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Abstract

Background: Haplotype assembly is the process of assigning the different alleles of the variants covered by
mapped sequencing reads to the two haplotypes of the genome of a human individual. Long reads, which are
nowadays cheaper to produce and more widely available than ever before, have been used to reduce the
fragmentation of the assembled haplotypes since their ability to span several variants along the genome. These long
reads are also characterized by a high error rate, an issue which may be mitigated, however, with larger sets of reads,
when this error rate is uniform across genome positions. Unfortunately, current state-of-the-art dynamic
programming approaches designed for long reads deal only with limited coverages.

Results: Here, we propose a new method for assembling haplotypes which combines and extends the features of
previous approaches to deal with long reads and higher coverages. In particular, our algorithm is able to dynamically
adapt the estimated number of errors at each variant site, while minimizing the total number of error corrections
necessary for finding a feasible solution. This allows our method to significantly reduce the required computational
resources, allowing to consider datasets composed of higher coverages. The algorithm has been implemented in a
freely available tool, HapCHAT: Haplotype Assembly Coverage Handling by Adapting Thresholds. An experimental
analysis on sequencing reads with up to 60× coverage reveals improvements in accuracy and recall achieved by
considering a higher coverage with lower runtimes.

Conclusions: Our method leverages the long-range information of sequencing reads that allows to obtain
assembled haplotypes fragmented in a lower number of unphased haplotype blocks. At the same time, our method is
also able to deal with higher coverages to better correct the errors in the original reads and to obtain more accurate
haplotypes as a result.

Availability: HapCHAT is available at http://hapchat.algolab.eu under the GNU Public License (GPL).
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Background
Due to the diploid nature of the human genome, i.e., it
has two copies of its genome, called haplotypes, genomic
variants appear on either of these two copies. Knowing the
specific haplotype on which each of the genomic variants
occurs has a strong impact on various studies in genetics,
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from population genomics [1, 2], to clinical and medical
genetics [3], or to the effects of compound heterozygosity
[2, 4].
More specifically, the variations between two haplo-

types of the genome are, for the most part, in the form of
heterozygous Single Nucleotide Variants (SNVs), i.e., sin-
gle genomic positions where the haplotypes contain two
distinct alleles. Since a direct experimental reconstruction
of the haplotypes is not yet cost effective [5] or require
methods that have not yet gained widespread adoption
[6, 7], computational methods aim to perform this task
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starting from sequencing reads mapped to a reference
human genome. In fact, sequencing reads usually cover
multiple SNV positions on the genome, hence providing
information about the corresponding alleles that co-occur
on a haplotype. In particular, haplotype assembly is the
computational approach aiming to partition the reads into
two sets such that all the reads belonging to the same set
are assigned to the same haplotype.
Due to the availability of curated, high quality haplotype

reference panels on a large population of individuals [8, 9],
computational methods for statistically inferring the hap-
lotypes of an individual from these panels are widely used
[1, 10]. The accuracy of these methods, however, depends
heavily on the size and diversity of the population used
to compile the panels, entailing poor performance on rare
variants, while de novo variants are completely missed.
These types of variants appear in the sequencing reads of
the individual, making read-based haplotype assembly the
obvious solution.
The combinatorial Minimum Error Correction (MEC)

problem is the most commonly cited formulation of hap-
lotype assembly [11]. Under the principle of parsimony,
MEC aims to find the minimum number of corrections to
the values of sequencing reads in order to be able to par-
tition the reads into two haplotypes. Unfortunately, this
problem is NP-hard [11] and it is even hard to approx-
imate [12–14]. As such, several heuristics for haplotype
assembly have been proposed [15–19]. Beyond that, sev-
eral exact methods have been proposed, including Inte-
ger Linear Programming (ILP) approaches [20, 21], and
Dynamic Programming (DP) approaches which are Fixed-
Parameter Tractable (FPT) in some parameter [13, 22].
These methods achieve good results on datasets obtained
using the traditional short sequencing reads. However,
short reads do not allow to span more than a few SNV
positions along the genome, rendering them inadequate
for reconstructing long regions of the two haplotypes. In
fact, the short range information provided by these reads
does not allow to linkmany – if any – SNVs together. Con-
sequently, the resulting assembled haplotypes are frag-
mented into many short haplotype blocks that remain
unphased, relative to each other [23].
The advent of third generation sequencing technolo-

gies introduces a new kind of sequencing reads, called
long reads, that are able to cover much longer portions
of the genome [24–26]. Each read may span several posi-
tions along the genome and the long-range information
provided by these reads allow to link several SNVs. This
results in the possibility of obtaining longer haplotype
blocks that assign more variants to the corresponding
haplotype [27, 28]. Current third generation sequencing
platforms offered by Pacific Biosciences (PacBio) [29] and
Oxford Nanopore Technologies (ONT) [30] are now able
to produce reads of tens to hundreds of kilobasepairs

(kbp) in length, and are much more capable of captur-
ing together more variants than the short reads that are
commonplace today. While PacBio technologies are char-
acterized by a high error rate (substitution error rate up to
5% and indel rate up to 10%), this is uniformly distributed
along the genome positions [24, 25, 31] – something
we can take advantage of. Oxford Nanopore Technolo-
gies, on the other hand, have an even higher error rate
which is also not uniformly distributed [32]. Traditional
approaches that have been designed for short reads fail
when they are applied to these long reads, even when con-
sidering low coverages, as demonstrated in [33]. This is
due to the fact that these approaches scale poorly with
increasing read length [21, 22].
Recently, two methods have been proposed to specifi-

cally deal with long reads and their characteristics, namely
WhatsHap [33, 34] and HapCol [35]. On the one hand,
WhatsHap introduces a dynamic programming algorithm
that is fixed parameter tractable, with coverage as the
parameter, where coverage is the maximum number of
reads covering any genome position. Hence, this algo-
rithm is able to leverage the long-range information of
long reads since its runtime is independent of the read
length, but unfortunately it can deal only with datasets of
limited coverages – up to 20×, and hence resorts to prun-
ing datasets with higher coverage [33]. A parallel version
of WhatsHap has been recently proposed showing the
capability to deal with higher coverages of up to 25× [36].
Although WhatsHap computes the theoretically optimal
solution to the MEC problem, minimizing the overall
number of corrections in the input reads, this could result,
however, in columns having an unrealistically large num-
ber of corrections, which may not be coherent with how
the errors are truly distributed in the actual reads.
On the other hand, HapCol proposes an approach that

exploits the uniform distribution of sequencing errors
characterizing long reads. In particular, the authors pro-
pose a new formulation of the MEC problem where the
maximum number of corrections is bounded in every col-
umn and is computed from the expected error rate [35].
HapCol has been shown to be able to deal with datasets
of higher coverages compared to WhatsHap. However,
the presence of genome positions containing more errors
than expected (due to errors in the alignment or repeti-
tive regions) is a problem for this approach. As a result,
even HapCol was effectively limited to deal with instances
of relatively low coverages up to 25–30×, since even the
presence of few outliers forces the algorithm to change the
global behavior, or to fail.
As a result, both the methods proposed for haplotype

assembly from long reads, WhatsHap and HapCol, have
issues managing datasets with increasing coverages. How-
ever, considering a higher number of reads covering each
position is indeed the most reliable way to face the high
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error rate characterizing the sequencing reads produced
by third generation sequencing technologies. In fact, long
reads generated by the PacBio platform share a limited
number of errors on any given SNV position that they
cover because errors are almost uniformly distributed
across genome positions. Therefore, increasing the cov-
erage mitigates the effects of sequencing errors and may
allow to reconstruct haplotypes of higher quality.
In this work we propose a new method which combines

and extends the main features of the previous WhatsHap
and HapCol, and aims to deal with datasets of higher cov-
erages while being robust to the presence of noise and
outliers. In particular, we re-design the approach pro-
posed in [35] by allowing also the dynamic adaption of
the estimated error rate and, consequently, the maximum
number of corrections that are allowed in each position.
This allows the handling of columns that require more
errors than expected, while avoiding the exploration of
scenarios that involve a number of corrections that is
much higher than necessary for a site. This is coupled
with a merging procedure which merges pairs of reads
that are highly likely to originate from the same haplo-
type, allowing this method to scale to significantly higher
values of coverage. The method has been implemented
in HapCHAT: Haplotype Assembly Coverage Handling
by Adapting Thresholds that is freely available at http://
github.com/AlgoLab/HapCHAT. An experimental analy-
sis on real and simulated sequencing reads with up to
60× coverage reveals that we are able to leverage high
coverage towards better predictions in terms of both accu-
racy (switch error rate) and recall (QAN50 score — the
Quality Adjusted N50 score, see Discussion Section), as
we see an upward trend in both, as coverage increases.
This trend is the most stark in the case of recall, which is
where it counts the most, since the ultimate goal of haplo-
type assembly is indeed to assemble the longest haplotype
blocks possible.
We compare our method to some of the state-of-the-art

methods in haplotype assembly, including HapCol [35];
the newest version of WhatsHap [37], to which many fea-
tures have since been added; and HapCUT2 [16, 17]. We
show that HapCHAT is comparable to or better than any
tool in terms of both accuracy and recall, while requiring
an amount of computational resources (time and mem-
ory) that is on the same or a lower order of magnitude
of any comparable (in terms of accuracy or recall) tool
in every case. These results confirm that high coverage
can indeed be leveraged in order to deal with the high
error rate of long reads in order to take advantage of their
long-range information.

Methods
In this section, we highlight the new insight of HapCHAT
for the assembly of single individual haplotypes, with the

specific goal of processing high coverage in long read
datasets. We first need some preliminary definitions.

Preliminaries
Let v be a vector, then v[ i] denotes the value of v at posi-
tion i. A haplotype is a vector h ∈ {0, 1}m. Given two
haplotypes of an individual, say h1, h2, the position j is het-
erozygous if h1[ j] �= h2[ j], otherwise j is homozygous. A
fragment is a vector f of length l belonging to {0, 1,−}l.
Given a fragment f, position j is a hole if f [ j]= −, while
a gap is a maximal sub-vector of f of holes, i.e., a gap
is preceded and followed by a non-hole element (or by a
boundary of the fragment).
A fragment matrix is a matrixM that consists of n rows

(fragments) and m columns (SNVs). We denote as L the
maximum length for all the fragments inM, and asMj the
j-th column ofM. Notice that each column ofM is a vector
in {0, 1,−}n while each row is a vector in {0, 1,−}m.
Given two row vectors r1 and r2 belonging to {0, 1,−}m,

r1 and r2 are in conflict if there exists a position j, with
1 ≤ j ≤ m, such that r1[ j] �= r2[ j] and r1[ j] , r2[ j] �= −,
otherwise r1 and r2 are in agreement. A fragment matrix
M is conflict free if and only if there exist two haplotypes
h1, h2 such that each row of M is in agreement with one
of h1 and h2. Equivalently, M is conflict free if and only
if there exists a bipartition (P1,P2) of the fragments in
M such that each pair of fragments in P1 is in agreement
and each pair of fragments in P2 is in agreement. A k-
correction of a columnMj, is obtained fromMj by flipping
at most k values that are different from −. A column of
a matrix is called homozygous if it contains no 0 or no 1,
otherwise (if it contains both 0 and 1) it is called heterozy-
gous. We say that a fragment i is active on a columnMj, if
Mj[ i]= 0 or Mj[ i]= 1. The active fragments of a column
Mj are the set active(Mj) = {i : Mj[ i] �= −}. The coverage
of the column Mj is defined as the number covj of frag-
ments that are active on Mj, that is covj = |active(Mj)|.
In the following, we indicate as cov the maximum cov-
erage over all the columns of M. Given two columns
Mi and Mj, we denote by active(Mi,Mj) the intersection
active(Mi)∩active(Mj). Moreover, we will writeMi ≈ Mj,
and say that Mi, Mj are in accordance [13], if Mi[ r]=
My[ r] for each r ∈ active(Mi,Mj), or Mi[ r] �= My[ r] for
each r ∈ active(Mi,Mj). Notice that Mi ≈ Mj means that
these two columns are compatible, that is, they induce
no conflict. Moreover, d(Mi,Mj) denotes the minimum
number of corrections to make columns Mi and Mj in
accordance.
The Minimum Error Correction (MEC) problem

[11, 38], given a matrixM of fragments, asks to find a con-
flict free matrix C obtained from M with the minimum
number of corrections. In this work, we consider the vari-
ant of the MEC problem, called k-cMEC (k-constrained
MEC) in which the number of corrections per column is
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bounded by an integer k [35]. More precisely, we want a
k-correction matrix D forM where each column Cj is a k-
correction of column Mj, minimizing the total number of
corrections. We recall that in this paper we will consider
only matrices where all columns are heterozygous.
Now, let us briefly recall the dynamic programming

approach to solve the k-cMEC problem [35]. This
approach computes a bidimensional arrayD[ j,Cj] for each
column j ≥ 1 and each possible heterozygous k-correction
Cj ofMj, where each entry D[ j,Cj] contains the minimum
number of corrections to obtain a k-correction matrix C
forM on columnsM1, . . . ,Mj such that the columnsCj are
heterozygous. For the sake of simplicity, we pose D[ 0, ·]=
0. For 0 < j ≤ m, the recurrence equation for D[ j,Cj]
is the following, where δj is the set of all heterozygous
k-corrections of the columnMj.

D[ j,Cj]= min
Cj−1∈δj−1,Cj≈Cj−1

{
D[ j−1,Cj−1]+d(Mj,Cj)

}
.

For the complete description of the dynamic program-
ming recurrence we refer the reader to [13, 35]. In fact,
as reported in the original HapCol paper [35], this FPT
algorithm is exponential in the number k of allowed cor-
rections in each position. Therefore, we developed a pre-
processing step which merges reads belonging to the same
haplotype based on a graph clustering method. Moreover,
we also improved the HapCol method by introducing a
heuristic procedure to cope with problematic positions,
i.e. those requiring more than k corrections.
As anticipated, the combination of all these improve-

ments allowed the possibility of reconstructing haplotypes
using higher coverage reads (w.r.t. the original HapCol
method), while reducing the runtimes. We now detail
these two improvements.

Preprocessing
The first step of our pipeline is tomerge pairs of fragments
that, with high probability, originate from the same haplo-
type. With p we denote the (average) probability that any
single base has been read incorrectly, i.e., that a nucleotide
in the input BAM (Binary Alignment Map: a binary ver-
sion of the Sequence Alignment Map (SAM) format) file is
wrong — we recall that p ≈ 0.15 and that errors are uni-
formly distributed for PacBio reads. Let r1 and r2 be two
reads that share m + x sites, where they agree on m of
those sites and disagree on the other x sites. For this pair of
reads, we compute a likelihood under the hypothesis that
the reads originate from the same haplotype, and a likeli-
hood under the hypothesis that the reads originate from
different haplotypes. We then compute the ratio of these
two likelihoods. This idea is similar to the one adopted in
[39], but our use is different.
Then, the probability of obtaining the two reads r1

and r2 under the hypothesis that they originate from

the same haplotype is approximately ps(r1, r2) = (1 −
p)2mpx(1 − p/3)x, that is we assume that we have no
error in the shared part and exactly one error on the
other sites. Similarly, the probability of obtaining the
two reads r1 and r2 under the hypothesis that they
originate from two different haplotypes is approximately
pd(r1, r2) = pm(1 − p/3)m(1 − p/3)x(1 − p)x, that is
we assume that there is exactly one error in the sites
with same value and at most an error in the sites with
different values.
A simple approach to reduce the size of the instance is

to merge all pairs (r1, r2) of fragments such that ps(r1, r2)
is sufficiently large. But that would also merge some pairs
of fragments whose probability pd is too large. Since we
want to be conservative in merging fragments, we parti-
tion the fragment set into clusters such that ps/pd ≥ 106
for each pair of fragments in the cluster. This threshold
was obtained empirically, in order to achieve the best per-
formance in terms of quality of the predictions in the
performed experimental analysis. Then, for each site, the
character that is the result of a merge is chosen applying a
majority rule, weighted by the Phred score of each symbol.
Notice that the merging heuristic of ProbHap [39] consid-
ers only the ratio to determine when to merge two reads,
while we analyze all pairs of reads to determine which sets
of reads to merge.

Adaptive k-cMEC
Here, we describe how we modified the HapCol dynamic
programming recurrence in order to deal with problem-
atic columns for which the maximum allowed number of
corrections is not enough to obtain a solution. As stated
in the original HapCol paper [35], the number kj of cor-
rections for each column Mj is computed, based on its
coverage covj and on two input parameters: ε (average
error-rate) and α (the probability that the column Mj has
more than kj errors). The idea is that the number of errors
in a column j follows a binomial distribution, and hence
we allow the lowest value kj such that the probability of
having more than kj errors (with error rate ε) is at most
α. This is done in order to bound the value of k, which is
fundamental since HapCol implements an FPT algorithm
that is exponential in the maximum number of allowed
corrections. For this reason, we would prefer to have low
values of kj. A side effect of this approach is that, when
all solutions of an instance contain a column with more
than kj errors, HapCol is not able to find a solution. There-
fore, we developed a heuristic procedure which has the
final goal of guaranteeing that a solution is found, by
slightly increasing the allowed number of errors beyond kj,
such that a solution exists for this number. We recall that
the recurrence equation governing the original dynamic
programming approach considers all kj-correction Cj ∈
δj. We slightly modify the definition of k-corrections to
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cope with those problematic columns, by increasing the
number of allowed corrections. Let Cj,k be a k-correction
of Mj with exactly k corrections, let zj,0 = kj and zj,i =
zj,i−1 + �log2(zj,i−1) + 1	, i.e., each term is obtained from
the previous one by adding a logarithmic term, to guaran-
tee that the number of allowed corrections does not grow
too quickly. Then k∗

j = mini:D[j,Cj,zj,i−1 ] �=∞
{
zj,i

}
if i > 0,

where D[ ·, ·] �= ∞ means it is a feasible correction. Start-
ing from this notation, the new set of possible corrections
of columnMj is

δj = {
Cj,k : 1 ≤ k ≤ k∗

j
}
.

Notice that the sequence of zj,i is monotonically increas-
ing with i, hence we can compute k∗

j by starting with kj
and increasing it until we are able to find a k∗

j -correction
for the column Mj. The dynamic programming equation
is unchanged, but our new construction of the set δj guar-
antees that we are always able to compute a solution.
Moreover, just as for HapCol, we cannot guarantee that
we solve optimally the instance of the MEC problem.
One of the key points of this procedure is how we incre-

ment zj,i, that is by adding a logarithmic quantity. This
guarantees a balance between finding a low value of k∗

j and
the running time needed for the computation.

Results and Discussion
We now describe the results of our experiments. In the
first subsection, we describe the data that we use, or sim-
ulate. Then we detail the experiments that we set up in
order to compare our tool with others in the next subsec-
tion. Finally, we present and discuss the results of these
experiments.

Data description
The Genome in a Bottle (GIAB) Consortium has released
publicly available high-quality sequencing data for seven
individuals, using eleven different technologies [40–42].
Since our goal is to assess the performance of different
single-individual haplotype phasing methods, we study
chromosome 1 of the Ashkenazim individual NA24385, as
well as chromosomes 1–22 of individual NA12878.
The Ashkenazim individual is the son in a mother-

father-son trio. We downloaded from GIAB the genotype
variants call sets NIST_CallsIn2Technologies_05182015,
a set of variants for each individual of this trio that
have been called by at least two independent variant call-
ing technologies. In order to be able to compare against
methods that use reference panels or information from
multiple individuals, e.g, a trio, for single-individual hap-
lotype phasing, we considered all the bi-allelic SNVs
of the chromosome that: (a) appear also in the 1000
Genomes reference panel https://mathgen.stats.ox.ac.uk/
impute/1000GP_Phase3.tgz, and (b) have been called in
all three individuals of the Ashkenazim trio, i.e., also in the

mother and the father. For chromosome 1, this resulted in
140744 SNVs, of which 48023 are heterozygous. We refer
to this set of SNVs as the set of benchmark SNVs for this
dataset – the set is in the form of a VCF (Variant Call
Format) file. Since the authors of [43] also studied this
trio, and have made the pipeline for collecting and gen-
erating their data publicly available at https://bitbucket.
org/whatshap/phasing-comparison-experiments/, we use
or modify parts of this pipeline to generate our data as
detailed in the following.
As for the individual NA12878, we downloaded the

latest high confidence phased VCF of GIAB for hg37
(human genome version 37), available at ftp://ftp-trace.
ncbi.nlm.nih.gov/giab/ftp/release/NA12878_HG001/
latest/GRCh37/HG001_GRCh37_GIAB_highconf_CG-
IllFB-IllGATKHC-Ion-10X-SOLID_CHROM1-X_v.3.3.
2_highconf_PGandRTGphasetransfer.vcf.gz, and used all
SNVs in this file as our set of benchmark SNVs for the
respective chromosomes.

GIAB PacBio Reads
One of the more recent technologies producing long reads
– those which are the most informative for read-based
phasing – is the Pacific Biosciences (PacBio) platform.
PacBio is one of the eleven technologies on which GIAB
provides sequencing reads.
We hence downloaded the set of aligned PacBio

reads from ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/
data/AshkenazimTrio/HG002_NA24385_son/PacBio_
MtSinai_NIST/MtSinai_blasr_bam_GRCh37/hg002_
gr37_1.bam for chromosome 1 of the Ashkenazim indi-
vidual, which has an average coverage of 60.2× and an
average mapped read length of 8687 bp (basepairs). We
then downsampled the read set to average coverages of
25×, 30×, 35×, 40×, 45×, 50×, 55×, and 60×. This
was done using the DownsampleSam subcommand of
Picard Tools, which randomly downsamples a read set by
selecting each read with probability p. We downsample
recursively, so that each downsampled read set with a
given average coverage is a subset of any downsampled
read set with an average coverage higher than this set.
As for individual NA12878, we downloaded the set

of aligned PacBio reads ftp://ftp-trace.ncbi.nlm.nih.
gov/giab/ftp/data/NA12878/NA12878_PacBio_MtSinai/
sorted_final_merged.bam, which comprises chromo-
somes 1–22. The average coverages (resp., mapped read
lengths) ranged between 26.9 and 44.2 (resp., 4746 and
5285), so we did not perform any downsampling for this
dataset.
As a phasing benchmark for the Ashkenazim chromo-

some 1, we used the latest high confidence trio-phased
VCF of GIAB for hg37, available at ftp://ftp-trace.ncbi.
nlm.nih.gov/giab/ftp/release/AshkenazimTrio/HG002_
NA24385_son/latest/GRCh37/HG002_GRCh37_GIAB_
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ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/NA12878/NA12878_PacBio_MtSinai/sorted_final_merged.bam
ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/NA12878/NA12878_PacBio_MtSinai/sorted_final_merged.bam
ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/NA12878/NA12878_PacBio_MtSinai/sorted_final_merged.bam
ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/AshkenazimTrio/HG002_NA24385_son/latest/GRCh37/HG002_GRCh37_GIAB_highconf_CG-IllFB-IllGATKHC-Ion-10X-SOLID_CHROM1-22_v.3.3.2_highconf_triophased.vcf.gz
ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/AshkenazimTrio/HG002_NA24385_son/latest/GRCh37/HG002_GRCh37_GIAB_highconf_CG-IllFB-IllGATKHC-Ion-10X-SOLID_CHROM1-22_v.3.3.2_highconf_triophased.vcf.gz
ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/AshkenazimTrio/HG002_NA24385_son/latest/GRCh37/HG002_GRCh37_GIAB_highconf_CG-IllFB-IllGATKHC-Ion-10X-SOLID_CHROM1-22_v.3.3.2_highconf_triophased.vcf.gz


Beretta et al. BMC Bioinformatics  (2018) 19:252 Page 6 of 19

Table 1 Switch error percentage on the real Ashkenazim dataset, Chromosome 1

Avg. HapCHAT HapCol WhatsHap WhatsHap HapCUT2 ReFHap ProbHap FastHare

Cov. cov. 15x cov. 20x

25 0.334 0.662 0.342 0.342 0.342 2.813 3.303 3.547

30 0.324 0.623 0.337 0.333 0.308 2.420 2.980 3.133

35 0.320 0.601 0.324 0.332 0.333 2.221 - 2.933

40 0.324 0.575 0.336 0.332 0.332 2.027 - 2.691

45 0.323 0.533 0.348 0.336 0.328 1.932 - 2.522

50 0.323 0.490 0.340 0.323 0.327 1.864 - 2.303

55 0.323 0.452 0.327 0.331 0.323 1.774 - 2.268

60 0.327 0.452 0.326 0.322 0.322 1.740 - 2.123

For each dataset, its row identified by its average coverage (Avg. Cov.). We report the results obtained by running the tools withmaximum coverage 30× for HapCHAT, 25× for
HapCol, 15× and 20× for WhatsHap. No maximum coverage was set for HapCUT2, ReFHap, ProbHap, and FastHare. The best result (lowest value) for each dataset is boldfaced

Table 2 Hamming distance on the real Ashkenazim dataset, Chromosome 1

Avg. HapCHAT HapCol WhatsHap WhatsHap HapCUT2 ReFHap ProbHap FastHare

Cov. cov. 15x cov. 20x

25 0.54 2.41 0.64 0.84 0.44 3.96 3.42 5.53

30 0.35 2.18 0.64 0.60 0.24 3.46 3.41 5.38

35 0.36 2.02 0.37 0.42 0.37 3.99 - 5.62

40 0.37 1.66 0.45 0.44 0.37 3.10 - 5.08

45 0.38 1.80 0.43 0.42 0.37 3.02 - 4.49

50 0.41 1.47 0.41 0.38 0.35 2.84 - 4.32

55 0.40 0.87 0.36 0.41 0.37 3.28 - 4.67

60 0.39 1.25 0.34 0.36 0.35 3.60 - 5.06

For each dataset, its row identified by its average coverage (Avg. Cov.). We report the results obtained by running the tools withmaximum coverage 30× for HapCHAT, 25× for
HapCol, 15× and 20× for WhatsHap. No maximum coverage was set for HapCUT2, ReFHap, ProbHap, and FastHare. The best result (lowest value) for each dataset is boldfaced

Table 3 QAN50 on the real Ashkenazim dataset, Chromosome 1

Avg. HapCHAT HapCol WhatsHap WhatsHap HapCUT2 ReFHap ProbHap FastHare

Cov. cov. 15x cov. 20x

25 79452 76856 79515 79515 78192 48097 45492 45445

30 80662 80150 80426 80426 80150 52713 50806 49308

35 81842 81464 81757 81757 81464 54182 - 51766

40 83968 82758 83802 83802 83263 57589 - 55014

45 87267 86001 87267 87267 86001 59161 - 57008

50 89669 89738 89858 89858 89306 60380 - 59447

55 91434 91434 91224 91224 90718 62652 - 59582

60 94913 92938 95818 95818 92565 64710 - 62655

For each dataset, its row identified by its average coverage (Avg. Cov.). We report the results obtained by running the tools with maximum coverage 30× for HapCHAT, 25×
for HapCol, 15× and 20× for WhatsHap. No maximum coverage was set for HapCUT2, ReFHap, ProbHap, and FastHare. The best result (highest value) for each dataset is
boldfaced
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Table 4 Time in seconds of the tools on real Ashkenazim datasets of Chromosome 1

Avg. HapCHAT HapCol WhatsHap WhatsHap HapCUT2 ReFHap ProbHap FastHare

Cov. cov. 15x cov. 20x

25 591 39456 1115 9278 1563 80 43573 3

30 1292 46564 1031 10753 1596 196 72696 4

35 2193 50071 1122 11959 1888 308 - 4

40 3095 50301 1247 12570 2160 499 - 5

45 3888 51570 1308 12735 2388 822 - 6

50 4579 53030 1395 12996 2731 1192 - 8

55 5103 54012 1534 13252 2983 1777 - 9

60 5550 53496 1605 13469 3216 2493 - 13

For each dataset, its row identified by its average coverage (Avg. Cov.). We report the results obtained by running the tools with maximum coverage 30× for HapCHAT, 25×
for HapCol, 15× and 20× for WhatsHap. No maximum coverage was set for HapCUT2, ReFHap, ProbHap, and FastHare

Table 5 Peak of RAM usage in Megabytes of the tools on real Ashkenazim datasets of Chromosome 1

Avg. HapCHAT HapCol WhatsHap WhatsHap HapCUT2 ReFHap ProbHap FastHare

Cov. cov. 15x cov. 20x

25 1370 2263 930 5510 3266 3005 4693 3005

30 1661 2562 931 6195 3270 3005 5355 3005

35 1966 2908 931 6513 3276 3005 - 3005

40 2291 3231 931 6483 3279 3005 - 3005

45 2636 3190 952 6937 3283 3005 - 3005

50 3158 3286 1007 7144 3287 3005 - 3005

55 3549 3479 1042 7229 3292 3005 - 3005

60 3968 5412 1073 7430 3296 3005 - 3005

For each dataset, its row identified by its average coverage (Avg. Cov.). We report the results obtained by running the tools with maximum coverage 30× for HapCHAT, 25×
for HapCol, 15× and 20× for WhatsHap. No maximum coverage was set for HapCUT2, ReFHap, ProbHap, and FastHare

Table 6 Switch error percentage on simulated datasets of Chromosome 1

Avg. HapCHAT HapCol WhatsHap WhatsHap HapCUT2 ReFHap ProbHap FastHare

Cov. cov. 15x cov. 20x

25 0.035 0.218 0.035 0.039 0.037 1.081 1.487 2.112

30 0.028 0.181 0.035 0.031 0.037 0.725 1.166 1.430

35 0.028 0.161 0.033 0.037 0.037 0.537 0.879 1.086

40 0.026 0.148 0.026 0.030 0.037 0.425 - 0.901

45 0.022 0.139 0.024 0.024 0.022 0.404 - 0.781

50 0.020 0.134 0.020 0.024 0.018 0.324 - 0.586

55 0.022 0.126 0.024 0.022 0.018 0.273 - 0.565

60 0.020 0.108 0.020 0.024 0.022 0.248 - 0.470

For each dataset, its row identified by its average coverage (Avg. Cov.). We report the results obtained by running the tools withmaximum coverage 30× for HapCHAT, 25× for
HapCol, 15× and 20× for WhatsHap. No maximum coverage was set for HapCUT2, ReFHap, ProbHap, and FastHare. The best result (lowest value) for each dataset is boldfaced
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Table 7 Hamming Distance percentage on simulated datasets of Chromosome 1

Avg. HapCHAT HapCol WhatsHap WhatsHap HapCUT2 ReFHap ProbHap FastHare

Cov. cov. 15x cov. 20x

25 0.35 1.30 0.42 0.42 0.33 3.43 2.66 5.95

30 0.33 1.92 0.43 0.42 0.38 2.52 2.43 4.55

35 0.27 1.37 0.34 0.55 0.37 1.92 2.09 3.93

40 0.26 1.18 0.24 0.41 0.27 1.86 - 3.31

45 0.34 1.02 0.32 0.34 0.27 1.95 - 3.12

50 0.27 1.18 0.78 0.81 0.73 1.42 - 3.14

55 0.28 1.13 0.76 0.76 0.20 1.48 - 3.19

60 0.13 1.26 0.17 0.16 0.57 1.49 - 3.49

For each dataset, its row identified by its average coverage (Avg. Cov.). We report the results obtained by running the tools withmaximum coverage 30× for HapCHAT, 25× for
HapCol, 15× and 20× for WhatsHap. No maximum coverage was set for HapCUT2, ReFHap, ProbHap, and FastHare. The best result (lowest value) for each dataset is boldfaced

Table 8 QAN50 results of the tools on real simulated datasets of Chromosome 1

Avg. HapCHAT HapCol WhatsHap WhatsHap HapCUT2 ReFHap ProbHap FastHare

Cov. cov. 15x cov. 20x

25 87890 85002 87581 87581 51183 50325 49121 45846

30 93454 87599 92831 92565 57323 56745 54412 52138

35 96311 92483 96167 95611 61204 60612 59047 56881

40 97810 95818 97810 97270 64979 64535 - 60748

45 100826 98674 100826 100826 68274 66973 - 64003

50 103348 100826 103348 103348 73159 73256 - 69457

55 105243 103348 106341 106341 74273 74402 - 71058

60 107121 105243 107569 107569 76497 76497 - 73256

For each dataset, its row identified by its average coverage (Avg. Cov.). We report the results obtained by running the tools with maximum coverage 30× for HapCHAT, 25×
for HapCol, 15× and 20× for WhatsHap. No maximum coverage was set for HapCUT2, ReFHap, ProbHap, and FastHare. The best result (highest value) for each dataset is
boldfaced

Table 9 Time in seconds of the tools on simulated datasets of Chromosome 1

Avg. HapCHAT HapCol WhatsHap WhatsHap HapCUT2 ReFHap ProbHap FastHare

Cov. cov. 15x cov. 20x

25 572 38863 1027 9686 205 44 33988 3

30 1317 47367 883 11095 238 91 56165 3

35 2167 18813 954 11650 286 167 80061 4

40 3052 20007 1048 12760 323 269 - 5

45 3754 56403 1161 12678 367 423 - 6

50 4399 57135 1170 12860 412 672 - 6

55 4882 56745 1287 13174 467 1019 - 7

60 5277 21070 1336 13407 496 1536 - 9

For each dataset, its row identified by its average coverage (Avg. Cov.). We report the results obtained by running the tools with maximum coverage 30× for HapCHAT, 25×
for HapCol, 15× and 20× for WhatsHap. No maximum coverage was set for HapCUT2, ReFHap, ProbHap, and FastHare
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Table 10 Peak of RAM usage in Megabytes of the tools on simulated datasets of Chromosome 1

Avg. HapCHAT HapCol WhatsHap WhatsHap HapCUT2 ReFHap ProbHap FastHare

Cov. cov. 15x cov. 20x

25 1378 2180 930 5161 3262 3007 4284 3007

30 1667 4187 930 6117 3266 3008 5320 3008

35 1984 2134 931 6558 3270 3008 5709 3008

40 2315 2186 932 6780 3272 3009 - 3009

45 2665 5037 932 7043 3276 3010 - 3010

50 3180 5223 932 7058 3279 3010 - 3010

55 3591 5483 996 7212 3282 3011 - 3011

60 4009 2374 1039 7294 3286 3011 - 3011

For each dataset, its row identified by its average coverage (Avg. Cov.). We report the results obtained by running the tools with maximum coverage 30× for HapCHAT, 25×
for HapCol, 15× and 20× for WhatsHap. No maximum coverage was set for HapCUT2, ReFHap, ProbHap, and FastHare

highconf_CG-IllFB-IllGATKHC-Ion-10X-SOLID_
CHROM1-22_v.3.3.2_highconf_triophased.vcf.gz. As for
chromosomes 1–22 of the individual NA12878, we used
the (original, i.e., phased version of the) high confidence
phased VCF mentioned in the previous section.

Simulated PacBio Data
Aside from the PacBio data described in the previous
section, we also produce and run our experiments on a
simulated read set for chromosome 1 of the Ashkenazim
individual. Reference panels may leave out some variants

Table 11 Switch error percentage on datasets of NA12878

Chrom. HapCHAT HapCol WhatsHap WhatsHap HapCUT2 ReFHap ProbHap FastHare

cov. 15x cov. 20x

1 1.929 - 1.926 1.924 1.920 - - 2.191

2 0.038 - 0.050 0.035 0.030 - - 0.374

3 0.044 - 0.045 0.039 0.031 - - 0.381

4 2.042 - 2.052 2.048 2.033 - - 2.237

5 1.829 - 1.828 1.824 1.825 - - 1.998

6 1.991 - 1.990 1.991 1.983 - - 2.205

7 0.659 - 0.669 0.666 0.660 - - 0.924

8 1.743 - 1.746 1.748 1.749 - - 1.992

9 1.966 - 1.965 1.966 1.940 2.140 - 2.187

10 0.949 - 0.949 0.948 0.939 1.171 - 1.232

11 2.092 - 2.101 2.101 2.081 2.282 - 2.325

12 0.041 - 0.055 0.048 0.043 0.319 - 0.405

13 0.051 - 0.036 0.049 0.029 0.285 - 0.349

14 0.034 - 0.042 0.039 0.032 0.347 - 0.421

15 0.055 0.331 0.069 0.065 0.043 0.358 - 0.427

16 0.022 0.289 0.022 0.029 0.027 0.322 - 0.420

17 0.055 0.277 0.071 0.067 0.047 0.337 - 0.426

18 1.895 - 1.879 1.876 1.889 2.072 - 2.122

19 2.629 - 2.642 2.644 2.616 2.807 - 2.914

20 0.043 0.277 0.046 0.043 0.043 0.412 - 0.451

21 0.033 - 0.044 0.041 0.030 0.364 - 0.408

22 2.102 2.323 2.106 2.114 2.068 2.378 - 2.452

Each row corresponds to a chromosome. The dataset consists of all reads aligned to the chromosome. We report the results obtained by running the tools with maximum
coverage 30× for HapCHAT, 25× for HapCol, 15× and 20× for WhatsHap. No maximum coverage was set for HapCUT2, ReFHap, ProbHap, and FastHare. The best result
(lowest value) for each dataset is boldfaced

ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/AshkenazimTrio/HG002_NA24385_son/latest/GRCh37/HG002_GRCh37_GIAB_highconf_CG-IllFB-IllGATKHC-Ion-10X-SOLID_CHROM1-22_v.3.3.2_highconf_triophased.vcf.gz
ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/AshkenazimTrio/HG002_NA24385_son/latest/GRCh37/HG002_GRCh37_GIAB_highconf_CG-IllFB-IllGATKHC-Ion-10X-SOLID_CHROM1-22_v.3.3.2_highconf_triophased.vcf.gz
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Table 12 Hamming Distance percentage on datasets of NA12878

Chrom. HapCHAT HapCol WhatsHap WhatsHap HapCUT2 ReFHap ProbHap FastHare

cov. 15x cov. 20x

1 2.12 - 1.92 2.10 2.11 - - 6.16

2 0.51 - 0.49 0.29 0.77 - - 4.91

3 0.32 - 0.42 0.42 0.48 - - 4.74

4 2.47 - 2.15 2.18 2.00 - - 6.44

5 2.33 - 2.53 2.22 1.98 - - 6.56

6 3.39 - 3.02 3.20 2.82 - - 7.15

7 1.16 - 1.10 1.10 1.36 - - 5.05

8 2.44 - 2.46 2.54 2.02 - - 6.14

9 2.45 - 2.31 2.49 2.11 5.68 - 6.23

10 1.19 - 1.16 1.18 0.93 3.89 - 5.29

11 2.08 - 2.06 2.06 1.99 4.25 - 5.08

12 0.43 - 0.48 0.38 0.51 2.92 - 5.54

13 0.41 - 0.63 0.57 0.35 4.01 - 4.84

14 0.21 - 0.48 0.58 0.17 3.01 - 3.24

15 0.23 3.39 0.24 0.34 0.34 4.18 - 5.49

16 0.24 2.09 0.45 0.88 0.28 1.65 - 2.87

17 0.50 2.84 0.38 0.79 0.20 2.89 - 4.61

18 1.80 - 1.67 1.65 1.68 4.77 - 8.10

19 3.19 - 3.14 3.40 2.99 4.37 - 7.32

20 1.37 3.47 0.16 0.10 0.16 2.99 - 4.07

21 0.10 - 0.10 0.10 1.95 5.37 - 4.22

22 1.82 4.92 1.84 1.83 1.82 4.83 - 6.52

Each row corresponds to a chromosome. The dataset consists of all reads aligned to the chromosome. We report the results obtained by running the tools with maximum
coverage 30× for HapCHAT, 25× for HapCol, 15× and 20× for WhatsHap. No maximum coverage was set for HapCUT2, ReFHap, ProbHap, and FastHare. The best result
(lowest value) for each dataset is boldfaced

with low allele frequency – a good reason for doing read-
based phasing – and statistical methods might be suscep-
tible to systematic bias in the data. For these reasons, we
complement our study with an experimental analysis on
simulated reads, as follows.
We first obtain a pair of “true” haplotypes off of which

we simulate reads. This is obtained from the output of
the population-based phasing tool SHAPEITv2-r837 [44]
with default parameters on the 1000 Genomes reference
panel, the corresponding genetic map http://www.shapeit.
fr/files/genetic_map_b37.tar.gz, and the unphased geno-
types, i.e., the set of benchmark SNVs of this chromosome.
Given the phasing by SHAPEIT, we incorporate the

(benchmark) SNVs of the first haplotype of this phasing
into the reference genome (hg37) by flipping the variant
sites that are the alternative allele in this haplotype. The
second haplotype is obtained analogously. Using these two
true haplotypes as the input, we produce a correspond-
ing set of reads for this haplotype using PBSIM [45], a
PacBio-specific read simulator. We input to PBSIM the
optional parameters --depth 60 so that our simulated

reads have sufficient coverage, and as --sample-fastq

a sample of the original GIAB PacBio reads described in
the previous section, so that our simulated reads have
the same length and accuracy profile as the correspond-
ing real read set. We align the resulting simulated reads
to the reference genome using BWA-MEM 0.7.12-r1039
[46] with optional parameter -x pacbio. Finally, this pair
of aligned read sets, representing the reads coming off
of each haplotype is merged using the MergeSamFiles

subcommand of Picard Tools, obtaining the final simu-
lated read set. In the same way as we have done with the
read sets for the real Chromosome 1, we downsample to
average coverages 25×, 30×, 35×, 40×, 45×, 50×, 55×,
and 60×.
To summarize, the data we use or simulate regards

both real and simulated reads on chromosome 1 of the
Ashkenazim individual for a set of 8 average coverages,
for a total of 16 read sets, each in the form of a BAM
file. The autosomes of individual NA12878 adds an addi-
tional 22 read sets, each in the form of a BAM file. It
is on these 38 read sets, along with their corresponding

http://www.shapeit.fr/files/genetic_map_b37.tar.gz
http://www.shapeit.fr/files/genetic_map_b37.tar.gz
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Table 13 QAN50 results of the tools on datasets of NA12878

Chrom. HapCHAT HapCol WhatsHap WhatsHap HapCUT2 ReFHap ProbHap FastHare

cov. 15x cov. 20x

1 91098 - 91668 91677 89249 - - 84863

2 210603 - 210098 211732 211732 - - 177388

3 229835 - 227732 229835 229655 - - 170494

4 90639 - 91034 90639 89868 - - 84861

5 99011 - 99012 99567 98900 - - 91745

6 94780 - 94200 94780 93894 - - 85483

7 156573 - 155773 155773 155209 - - 135095

8 90928 - 91069 90836 90661 - - 84076

9 85172 - 85655 85469 85655 82917 - 80957

10 123171 - 123171 123224 122317 114172 - 112861

11 84153 - 84108 84108 84237 81526 - 79057

12 224308 - 224308 228356 224308 190161 - 174540

13 229318 - 228310 228310 227286 178173 - 175124

14 243192 - 243192 227040 220294 186476 - 181826

15 180874 153527 173950 176529 176529 147339 - 138185

16 193611 160049 193611 190884 189342 158848 - 152960

17 162690 151262 163789 163789 162328 140216 - 133887

18 93705 - 94210 93705 94210 87076 - 83383

19 62662 - 62662 62568 62233 59716 - 58694

20 165921 163062 165921 176807 165921 140498 - 140034

21 222171 - 222769 221786 222171 149165 - 146675

22 82618 73223 85112 82618 85112 72117 - 70718

Each row corresponds to a chromosome. The dataset consists of all reads aligned to the chromosome. We report the results obtained by running the tools with maximum
coverage 30× for HapCHAT, 25× for HapCol, 15× and 20× for WhatsHap. No maximum coverage was set for HapCUT2, ReFHap, ProbHap, and FastHare. The best result
(lowest value) for each dataset is boldfaced

set of benchmark SNVs – in the form of VCF files –
that we carry out our experiments, as described in the
following section.

Experimental Setup
We compare our tool HapCHAT to the most recent
state-of-the-art read-based phasing methods of What-
sHap [34, 37], HapCol [35], HapCUT2 [17], ProbHap
[39], ReFHap [19] and FastHare [15] by running them all
on the data described in the previous subsection. Recall
that, as detailed in the introduction, WhatsHap, Hap-
Col and HapCHAT are approaches with a core phasing
algorithm that is FPT either in the coverage or in the
number of errors at each SNV site. Hence the coverage
must first be reduced to some target maximum cover-
age before its core algorithm can be run. Each run of a
tool on a dataset is given a time limit of one day, and
a memory limit of 64GB. We now describe the details
of how we parameterized each tool for comparison in
what follows.

WhatsHap
For each read set, we provide to WhatsHap (version 0.13)
the corresponding BAM and VCF file. We run WhatsHap
on this input pair on otherwise default settings, with the
exception of providing it the reference genome (hg37) via
the optional parameter --reference. This allows What-
sHap to run in realignment mode, which has been shown
to significantly boost accuracy predictions for noisy read
sets such as PacBio, as detailed in [37]. In particular, this
mode is well suited to handle the abundant indel errors
in the input reads. WhatsHap has a built-in read selection
procedure [47] which subsequently prunes to a default
maximum coverage of 15 before the core phasing algo-
rithm is called. The default value has been selected by
the authors of WhatsHap to provide the best trade-off
between quality of the results and runtime [48]. Addition-
ally, we runWhatsHap in realignment mode as above, but
fixing to target maximum coverage 20 by providing the
additional optional parameter -H 20. It is the resulting
set of phasings by WhatsHap, in the form of phased VCF,
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Table 14 Time in seconds on datasets of NA12878

Chrom. HapCHAT HapCol WhatsHap WhatsHap HapCUT2 ReFHap ProbHap FastHare

cov. 15x cov. 20x

1 20183 - 3300 41626 6301 - - 980

2 21913 - 3686 46937 6758 - - 1075

3 19325 - 2994 38040 5536 - - 776

4 21744 - 3031 40083 5998 - - 862

5 18416 - 2943 36674 5169 - - 790

6 17792 - 2658 35189 5640 - - 759

7 14321 - 2409 32550 4429 - - 744

8 15930 - 2421 29902 4578 - - 669

9 11307 - 1886 23586 3369 86913 - 635

10 13943 - 2244 27638 3914 86941 - 670

11 13291 - 1983 25419 3916 86833 - 567

12 12684 - 1916 25865 4054 86814 - 554

13 11100 - 1474 20288 2952 86686 - 406

14 9017 - 1265 17658 2644 86684 - 384

15 6934 63221 1114 14218 2102 86700 - 368

16 7426 69771 1265 16323 2589 86783 - 461

17 6460 54037 956 12312 1832 86669 - 312

18 8440 - 1152 15794 2497 86671 - 353

19 3625 - 826 10368 1617 86668 - 296

20 5878 55032 827 11815 1594 86600 - 243

21 3561 - 560 7508 1308 86585 - 226

22 2835 31617 505 7059 1002 86568 - 195

Each row corresponds to a chromosome. The dataset consists of all reads aligned to the chromosome. We report the results obtained by running the tools with maximum
coverage 30× for HapCHAT, 25× for HapCol, 15× and 20× for WhatsHap. No maximum coverage was set for HapCUT2, ReFHap, ProbHap, and FastHare

that we use for the basis of comparison with the other
methods.

HapCol
For each read set, together with the VCF file of the corre-
sponding chromosome, we convert it to the custom input
format for HapCol. Since HapCol does not have a read
selection procedure – something it does need for data at
35× (or higher) coverage (cf. the Introduction) — we then
apply the read selection procedure of [47] to prune this
set to the target maximum coverages of 15×, 20×, 25×,
and 30×. On these resulting input files, we run HapCol
with its default value of α = 0.01 (and of ε = 0.05) (cf.
the subsection on Adaptive k-cMEC or [35] for details
on the meaning of α and ε). Since HapCol is not adap-
tive, but we want to give it a chance to obtain a solution
on its instance, should a given α be infeasible (cf. the
subsection on Adaptive k-cMEC), we continue to rerun
HapCol with an α of one tenth the size of the previous
until a solution exists. HapCol outputs a pair of binary
strings representing the phasing, which we then convert
to phased VCF. Note that we did not further attempt any

higher maximum coverages, because at maximum cover-
age 30, HapCol either exceeded one day of runtime or
64GB of memory on every dataset. It is this set of resulting
phasings (phased VCF files) that we use to compare with
the other methods.

ProbHap, RefHap and FastHare
For each read set, we use the extractHAIRS program
that is distributed with the original HapCut [16] to con-
vert its BAM / VCF pair into the custom input format
for these methods. We then ran each method on these
instances with default settings, each producing a custom
input which is then converted to a phased VCF with the
subcommand hapcut2vcf of the WhatsHap toolbox.

HapCUT2
For each read set, we use the extractHAIRS program
that comes with HapCUT2, with parameter --pacbio 1,
which activates a newly-developed realignment procedure
for pacbio reads, to convert its BAM / VCF pair into the
custom input format for HapCUT2. We then ran Hap-
CUT2 on the resulting instances with default settings,
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Table 15 Peak of RAM usage in Megabytes of the tools on datasets of NA12878

Chrom. HapCHAT HapCol WhatsHap WhatsHap HapCUT2 ReFHap ProbHap FastHare

cov. 15x cov. 20x

1 6361 - 2983 13259 3351 - - 3050

2 7082 - 3173 13938 3362 - - 3056

3 6180 - 2669 12672 3329 - - 3041

4 7531 - 2685 12959 3334 - - 3046

5 5882 - 2551 12364 3320 - - 3033

6 5649 - 2325 12120 3312 - - 3031

7 4597 - 2080 11167 3309 - - 3022

8 5075 - 2091 11164 3302 - - 3023

9 3583 - 1639 9345 3285 17915 - 3009

10 4059 - 1819 10164 3303 9766 - 3017

11 3965 - 1814 10135 3290 9632 - 3018

12 4011 - 1787 10229 3288 13984 - 3016

13 7950 - 1449 8982 3267 8371 - 3006

14 2857 - 1281 8198 3261 10024 - 2998

15 2232 8437 1077 7370 3257 8302 - 2993

16 3116 19698 1128 7703 3263 10328 - 2995

17 7844 7845 962 6737 3253 5941 - 2990

18 3542 - 1152 7810 3254 15868 - 2995

19 1721 - 793 6055 3244 8808 - 2983

20 8496 9966 865 6612 3242 7973 - 2985

21 1329 - 611 5211 3229 7852 - 2977

22 3324 7782 542 4912 3225 7904 - 2975

Each row corresponds to a chromosome. The dataset consists of all reads aligned to the chromosome. We report the results obtained by running the tools with maximum
coverage 30× for HapCHAT, 25× for HapCol, 15× and 20× for WhatsHap. No maximum coverage was set for HapCUT2, ReFHap, ProbHap, and FastHare

each producing a custom output which is then converted
to phased VCF with the subcommand hapcut2vcf of the
WhatsHap toolbox.

HapCHAT
For each read set, we provide to HapCHAT the cor-
responding BAM and VCF file. We run HapCHAT on
this input pair on otherwise default settings, with the
exception of providing it the reference genome (hg37)
via the optional parameter --reference. This allows
HapCHAT to run in realignment mode like with What-
sHap, thanks to the partial integration of HapCHAT into
the WhatsHap codebase. We then apply our merging
step as described in the subsection Preprocessing, which
reduces the coverage. If necessary, the reads are further
selected via a greedy selection approach (based on the
Phred score), with ties broken at random, to downsam-
ple each dataset to the target maximum coverages of 15×,
20×, 25×, and 30×. It is the resulting phasings, in phased
VCF format, for which the comparison of HapCHAT to
other methods is based.

Experimental results and discussion
The times reported here do not include the time neces-
sary to read the input (BAM) file, which is more-or-less
the same for each method. The results are summarized in
Tables 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
and Figs. 1,2 and 3.
The accuracy of the predictions obtained from the

experiments and measured in terms of switch error per-
centages is summarized in Tables 1, 6 and 11.We have also
assessed the accuracy of the predictions by computing the
Hamming distance percentages—Tables 2, 7 and 12. Each
true haplotype is a mosaic of the predicted haplotypes. A
switch error is the boundary (that is two consecutive SNV
positions) between two portions of such a mosaic. The
switch error percentage is the ratio between the number
of switch errors and the number of phased SNVs minus
one (expressed as a percentage). It is immediate to notice
that HapCHAT, WhatsHap, and HapCUT2 compute the
best predictions, all of them being very close. Figures 2
and 3 give bar chart representations of switch error rates
for just these three methods on all real datasets. We point
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Table 16 List of SNV positions when the adaptive procedure of
subsection Adaptive k-cMEC was activated for real Ashkenazim
and simulated datasets of Chromosome 1

Chr.1 4 to 7 5 to 8

Data Avg. Cov.

Ashkenazim Cov. 25

Cov. 30

Cov. 35 35556

Cov. 40

Cov. 45 35581

Cov. 50 35593, 42897

Cov. 55 3528

Cov. 60 46338, 46339

Simulated Cov. 25 35569, 38788 26778

Cov. 30 35594, 38815, 38817 26800

Cov. 35 38827 26811

Cov. 40 38837 38834, 38835, 38836

Cov. 45 38844 38842

Cov. 50 38849

Cov. 55

Cov. 60

For each dataset, its row is identified by its average coverage (Avg. Cov.). The
positions in column ‘4 to 7’ are those for which the number of corrections was
increased from 4 to 7, and similarly for the column ‘5 to 8’

out that HapCHAT (resp., HapCUT2) computes the best
switch error rates for almost all instances of the real and
simulated Ashkenazim (resp., NA12878) datasets.
Although the switch error is one of the most widely

adopted measures used to evaluate the quality of the
phased haplotypes, it does not take into account the
recall, or the completeness of the haplotype – that is,
the size of the phased haplotype blocks recovered. While
N50 is the classical median size of an assembled hap-
lotype block in terms of length in basepairs (bp) from
the literature on assembly, [49] introduced the adjusted
N50, that is AN50 score which normalizes each block

in terms of the number of phased SNVs appearing on a
block. In order to account for completeness and qual-
ity, [50] introduced the notion of quality AN50, that is
the QAN50 score, where assembled haplotype blocks are
fractured at each switch error, and then AN50 is taken
on the resulting sub-blocks. This is an important mea-
sure because it is closest to the objective of haplotype
assembly – to reassemble the longest (error-free) haplo-
type blocks possible. We hence computed QAN50 scores
for all methods, as summarized in Tables 3, 8, and 13.
It is immediate to notice that HapCHAT and WhatsHap
have the best QAN50 scores, more precisely HapCHAT
(resp., WhatsHap) computes the best QAN50 scores for
almost all instances of the real and simulated Ashkenazim
(resp., NA12878) datasets. HapCUT2 is a close second:
despite its good switch error rate, it has consistently lower
QAN50 scores.
This could possibly be explained by [17]: “HapCUT2

implements likelihood-based strategies for pruning low-
confidence variants to reduce mismatch errors and split-
ting blocks at poor linkages to reduce switch errors (see
Methods). These postprocessing steps allow a user to
improve accuracy of the haplotypes at the cost of reducing
completeness and contiguity.” – indeed their switch error
rate tends to be consistently the best for the NA12878
dataset at least, the tradeoff being that QAN50 score
is consistently lower than the best method in all cases.
Figures 2 and 3 give bar chart representations of QAN50
scores for HapCHAT, WhatsHap and HapCUT2 on all
real datasets.
Since HapCHAT and WhatsHap can be influenced by a

maximum coverage parameter, we did a deeper analysis of
these two methods at different values of such parameter.
The plots in Fig. 1 represent the quality of the predictions
computed by WhatsHap and HapCHAT as a function of
the running time, for Chromosome 1 on the Ashkenazim
dataset. Besides the switch error rate, we have also investi-
gated the Hamming distance, that is the number of phase-
calls that are different from the ground truth. Both plots
confirm that HapCHAT computes predictions that are at

Table 17 Comparison of the switch error positions on the Ashkenazim datasets of Chromosome 1 obtained with HapCHAT

Ashkenazim Cov. 25 Cov. 30 Cov. 35 Cov. 40 Cov. 45 Cov. 50 Cov. 55

Cov. 30 75/2/4

Cov. 35 72/4/7 74/2/3

Cov. 40 71/6/8 74/4/4 75/2/1

Cov. 45 71/6/8 73/4/4 75/2/1 77/0/0

Cov. 50 70/7/9 72/5/5 73/4/3 75/2/2 75/2/2

Cov. 55 71/6/8 73/4/4 73/4/3 75/2/2 75/2/2 75/2/2

Cov. 60 71/7/8 73/5/4 73/5/3 75/3/2 75/3/2 75/3/2 76/2/1

For each pair of datasets having different coverages, we report the number of positions in which a switch error occurred as follows: those in common between the two
datasets, those only found in the dataset of the row, and those only found the dataset of the column, respectively
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Fig. 1 Switch error rate and Hamming distance as a function of running time. As achieved by HapCHAT and WhatsHap at different maximum
coverages on the real Ashkenazim Chromosome 1 dataset. For each tool and each maximum coverage, we represent a point for each of the 8
possible values of the average coverage

least as good as those of WhatsHap (and clearly better in
terms of Hamming distance) with a comparable runtime.
We decided to include in the Tables the comparison of
WhatsHap at both 20x and 15x max coverage, while 20x is
the maximum coverage that we could test for WhatsHap
– 15x is suggested by the authors as the default value for
runningWhatsHap and achieve the best trade off between
accuracy and running time [48]. Observe in Fig. 1 that
with 20x max coverage WhatsHap obtains better predic-
tions — close to those by HapCHAT — but with a much
higher runtime.
It is possible to observe from Tables 4, 5, 9 and 10 that

although both time and memory used by HapCHAT is
growing with the (average) coverage, with higher cover-
age the rate at which the time increments is decreasing.
Similarly, also thememory increment is almost linear with
respect to the growth of the coverage of the datasets. On
the other hand, while the changes of time and memory
required by HapCol andWhatsHap to process higher cov-
erages remain similar. Contrary to HapCHAT, because
HapCol and WhatsHap are not adaptive (see intro for
more details) that is they do not change their behaviour
w.r.t. increasing average coverage, they must be run at a
uniform maximum coverage of 25 and 15, respectively,

and exhibit similar runtimes and memory usage for all
datasets. HapCHAT, on the other hand, processes these
datasets at the higher uniform maximum coverage of 30,
and because it adapts to this increased average coverage,
we see this linear trend in increased resource usage, as
expected. Finally, we point out that HapCUT2, ReFHap,
and FastHare require always the same memory, since it
does not depend on the coverage, and the time grows
linearly, while ProbHap exhibits a behavior reflecting the
coverage increment, especially in terms of memory con-
sumption.
An analysis of Tables 1 and 6 towards finding the effect

of average coverage shows that there is a trend of improv-
ing predictions with higher average coverage, but this
improvement is irregular. Since those irregularities are
more common for HapCHAT than for the other tools,
we have produced Table 17 which gives a more detailed
breakdown of how the switch error is changing as a result
of increasing coverage. More precisely, we have found that
only in one case the erroneous sites at higher coverage is a
subset of the erroneous sites at lower coverage. This shows
a higher sensitivity of HapCHAT to changing (in this case
sampling) instances. On the other hand, the quality mea-
sure given by the QAN50 reported in Tables 3 and 8 and
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Fig. 2 Quality measures on the real Ashkenazim Chromosome 1 dataset. We present the bar plots showing the measures of switch error percentage
and QAN50 achieved by HapCHAT, WhatsHap, and HapCUT2 on the Ashkenazim Chromosome 1 dataset at different coverage values

also summarized in Fig. 2 shows that there is a regular
increase of the QAN50 for all the data sets consistent with
the increase of the coverage.
Table 16 reports for each of the 16 Ashkenazim datasets,

the SNV sites when the adaptive procedure of subsection
Adaptive k-cMEC was activated. Interestingly, it is only
in the Simulated dataset that the number of corrections
needed to be increased from 5 to 8 – the rest needing
an increase only to 7 (from 4) – indicating that it con-
tains more unanticipated errors than the real datasets.
Indeed this demonstrates that this adaptive procedure is
an improvement over HapCol, recalling that each time
this procedure is invoked, HapCol fails by definition. An
added benefit of this procedure is that it can serve as an
indicator of the quality of the read set to be phased. More
specifically, it can serve as an indicator of the quality of the
variant calling itself — indeed it is a third type of accuracy
prediction, on top of switch error and Hamming distance
— one that can be used to integrate the predictions of sev-
eral tools to obtain higher quality variant calls [41, 42].

We plan to investigate further this advantage in future
developments of HapCHAT.

Conclusions
We have presented HapCHAT, a tool that is able
to phase high coverage PacBio reads. We have com-
pared HapCHAT to WhatsHap, HapCol, HapCUT2,
ReFHap, ProbHap and FastHare on on real and simu-
lated whole-chromosome datasets, with average coverage
up to 60×. The real datasets have been taken from the
GIAB project. Our experimental comparison shows that
HapCHAT has accuracy and recall that are compara-
ble with those of WhatsHap and HapCUT2, and bet-
ter than all other tools. At the same time, HapCHAT
requires an amount of computational resources that is
on the same order of magnitude as WhatsHap and
HapCUT2. In particular, our QAN50 scores are almost
consistently better than all other tools, showing that
we reconstruct the longest, least fragmented haplotype
blocks – the ultimate aim of haplotype assembly. Trying
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Fig. 3 Quality measures on the real NA12878 dataset. We present the bar plots showing the measures of switch error percentage and QAN50
achieved by HapCHAT, WhatsHap, and HapCUT2 on the different chromosome datasets of NA12878

our dynamic programming approach with even longer
reads, such as those bolstered with Hi-C information
[51] would hence be an interesting future endeavour, to
see how far we can push this method for assembling
haplotypes.
Introducing the capability of adapting the number of

errors permitted in each column allows HapCHAT to
achieve a better fit than HapCol of the number of cor-
rections needed at each variant site. Still, the current
approach allows such adaptation only for the current col-
umn. Coupling this step with backtracking could result in
fewer overall corrections.
Another direction of research is to fully consider the

parent-sibling relations in trios, as done in [43] or in [52]
here. This is especially relevant, since most of the GIAB
data is on trios.
Finally, we are working on the integration of HapCHAT

with the WhatsHap tool to provide a more powerful hap-
lotype phasing method able to combine the strengths of
the two approaches.
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