, we show that bilingual character-level represen-

tations may be induced using an RNN model. These
representations serve as better character-level transla-
tion signals than previously used string distance met-
rics. Second, we demonstrate the usefulness of framing
term translation mining and bilingual lexicon induction

as a discriminative classification task. Using word embed-
dings as classification features leads to improved BLI
performance when compared to standard BLI approaches
based on word embeddings, which depend on direct
similarity scores in a cross-lingual embedding space.
Third, we blend character-level and word-level transla-
tion signals within our novel deep neural network archi-
tecture. The combination of translation clues improves
translation mining of biomedical terms and yields bet-
ter performance than “single-component” BLI classi-
fication models based on only one set of features
(i.e., character-level or word-level). Finally, we show
that the proposed framework is well suited for find-
ing multi-word translations pairs which are also fre-
quently encountered in biomedical texts across different
languages.

Methods
As mentioned, we frame BLI as a classification problem
as it supports an elegant combination of word-level and
character-level representations. In this section, we have
taken over parts of the previously published work [51] that
this paper expands.
Let VS and VT denote the source and target vocab-

ularies respectively, and CS and CT denote the sets of
all unique source and target characters. The vocabular-
ies contain all unique words in the corpus as well as
phrases (e.g., autoimmune disease) that are automatically
extracted from the corpus. We use p to denote a word or
a phrase. The goal is to learn a function g : X → Y ,
where the input space X consists of all candidate transla-
tion pairsVS×VT and the output space Y is {−1,+1}. We
define g as:

g
(
pS, pT

)
=

{ +1 , if f
(
pS, pT

)
> t

−1 , otherwise

Here, f is a function realized by a neural network that pro-
duces a classification score between 0 and 1; t is a thresh-
old tuned on a validation set. When the neural network
is confident that pS and pT are translations, f

(
pS, pT

)
will

be close to 1. The motivation for placing a threshold t
on the output of f is twofold. First, it allows balancing
between recall and precision. Second, the threshold natu-
rally accounts for the fact that words might have multiple
translations: if two target language words/phrases pT1 and
pT2 both have high scores when paired with pS, both may
be considered translations of pS.
Note that the classification approach is method-

ologically different from the classical similarity-driven
approach to BLI based on a similarity score in the shared
bilingual vector space. Cross-lingual similarity between
words pS and pT is computed as SF

(
rSp , rTp

)
, where rSp and

rTp are word/phrase representations in the shared space,
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and SF denotes a similarity function operating in the space
(cosine similarity is typically used). A target language term
pT with the highest similarity score argmaxpT SF

(
rSp , rTp

)

is then taken as the correct translation of a source lan-
guage word pS.
Since neural network parameters are trained using a set

of translation pairs Dlex, f in our classification approach
can be interpreted as an automatically trained similar-
ity function. For each positive training translation pair
< pS, pT >, we create 2Ns noise or negative training
pairs. These negative samples are generated by randomly
sampling Ns target language words/phrases pTneg,S,i, i =
1, . . . ,Ns from VT and pairing them with the source lan-
guage word/phrase pS from the true translation pair <

pS, pT >.4 Similarly, we randomly sample Ns source lan-
guage words/phrases pSneg,T ,i and pair them with pT to
serve as negative samples. We then train the network by
minimizing the cross-entropy loss, a commonly used loss
function for classification that optimizes the likelihood of
the training data. The loss function is expressed by Eq. 1,
where Dneg denotes the set of negative examples used
during training, and where y denotes the binary label for
< pS, pT > (1 for valid translation pairs, 0 otherwise).

Lce =
∑

<pS ,pT>∈Dlex∪Dneg

−y log
(
f
(
pS, pT

))
(1)

− (1 − y) log
(
1 − f

(
pS, pT

))

We further explain the architecture of the neural net-
work, the approach to construct vocabularies of words
and phrases and the strategy to identify candidate trans-
lations during prediction. Four key components may be
distinguished: (1) the input layer; (2) the character-level
encoder; (3) the word-level encoder; and (4) a feed-
forward network that combines the output representa-
tions from the two encoders into the final classification
score.

Input layer
The goal is to exploit the knowledge encoded in both the
word and character levels. Therefore, the raw input rep-
resentation of a word/phrase p ∈ VS of character length
M consists of (1) its one-hot encoding on the word level,
labeled xSp; and (2) a sequence ofM one-hot encoded vec-
tors xSc0, .., x

S
ci, ..xScM on the character level, representing

the character sequence of the word. xSp is thus a |VS|-
dimensional word vector with all zero entries except for
the dimension that corresponds to the position of the
word/phrase in the vocabulary. xSci is a |CS|-dimensional
character vector with all zero entries except for the dimen-
sion that corresponds to the position of the character in
the character vocabulary CS.

Character-level encoder
To encode a pair of character sequences xSc0, .., x

S
ci, ..xScn,

xTc0, .., x
T
ci , ..xTcm we use a two-layer long short-term mem-

ory (LSTM) recurrent neural network (RNN) [53] as
illustrated in Fig. 2. At position i in the sequence, we
feed the concatenation of the ith character of the source
language and target language word/phrase from a train-
ing pair to the LSTM network. The space character in
phrases is threated like any other character. The char-
acters are represented by their one-hot encoding. To
deal with the possible difference in word/phrase length,
we append special padding characters at the end of the
shorter word/phrase (see Fig. 2). s1i, and s2i denote the
states of the first and second layer of the LSTM. We
found that a two-layer LSTM performed better than a
shallow LSTM. The output at the final state s2N is the
character-level representation rSTc . We apply dropout reg-
ularization [54] with a keep probability of 0.5 on the
output connections of the LSTM (see the dotted lines
in Fig. 2). We will further refer to this architecture as
CHARPAIRS5.

Word-level encoder
We define the word-level representation of a pair <

pS, pT > simply as the concatenation of the embeddings
for pS and pT :

rSTp = WS · xSp ‖ WT · xTp (2)

Here, rSTp is the representation of the word/phrase pair,
and WS, WT are word embedding matrices looked up
using one-hot vectors xSp and xTp . In our experiments, WS

and WT are obtained in advance using any state-of-the-
art word embedding model, e.g., [34, 40] and are then kept
fixed when minimizing the loss from Eq. 1.
To test the generality of our approach, we exper-

iment with two well-known embedding models: (1)
the model from Mikolov et al. [34], which trains
monolingual embeddings using skip-gram with neg-
ative sampling (SGNS) [8]; and (2) the model of
Vulić and Moens [40] which learns word-level bilin-
gual embeddings from document-aligned comparable
data (BWESG). For both models, the top layers of
our proposed classification network should learn
to relate the word-level features stemming from
these word embeddings using a set of annotated
translation pairs.

Combination: feed-forward network
To combine these word-level and character-level repre-
sentations we use a fully connected feed-forward neural
network rh on top of the concatenation of rSTp and rSTc
which is fed as input to the network:



Heyman et al. BMC Bioinformatics  (2018) 19:259 Page 6 of 15

Fig. 2 Character-level encoder. An illustration of the character-level LSTM encoder architecture using the example EN-NL translation pair <blood
cell, bloedcel>

rh0 = rSTp ‖ rSTc (3)
rhi = σ

(
Whi · rhi−1 + bhi

)
(4)

score = σ
(
Wo · rhH + bo

)
(5)

σ denotes the sigmoid function and H denotes the num-
ber of layers between the representation layer and the
output layer. In the simplest architecture,H is set to 0 and
the word-pair representation rh0 is directly connected to
the output layer (see Fig. 3a, Figure taken from [51]). In
this setting each dimension from the concatenated repre-
sentation is weighted independently. This is undesirable
as it prohibits learning relationship between the differ-
ent representations. On the word level, for instance, it is
obvious that the classifier needs to combine the embed-
dings of the source and target word to make an informed
decision and not merely calculate a weighted sum of
them. Therefore, we opt for an architecture with hid-
den layers instead (see Fig. 3b). Unless stated otherwise,
we use two hidden layers, while in Experiment V of the
“Results and discussion” section we further analyze the
influence of parameter H.

Constructing the vocabularies
The vocabularies are the union of all words that occur at
least five times in the corpus and phrases that are automat-
ically extracted from it. We opt for the phrase extraction

method proposed in [8]6. The method iteratively extracts
phrases for bigrams, trigrams, etc. First, every bigram is
assigned a score using Eq. 6. Bigrams with a score greater
than a given threshold are added to the vocabulary as
phrases. In subsequent iterations, extracted phrases are
treated as if they were a single token and the same pro-
cess is repeated. The threshold and the value for δ are set
so that we maximize the recall of the phrases in our train-
ing set. We performed 4 iterations in total, resulting in
N-grams up to a length of 5.
When learning the word-level representations phrases

are treated as a single token (following Mikolov et al. [8]).
Therefore, we do not add words that only occur as part
of a phrase separately to the the vocabulary, because no
word representation is learned for these words. E.g., for
our dataset “York” is not included in the vocabulary as it
always occurs as part of the phrase “New York”.

score(wi,wj) = Count(wi,wj) − δ

Count(wi) · Count(wj)
· |V |, (6)

Count(wi,wj) is the frequency of the bigram wi wj,
Count(w) is the frequency of w, |V | is the size of
the vocabulary, and δ is a discounting coefficient
that prevents that too many phrases consist of very
infrequent words.
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Fig. 3 Classification component. Illustrations of the classification component with feed-forward networks of different depths. a: H = 0. b: H = 2 (our
model). All layers are fully connected. This figure is taken from [51]

Candidate generation
To identify which word pairs are translations, one could
enumerate all translation pairs and feed them to the clas-
sifier g. The time complexity of this brute-force approach
is O(|VS| × |VT |) times the complexity of g. For large
vocabularies this can be a prohibitively expensive proce-
dure. Therefore, we have resorted to a heuristic which
uses a noisy classifier: it generates 2Nc << |VT | trans-
lation candidates for each source language word/phrase
pS as follows. It generates (1) the Nc target words/phrases
closest to pS measured by the edit distance, and (2) Nc
target words/phrases measured closest to pS based on the
cosine distance between their word-level embeddings in a
bilingual space induced by the embedding model of Vulić
andMoens [40]. As we will see in the experiments, besides
straightforward gains in computational efficiency, limiting
the number of candidates is even beneficial for the overall
classification performance.

Experimental setup
Data One of the main advantages of automatic BLI
systems is their portability to different languages and
domains. However, current standard BLI evaluation pro-
tocols still rely on general-domain data and test sets
[8, inter alia; 38; 40; 57]. To tackle the lack of qual-
ity domain-specific data for training and evaluation of
BLI models, we have constructed a new English-Dutch
(EN-NL) text corpus in the medical domain. The cor-
pus contains topic-aligned documents (i.e., for a given
document in the source language, we provide a link to
a document in the target language that has comparable

content). The domain-specific document collection was
constructed from the English-Dutch aligned Wikipedia
corpus available online7, where we retain only document
pairs with at least 40% of their Wikipedia categories clas-
sified as medical8. This simple selection heuristic ensures
that the main topic of the corpus lies in the medical
domain, yielding a final collection of 1198 training docu-
ment pairs. Following standard practice [28, 45, 58], the
corpus was then tokenized and lowercased, and words
occurring less than five times were filtered out.

Translation pairs: training, development, test We con-
structed a set of EN-NL translation pairs using a semi-
automatic process. We started by translating all words
in our preprocessed corpus. These words were trans-
lated by Google Translate and then post-edited by fluent
EN and NL speakers9. This yields a lexicon with mostly
single word translations. In this work we are also inter-
ested in finding translations for phrases: therefore, we
used IATE (Inter-Active Terminology for Europe), the
EU’s inter-institutional terminology database, to create a
gold standard of domain-specific terminology phrases in
our corpus. More specifically, we matched all the IATE
phrase terms that are annotated with the Health cate-
gory label to the N-grams in our corpus. This gives a
list of phrases in English and Dutch. For some terms a
translation was already present in the IATE termbase:
these translations were added to the lexicon. The remain-
ing terms are again translated by resorting to Google
Translate and post-editing.
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We end up with 20,660 translation pairs. For 8,412
of these translation pairs (40.72%) both source and tar-
get words occur in our corpus10. We perform a 80/20
random split of the obtained subset of 8,412 translation
pairs to construct a training and test set respectively.
We make another 80/20 random split of the training
set into training and validation data. 7.70% of the trans-
lation pairs have a phrase on both source and target
side, 2.31% of the pairs consists of a single word and
a phrase, 90.00% of the pairs consist of single words
only. We note that 21.78% of the source words have
more than one translation. In our corpus, the English
phrases in the lexicon have an average frequency of 20.
For Dutch phrases this is 17. English words in the lex-
icon have an average frequency of 59, for Dutch this
number is 47.

Word-level embeddings Skip-gram word embeddings
with negative sampling (SGNS) [34] are induced using
the word2vec toolkit with the subsampling threshold set
to 10e-4 and window size set to 5. BWESG embeddings
[40] are learned by merging topic-aligned documents with
length-ratio shuffling, and then training the SGNS model
over the merged documents with the subsampling thresh-
old set to 10e-4 and the window size set to 100. The
dimensionality of all word-level embeddings in all exper-
iments is d = 50, and similar trends in results were
observed with d = 100.

Classifier The model is implemented in Python using
Tensorflow [59]. For training we use the Adam optimizer
with default values [60] and mini-batches of 10 exam-
ples. The number of negative samples 2Ns and candidate
translation pairs during prediction 2Nc are tuned on the
development set for all models except CHARPAIRS and
CHARPAIRS -SGNS (see Experiments II, IV and V) for
which we opted for default non-tuned values of 2Nc = 10
and 2Ns = 1011. The classification threshold t is tuned
measuring F1 scores on the validation set using a grid
search in the interval [ 0.1, 1] in steps of 0.1.

Evaluationmetric Themetric we use is F1, the harmonic
mean between recall and precision. While prior work
typically proposes only one translation per source word
and reports Accuracy@1 scores accordingly, here we also
account for the fact that words can have multiple transla-
tions. We evaluate all models using two different modes:
(1) top mode, as in prior work, identifies only one trans-
lation per source word (i.e., it is the target word with the
highest classification score), (2) the all mode identifies as
valid translation pairs all pairs for which the classification
score exceeds the threshold t.

Results and discussion
A roadmap to experiments We start by evaluating the
phrase extraction (Experiment I) as it places an upper
bound on the performance of the proposed system. Next,
we report on the influence of the hyper-parameters 2Nc
and 2Ns on the performance of the classifiers (Experiment
II). We then study automatically extracted word-level and
character-level representations for BLI separately (Exper-
iment III and IV). For these single-component models
Eq. 3 simplifies to rho = rSTw (word-level) and rho = rSTc
(character-level). Following that, we investigate the syn-
ergistic model presented in the “Methods” section which
combines word-level and character-level representations
(Experiment V). We then analyze the influence on perfor-
mance of: the number of hidden layers of the classifier, the
training data size, and word frequency. We conclude this
section with an experiment that verifies the usefulness of
our approach for inducing translations with Greek/Latin
roots.

Experiment I: phrase extraction
The phrase extraction module puts an upper bound on
the system’s performance as it determines which words
and phrases are added to the vocabulary - translation pairs
with a word or phrase that do not occur in the vocab-
ulary can of course never be induced. To maximize the
recall of words and phrases in the ground truth lexicon
w.r.t. the vocabularies, we tune the threshold of the phrase
extraction on our training set. The thresholds were set to
6 and 8 for English and Dutch respectively, and the value
for δ was set to 5 for both English and Dutch. The result-
ing English vocabulary contains 13,264 words and 9081
phrases, the Dutch vocabulary contains 6417 words and
1773 phrases.
Table 1 shows the recall of the words and phrases in

the training and test lexicons w.r.t. the extracted vocabu-
laries. We see that the phrase extraction method obtains
a good recall for translation pairs with phrases (around
80%) without hurting the recall of single word translation
pairs12. The recall difference between English and Dutch
phrase extraction can be explained by the difference in
size of their respective corpora13.

Experiment II: hyper-parameters 2Nc and 2Ns

Figure 4 shows the relation between the number of can-
didates 2Nc and precision, recall and F1 of the can-
didate generation (without using a classifier). We see
that the candidate generation works reasonably well
with a small number of candidates and that the biggest
gains in recall are seen when 2Nc is small (notice the
log scale).
From the tuning experiments for Experiment III and IV

we observed that using large values for 2Nc gives a higher
recall, but that the best F1 scores are obtained using small
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Table 1 Recall of the words and phrases in the training and test lexicons w.r.t. the extracted vocabularies

EN NL EN-NL

Phrases Words+Phrases Phrases Words+Phrases Phrases Words+Phrases

Training lex. 86.26 97.03 72.06 95.31 80.96 99.51

Test lex. 88.60 97.12 67.44 95.62 79.69 99.11

In the EN-NL column we show the percentage of translation pairs for which both source and target words/phrases are present in the vocabulary. In the EN/NL columns we
show the percentage of English/Dutch words/phrases that are present in the vocabulary

values for 2Nc; The best performance on the development
set for the word-level models was obtained with 2Nc = 2
(Experiment III), for the character-level models this was
with 2Nc = 4 (Experiment IV). The low optimal values
for 2Nc can be explained by the strong similarity between
the features that the candidate generation and the classi-
fiers use respectively. Because of this close relationship,
translations pairs that are lowly ranked in the list of candi-
dates should also be difficult instances for the classifiers.
Increasing the number of candidates will result in a higher
number of false positives, which is not compensated by a
sufficient increase of the recall.
We found that the value of 2Ns is less critical for perfor-

mance. The optimal value depends on the representations
used in the classifier and on the value used for 2Nc.

Experiment III: word level
In this experiment we verify if word embeddings can be
used for BLI in a classification framework. We compare
the results with the standard approach that computes
cosine similarities between embeddings in a cross-lingual
space. For SGNS-based embeddings, this cross-lingual
space is constructed following [34]: a linear transforma-
tion between the two monolingual spaces is learned using

the same set of training translation pairs that are used
by our classification framework. For the BWESG-based
embeddings, no additional transformation is required,
as they are inherently cross-lingual. The neural network
classifiers are trained for 150 epochs.
The results are reported in Table 2. The SIM header

denotes the baselines models that score translation pairs
based on cosine similarity in the cross-lingual embedding
space; The CLASS header denotes the models that use the
proposed classification framework.
The results show that exploiting word embeddings in a

classification framework has strong potential as the clas-
sification models significantly outperform the similarity-
based approaches. The classification models yield best
results in all-mode, this means they are good at translat-
ing words with multiple translations. For BWESG in the
similarity-based approach, the inverse is true, it works bet-
ter when only it proposes a single translation per source
word.
We also find that the SGNS embeddings [34] yield

extremely low results14. In this setup, where the embed-
ding spaces are induced from small monolingual corpora
and where the mapping is learned using infrequent trans-
lation pairs, the model seems unable to learn a decent

Fig. 4 Precision, recall and F1 for candidate generation with 2Nc candidates
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Table 2 Comparison of word-level BLI systems

Development

Words Phrases Words + Phrases

Representation F1 (top) F1 (all) F1 (top) F1 (all) F1 (top) F1 (all)

SIM BWESG 13.48 9.15 21.95 15.84 14.24 9.73

SGNS 0.55 0.88 NaN NaN 0.51 0.80

CLASS BWESG 17.08 21.19 24.04 26.47 17.59 21.56

SGNS 23.83 25.05 25.77 27.27 23.99 25.22

Test

Words Phrases Words + Phrases

Representation F1 (top) F1 (all) F1 (top) F1 (all) F1 (top) F1 (all)

SIM BWESG 12.78 10.03 21.43 12.52 13.52 10.31

SGNS 0.22 0.69 NaN 0.93 0.20 0.71

CLASS BWESG 16.47 21.50 23.48 23.75 17.01 21.68

SGNS 22.80 24.41 26.74 27.14 23.10 24.62

The best scores are indicated in bold

linear mapping between the monolingual spaces. This is
in line with the findings of [43].
We observe that in the classification framework SGNS

embeddings outperform BWESG embeddings. This could
be because SGNS embeddings can better represent fea-
tures related to the local context of words such as syntax
properties, as SGNS is typically trained withmuch smaller
context windows compared to BWESG15. Another gen-
eral trend we see is that word-level models are better
in finding translations of phrases. This is explained by
the observation that the meaning of phrases tends to be
less ambiguous, which makes word-level representations
a reliable source of evidence for identifying translations.

Experiment IV: character level
This experiment investigates the potential of learn-
ing character-level representations from the translation
pairs in the training set. We compare this approach
to commonly-used, hand-crafted features. The following
methods are evaluated:

• CHARPAIRS, uses the representation rSTc of the
character-level encoder as described in the
“Methods” section and illustrated in Fig. 2.

• EDnorm, uses the edit distance between the
word/phrase pair divided by the average character
length of ps and pt , following prior work [44, 61].

• log(EDrank), uses the logarithm of the rank of pt in a
list sorted by the edit distance w.r.t. ps. For example, a
pair for which pt is the closest word/phrase in edit
distance w.r.t. ps, will have a feature value of
log(1) = 0.

• EDnorm + log(EDrank), concatenates the EDnorm and
log(EDrank) features.

The ED-based models comprise a neural network clas-
sifier similar to CHARPAIRS, though for EDnorm and
log(EDrank) no hidden layers are used because the features
are one-dimensional. For the ED-based models, the opti-
mal values for the number of negative samples 2Ns and
the number of generated translation candidates 2Nc were
determined by performing a grid search, using the devel-
opment set for evaluation. For the CHARPAIRS represen-
tation, the parameters 2Ns and 2Nc were set to the default
values (10) without any additional fine-tuning, and the
number of LSTM cells per layer was set to 512. We train
the ED-based models for 25 epochs, the CHARPAIRS
model takes more time to converge and is trained for 250
epochs.
The results are shown in Table 3. We observe that the

performance of the character-level models is quite high
w.r.t. the results of the word-level models in Experiment
III. This supports our claim that character-level infor-
mation is of crucial importance in this dataset and is
explained by the high presence of medical terminology
and expert abbreviations (e.g., amynoglicosides, aphasics,
nystagmus, EPO, EMDR in the data; see also Fig. 1),
which because of its etymological processes, often con-
tain morphological regularities across languages. This
further illustrates the need of fusion models that exploit
both word-level and character-level features. Another
important finding is that the CHARPAIRS model sys-
tematically outperforms the baselines, which use hand-
crafted features, indicating that learning representations
on the character level is advantageous. Unlike the
word-level models, translation pairs with phrases have
lower performance than translations with single words.

Table 3 Comparison of character-level BLI methods from prior
work [44, 45] with automatically learned character-level
representations

Development

Words Phrases Words + Phrases

Representation F1 (top) F1 (all) F1 (top) F1 (all) F1 (top) F1 (all)

EDnorm 24.49 19.53 15.62 19.87 23.83 19.55

log(EDrank) 28.57 28.17 18.05 17.27 27.86 27.46

EDnorm+ log(EDrank) 25.99 11.20 18.40 14.35 25.49 11.31

CHARPAIRS 31.95 32.32 23.70 25.97 31.39 31.92

Test

Words Phrases Words + Phrases

Representation F1 (top) F1 (all) F1 (top) F1 (all) F1 (top) F1 (all)

EDnorm 28.10 28.29 8.70 8.63 26.97 27.24

log(EDrank) 29.30 28.95 19.48 19.35 28.70 28.39

EDnorm+ log(EDrank) 29.76 29.65 17.57 17.45 29.05 29.00

CHARPAIRS 30.70 32.19 31.82 30.61 30.81 32.15

The best scores are indicated in bold
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This is to be expected as phrases usually consist of a
longer character sequence and hence are more difficult
to represent.

Experiment V: combinedmodel
On their own the single-component word-level and
character-level BLI models already perform very well in
the task of biomedical BLI. In this experiment, we report
the results of the combined model. In this setup, the
LSTM network has 256 memory cells in each layer16,
and SGNS embeddings were selected as word-level
representations. The embeddings are trained a priori,
whereas the character-level representations are trained
jointly with the rest of the network. This configura-
tion will encourage the network to learn new character-
level information which is distinctive from the word-level
representations.
Table 4 shows the results of the combined model

together with the best single component models. As
hypothesized, we obtain the best results with the com-
bined model. For phrases however, CHARPAIRS -SGNS’s
performance is lower than the single component mod-
els. Our hypothesis for this behavior is that the LSTM in
the combined model has less memory cells in the LSTM
layers. We found that having 256 memory cells, rather
than 512 cells as in the CHARPAIRS model, gives best
results overall. However, for a combined model with 512
cells we get an improved performance for the phrases.
Table 5 shows translations induced by the different mod-
els that illustrate the advantage of a hybrid model. We
observe that the CHARPAIRS model has learned that
the first characters of words/phrases are very informa-
tive, though this sometimes results in false positives.
The SGNS model sometimes confuses words that are
semantically related, e.g., zwangerschap (pregnancy) and

Table 4 Results of the model that combines word-level and
character-level representations (CHARPAIRS -SGNS) and the best
performing single component models (CHARPAIRS and SGNS)

Development

Words Phrases Words + Phrases

Representation F1 (top) F1 (all) F1 (top) F1 (all) F1 (top) F1 (all)

CHARPAIRS 31.95 32.32 23.70 25.97 31.39 31.92

SGNS 23.83 26.36 17.37 17.08 25.77 25.81

CHARPAIRS -SGNS 34.57 33.61 18.18 23.29 33.47 32.99

Test

Words Phrases Words + Phrases

Representation F1 (top) F1 (all) F1 (top) F1 (all) F1 (top) F1 (all)

CHARPAIRS 30.70 32.19 31.82 30.61 30.81 32.15

SGNS 22.80 24.41 26.74 27.14 23.10 24.62

CHARPAIRS -SGNS 34.34 34.60 23.17 26.59 33.60 34.15

The best scores are indicated in bold

Table 5 Predicted translations of single component models and
the combined model, illustrating the advantage of the combined
model. Correct translations are in bold

Source word Predictions
CHARPAIRS

Predictions SGNS Predictions
CHARPAIRS -SGNS

Miscarriage / zwangerschap,
miskraam,
cardiale

miskraam

Contractions contraststof samentrekkingen samentrekkingen

Injected injecties,
injectie

naald ingespoten

Desensitization desensitisatie injecties, desen-
sibilisatie, venti-
lation

desensibilisatie,
desensitisatie

Hart attack hartinfarct,
hartaanval,
hartmassage

hartaanval,
atherosclerose,
tia

hartinfarct,
hartaanval

Multifocal multiple,
multifocale

dominante multifocale

miskraam (miscarriage). The CHARPAIRS -SGNS model
is able to filter out false positives by exploiting both repre-
sentations simultaneously. Even in cases where both single
component models predict the wrong translations, it is
possible that the combined model induces the correct
translation(s) (e.g., injected-ingespoten).

Influence of the number of hidden layers H The num-
ber of hidden layers H is a pertinent hyper-parameter.
Figure 5 shows the influence of H on the performance
measured by F1 in top mode. We see a large improve-
ment when H ranges from 0 to 1. When there are no
hidden layers (H = 0), the network is unable to incorpo-
rate dependencies between features. In case the number of
hidden layers is larger than one, we notice no large effect
of the number of hidden layers on performance.

Influence of training set size In many realistic settings,
especially when dealing with languages and domains that
have limited translation resources, we lack large numbers
of readily available translation pairs. Figure 6 illustrates
the influence of training set size on the performance of
CHARPAIRS -SGNS. We also plot the performance of
two of our baseline models that only use training data to
tune the threshold t: BWESG embeddings combined with
cosine similarity (see Table 2) and normalized edit dis-
tance (EDnorm, see Table 3). We plot the performance of
the baselines on the complete training set and assume it
constant over the training examples. Unsurprisingly, the
CHARPAIRS -SGNS performance increases with more
training examples. Already from a seed lexicon size of
2000 translations it starts outperforming the baseline
models.
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Fig. 5 Hidden layers. The influence of the number of layers H between the representations and the output layer on the BLI performance

Influence of frequency In Fig. 7 we see the effect
of word/phrase frequency on performance. We plot F1
scores after filtering the predicted translations and test set
with a minimum word frequency cut-off. For example, for
a cut-off frequency of 10, we only evaluate the translation
pairs for which source and target words/phrases occur at
least 10 times. Until a cut-off value of 125 performance for
the three representations fluctuates but remains roughly
level. When we only evaluate on high-frequency words
(> 125) we see a performance drop for all models, espe-
cially for the character-level only model. From a manual
inspection of these words we find that they typically have
a broader meaning and are not particularly related to the
medical domain (e.g., consists-bestaat, according-volgens,
etc.). For these words, character-level information turns
out to be less important.

Translation pairs derived from Latin or Greek We
conclude the evaluation by verifying the hypothesis that
our approach is particularly effective for translation pairs
derived from Latin or Greek. Table 6 presents the F1
scores on a subset of the test data in which only transla-
tion pairs for which the English word or phrase has clear
Greek or Latin roots are retained. The results reveal that
character-level modeling is indeed successful for these
type of translation pairs. All models scored significantly
higher on this subset, surprisingly also the SGNS model.
The higher scores of the SGNS model, which operates
on the word-level, could be attributed to an increased
performance of the candidate generation, as it uses both
word- and character-level information. Regarding the dif-
ferences between models, the same trends as in previous
model comparisons are apparent: the CHARPAIRS model

Fig. 6 Training set size. The influence of the training set size (the number of training pairs)



Heyman et al. BMC Bioinformatics  (2018) 19:259 Page 13 of 15

Fig. 7Word frequency. This plot shows how performance varies when we filter out translation pairs with frequency lower than the specified cut-off
point (on x axis)

improves nearly 5% over the edit distance baseline and the
CHARPAIRS -SGNS model achieves the best results.

Conclusions
We have proposed a neural network based classifica-
tion architecture for automated bilingual lexicon induc-
tion (BLI) from biomedical texts. Our model comprises
both a word-level and character-level component. The
character-level encoder has the form of a two-layer long
short-term memory network. On the word level, we
have experimented with different types of representa-
tions. The resulting representations were used in a deep
feed-forward neural network. The framework that we
have proposed can induce bilingual lexicons which con-
tain both single words and multi-word expressions. Our
main findings are that (1) taking a deep learning approach
to BLI where we learn representations on word-level
and character-level is superior to relying on handcrafted
representations like edit distance and (2) the combina-
tion of word- and character-level representations proved
to be very successful for BLI in the biomedical domain
because of a large number of orthographically similar
words (e.g., words stemming from the same Greek or
Latin roots).
The proposed classification model for BLI leaves room

for integrating additional translation signals that might
improve biomedical BLI such as representations learned
from available biomedical data or knowledge bases.

Table 6 Results on a subset of the test data consisting of
translation pairs with Greek or Latin origin

EDnorm CHARPAIRS SGNS CHARPAIRS -SGNS

F1 (top) 50.25 54.46 42.92 57.20

F1 (all) 50.23 55.04 48.14 56.41

The best scores are indicated in bold

Endnotes
1 For instance, UMLS currently spans only 21 languages,

and only 1.82% of all terms are provided in French.
2We refer to recent comparative studies [42, 43] for

a thorough explanation and analysis of the differences
between BWE models.

3 This paper expands research previously published in
[51] by making the proposed model applicable to phrases
and by adding more qualitative and quantitative experi-
ments.

4 If we accidentally construct a pair which occurs in the
set of positive pairs Dlex, we re-sample until we obtain
exactly Ns negative samples.

5A possiblemodification to the architecture would be to
swap the (unidirectional) LSTM for a bidirectional LSTM
[55]. In preliminary experiments on the development set
this did not yield improvements over the proposed archi-
tecture, we thus do not discuss it further.

6We used the implementation of the gensim toolkit
https://github.com/RaRe-Technologies/gensim [56].

7 http://linguatools.org/tools/corpora/
8 https://www.dropbox.com/s/hlewabraplb9p5n/

medicine_en.txt?dl$=$0
9 In case the post-editor was unsure about the automat-

ically acquired translation, he researched the source term
on the web and corrected the translation if necessary.

10 Since we work with a comparable corpus in our exper-
iments, not all translations of the English vocabulary
words occur in the Dutch part of the corpus and vice
versa.

https://github.com/RaRe-Technologies/gensim
http://linguatools.org/tools/corpora/
https://www.dropbox.com/s/hlewabraplb9p5n/medicine_en.txt?dl$=$0
https://www.dropbox.com/s/hlewabraplb9p5n/medicine_en.txt?dl$=$0
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11 It takes more time to train and hence tune the models
with the character-LSTM.

12Note that when a word is always extracted as part
of a phrase then it would not occur separately in the
vocabulary.

13 The English corpus consists of ≈1246k word occur-
rences, the Dutch corpus of ≈ 413k word occurrences.

14 The NaN values in Table 2 are caused by an absence
of true positives.

15Note that BWESG uses large window sizes by design.
16We found that in the combined setting of using both

word-level and character-level representations, it is bene-
ficial to use a LSTM of smaller size than in the character-
level only setting.
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51. Heyman G, Vulić I, Moens M-F. Bilingual lexicon induction by learning to
combine word-level and character-level representations. In: Proceedings
of 15th Conference of the European Chapter of the Association of
Computational Linguistics (EACL). Valencia: Association for
Computational Linguistics; 2017.
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