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Abstract

Background: Count data generated by next-generation sequencing assays do not measure absolute transcript
abundances. Instead, the data are constrained to an arbitrary “library size” by the sequencing depth of the assay, and
typically must be normalized prior to statistical analysis. The constrained nature of these data means one could
alternatively use a log-ratio transformation in lieu of normalization, as often done when testing for differential
abundance (DA) of operational taxonomic units (OTUs) in 16S rRNA data. Therefore, we benchmark how well the
ALDEX2 package, a transformation-based DA tool, detects differential expression in high-throughput RNA-sequencing
data (RNA-Seq), compared to conventional RNA-Seq methods such as edgeR and DESeq?2.

Results: To evaluate the performance of log-ratio transformation-based tools, we apply the ALDEx2 package to two
simulated, and two real, RNA-Seq data sets. One of the latter was previously used to benchmark dozens of conventional
RNA-Seq differential expression methods, enabling us to directly compare transformation-based approaches. We
show that ALDEx2, widely used in meta-genomics research, identifies differentially expressed genes (and transcripts)
from RNA-Seq data with high precision and, given sufficient sample sizes, high recall too (regardless of the alignment
and quantification procedure used). Although we show that the choice in log-ratio transformation can affect
performance, ALDEx2 has high precision (i.e., few false positives) across all transformations. Finally, we present a novel,
iterative log-ratio transformation (now implemented in ALDEx2) that further improves performance in simulations.
Conclusions: Our results suggest that log-ratio transformation-based methods can work to measure differential
expression from RNA-Seq data, provided that certain assumptions are met. Moreover, these methods have very high
precision (i.e, few false positives) in simulations and perform well on real data too. With previously demonstrated
applicability to 16S rRNA data, ALDEx2 can thus serve as a single tool for data from multiple sequencing modalities.
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Background

In the last decade, new technologies, collectively known
as next generation sequencing (NGS), have come to dom-
inate the market [1]. Although NGS has a wide range of
applications, the use of NGS in transcriptome profiling,
called massively parallel RNA-sequencing (RNA-Seq), is
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perhaps most popular [2]. Like microarray, RNA-Seq
is used to quantify relative transcript abundance (i.e.,
expression) [1]. Unlike microarrays however, RNA-Seq is
able to estimate the relative abundance of uncharacter-
ized transcripts as well as differentiate between transcript
isoforms [2]. Meanwhile, advances in NGS have reduced
the cost of sequencing tremendously, making it possible
to generate an enormous amount of raw sequencing data
easily and cheaply.

However, the analysis of raw sequencing data is not
trivial. The data, constituting a “library” of hundreds of
thousands of short sequence fragments, must undergo
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a number of processing steps prior to relative abun-
dance estimation [3]. In the setting of an established
reference genome (or transcriptome), this process gen-
erally includes (1) removal of undesired sequences (e.g.,
assay-specific adapters, ribosomal RNA, or short reads)
and quality filtering, (2) alignment of the remaining
sequences to the reference, and (3) quantification of rel-
ative transcript abundance [3]. In addition, RNA-Seq has
two notable sources of bias that an analyst may need to
address: transcripts with longer lengths [4] and higher GC
content [5] have their relative abundances over-estimated.

Alignment is a computationally expensive process that,
in many cases, contributes to the major bottleneck in
RNA-Seq workflows [6]. As the ability to generate raw
sequence data appears to outpace gains in comput-
ing power, the advantage of fast alignment seems clear.
Although dozens of aligners exist (e.g., see [7-10]), the
STAR aligner [6] has grown in popularity as a method
that balances accuracy with efficiency, having good per-
formance in systematic evaluations [10, 11]. Recently, a
new family of “pseudo-alignment” methods has emerged
(e.g., Kallisto [12], Sailfish [13], and Salmon [14]), provid-
ing an order of magnitude faster speeds than conventional
aligners [14]. On the other hand, quantification is com-
paratively quick and sometimes performed by the align-
ers themselves (as in the case of Salmon and STAR). In
essence, quantification involves “counting” the number of
times a sequence aligns to a given portion of the reference
[3]. This results in a matrix of counts (or pseudo-counts)
describing the estimated number of times each tran-
script was present for each sample under study (although
some methods represent relative abundance in other units
[15]). Yet, the choice in the alignment and quantification
method used seems to matter less than the choice in the
software used for down-stream analyses [16].

The “count matrix” produced by alignment and quan-
tification is perhaps most commonly used for differential
expression (DE) analysis, a means by which to iden-
tify which genes (or transcripts), if any, have a statisti-
cally significant difference in (ideally, absolute) abundance
across the experimental groups [3]. Like alignment,
dozens of methods exist for DE analysis, providing a
unique approach to normalization and statistical mod-
eling. Of these, DESeq [17] and edgeR [18] seem most
popular. Both use a type of normalization whereby each
“library” (i.e., sample vector) is adjusted by a scaling factor
based on a reference (or pseudo-reference). DESeq uses
as the reference the median of the ratios of each gene
for that sample to the geometric mean of each gene for
all samples [17, 19]. Meanwhile, edgeR uses as the refer-
ence the weighted mean of log ratios between that sample
and an explicitly chosen reference, a method known as
the trimmed mean of M (TMM) [19, 20]. Underlying
this approach is the rarely stated assumption that most
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transcripts do not differ in relative abundance while gains
and losses happen with equipoise [21].

While the choice in normalization can affect the final
results of a DE analysis [22, 23], it is necessary because
per-sample counts generated by alignment and quantifi-
cation do not compare directly [24]. This is because a
sequencer only sequences a fraction of the total input,
thereby constraining the per-sample output to a fraction
of the total number of molecules in the input library: the
number of reads delivered, called the sequencing depth, is
therefore a property of the sequencer itself (and not the
sampled environment) [24]. As such, the increased pres-
ence of any one transcript in the input material results
in a decreased measurement for all other transcripts [24].
This sum constraint makes RNA-Seq data a kind of com-
positional data in which each sample is a composition
and the transcript-wise counts are the components [25].
Compositional data have two key properties. First, the
total sum of all components is an artifact of the sam-
pling procedure [26]. Second, the differences between
any two components only carry meaning proportionally
[26]. For example, the difference between the two counts
[50, 500] is the same as the difference between [100, 1000]
since the latter could be obtained from the former sim-
ply by doubling the sequencing depth. RNA-Seq data have
both of these properties, but differ slightly from true com-
positional data in that count data only contain integer
values [25, 27].

Compositional data analysis (CoDA) describes a col-
lection of methods used to analyze compositional data,
including those pioneered by Aitchison in 1986 [28].
Commonly, such analyses begin with a transformation,
most often the centered log-ratio (clr) transformation
(defined in Methods). In contrast to normalizations, these
transformations do not claim to retrieve absolute abun-
dances from the compositional data [29]. Yet, they are
sometimes used as if they were normalizations themselves
[29]. The ALDEx2 package (available for the R program-
ming language) uses log-ratio transformations in lieu of
normalization for the analysis of sequencing data [30].
This package, first developed to examine meta-genomics
data [30, 31] (but subsequently shown to work for a broad
range of high-throughput sequencing study designs [32]),
identifies differentially abundant features across two or
more groups by applying statistical hypothesis testing to
compositional data in three steps: (1) generate Monte
Carlo (MC) instances (of log-ratio transformed data)
based on the provided count matrix using the Dirich-
let distribution, (2) apply univariate statistical models on
the MC instances, and (3) calculate the expected (i.e.,
average) adjusted false discovery rate (FDR) p-values per-
transcript across all MC instances [30]. By default, ALDEx2
uses the clr transformation, although it supports other
transformations too.
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The ALDExX2 package is not well-adopted for RNA-Seq
analysis, although its applicability to RNA-Seq is estab-
lished elsewhere [32]. However, ALDEX2 is used to analyze
16S rRNA data (e.g., [33, 34]) where it is shown to achieve
much lower false positive rates (FPR) than competing DE
methods [35]. Yet, we do not know of any paper which
independently benchmarks ALDEx2 as a DE method for
RNA-Seq (excepting the aforementioned article written
by the ALDEx2 authors [32]). Moreover, we do not know
the extent to which the choice of log-ratio transforma-
tion influences the final results of an analysis. Finally, we
do not know whether the results produced by ALDEx2
are sensitive to the chosen alignment and quantification
method. In this paper, we use simulated and real data to
evaluate the performance of ALDEx2 as a DE method for
RNA-Seq data and demonstrate that ALDEX2, given a suf-
ficient number of replicates, is appropriate for the analysis
of RNA-Seq data. In doing so, we also present a novel log-
ratio transformation, based on iterative runs of ALDEx2,
that may improve accuracy when compared with other
approaches.

Methods

Data acquisition

To benchmark how well the ALDEx2 package (available
for the R programming language) performs as a differ-
ential expression method for RNA-Seq data, we analyzed
four data sets. The first two contain simulated data gen-
erated from the polyester package (available for the R
programming language) [36]. polyester simulates RNA-
Seq data as raw sequencing data (i.e., FASTQ read sets)
where the relative abundances of the transcripts follow a
negative binomial model [36]. The third data set contained
real data sourced from a previously published benchmark
study [16], retrieved as raw RNA sequencing data (i.e.,
FASTQ read sets) from the NCBI SRA, under accession
SRP082682 https://www.ncbi.nlm.nih.gov/Traces/study/?
acc=srp082682. The fourth data set serves as an “every-
day use case” example and comprises publicly available
RNA-Seq data from a previous study on the adaptation
and evolution of the invasive cane toad (Rhinella marina)
[37]. The data set consists of 20 samples, 10 each from two
experimental groups, made available from the NCBI SRA,
under accession PRINA277985 https://www.ncbi.nlm.nih.
gov/bioproject/PRJNA419245. We used these raw data
for sequencing alignment, quantification, and differential
expression analysis. See Additional files 1, 2, 3 and 4 for
cane toad counts and group labels.

Data simulation

We simulated two sequencing experiments with two
groups of 80 samples each (ie, 160 samples total
per experiment) using a forked version of polyester,
hosted on GitHub, that adds multi-core support
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(archived at https://github.com/kcha/polyester/commits/
545e33¢9776db2927{9a22c8c2f5bfde2b3081a7).

To run polyester, we used the human GRCh37 DNA
primary assembly FASTA file and the GRCh37.87 anno-
tation GTF file, as compiled into a FA file using the
gffread command line tool [15]. We set the parameters to
achieve 20x coverage with a mean fragment length of 300
bases. Transcripts were selected randomly to have differ-
ent magnitudes of differential expression with weighted
probability: 4-fold up-regulation (3% of transcripts), 2-
fold up (7%), 1.5-fold up (9%), 1.5-fold down-regulation
(6%), 2-fold down (3%), and 4-fold down (2%). Each sam-
ple had a random multiplicative weight applied to their
library size (with a mean between-group difference of 0.20
with a within-group standard deviation of 0.05).

Otherwise, the two simulated experiments differ only
in the mean-variance relationship underlying the negative
binomial model. The first is a low variance data set built
using the default size argument. The second is a high vari-
ance data set built using size = 1 such that the variance
of the negative binomial model equals the mean plus the
mean squared. We selected these size parameters based
on the precedent set by the polyester authors in their flag-
ship publication [36]. Altogether, the resultant libraries
ranged from 44 million reads to 79 million reads (per
individual read pair file).

Note that, following alignment and quantification
(described below), we analyzed simulated data by ran-
domly sub-sampling from the total populations to estab-
lish unique data sets with 2, 3, 5, 10, and 20 replicates
per group. We repeated this procedure 20 times for each
sample size. To keep computations tractable, we also ran-
domly sampled the feature space to include only 10,000
transcripts per instance.

Alignment and quantification

To maintain benchmark comparisons with Williams
et al. [16], we used alignment and quantification pro-
tocols (for each of our four data sets) congruent with
theirs. For the two simulated data sets and the empir-
ical data set from Williams et al. [16], we performed
alignment to the GRCh37 release of the Human genome.
For the cane toad data set [37], we performed alignment
to the multi-tissue reference transcriptome published by
Richardson et al. [38]. Alignments were conducted using
both STAR v2.5.2a [6] and Salmon v0.8 [14]. For STAR, we
used the “Basic” two-pass mode to output BAM align-
ments to the Human genome and transcriptome. For
Salmon, alignments were made to the transcriptome (built
using gffread, as for the simulated data) across 100 boot-
straps. For Salmon, we trialled both the SMEM-based
lightweight-alignment approach (hereafter called sIFMD)
and the “quasi-mapping” approach (hereafter called
sIQUASI).
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We quantified expression at the transcript-level for all
data, and at the gene-level for the Williams et al. [16] data.
For transcript-level expression, counts were estimated
using salmon quant for the sIFMD and sIQUASI align-
ments, as well as for the STAR transcriptome alignment
(hereafter called stsl). For gene-level expression, counts
were estimated using the “GeneCounts” quant mode in
STAR (i.e., using the STAR alignment; hereafter called stst).
We then condensed transcript-level expression to gene-
level expression using the tximport package (available for
the R programming language) [39] with the argument type =
“salmon” and a key built from the EnsDb.Hsapiens.v86
database (from Bioconductor) [40].

Log-ratio transformations

The ALDEX2 package produces different results depend-
ing on the log-ratio transformation used. Two transfor-
mations available in ALDEx2 are the centered log-ratio
(cIr) [28] and inter-quartile log-ratio (iglr) transformations
[30]. For D genes (or transcripts), the clr-transformation
is defined as the logarithm of the transcript counts for the
i-th sample, x, divided by the geometric mean of all counts
for that sample, g(x):

clr(x) = |:ln ;1 D ] 1)

X1
—;.ln—

g(x) g(x)

The iqlr-transformation replaces the g(x) denomina-
tor term with the geometric mean of those transcripts
within the inter-quartile range of variability (i.e., prior to
transformation), g(Xiqr):

)

iqlr(x) = |:lr1 il ; D :|

s In
g (xiqr) g (xiqr)

In the analysis of the simulated data, we also use what
we call the multi-additive log-ratio (malr) transformation.
This uses the identity of all equally expressed transcripts
as a reference set. Although this transformation is only
feasible here because we already know a priori which
transcripts are differentially expressed, it provides a “best
case scenario” for normalization against which to com-
pare other transformations. This transformation replaces
the g(x) denominator term with the geometric mean of
equally expressed transcripts, g(Xeq):

3)

malr(x) = |:l 1 D ]

n 5 .oy I
g(xeq) g(xeq)

In addition, we introduce a novel transforma-
tion called the iterative iqlr (iilr) transformation.
The iilr-transformation begins with the familiar iqlr-
transformation, but then uses the results of a complete
ALDEx2 analysis to inform a subsequent iteration
of ALDEx2. After the initial iqlr-transformation, each
new ALDEx2 run uses the geometric mean of the equally
expressed transcripts identified by the prior ALDEX2 run.
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In principle, the equally expressed transcripts identified
by each new iteration of ALDEx2 should more closely
approximate the idealized Xeq used by the malr. We trial
a single iteration of the iilr-transformation (iil) as well as
an approach using five iterations (ii5). In preparing this
manuscript, we also contributed code to the ALDEx2 pack-
age to make the iilr transformation available by providing
the argument test = “iterative” to the aldex function.

Differential expression analysis

For each data set, and for each alignment and quantifica-
tion protocol, we performed differential expression using
the edgeR [18], DESeq2 [41], and ALDEx2 [30] packages
(available for the R programming language). For the simu-
lated data, we evaluated the performance of all differential
expression methods using transcript-level abundances.
For the Williams et al. [16] data, we also used gene-level
abundances.

When applying ALDEX2 to the simulated data, we per-
formed DE analysis with each combination of parameters:
non-filter versus filter (i.e., the removal of transcripts
without at least 10 counts in at least 20 samples), 8 ver-
sus 128 Monte Carlo instances, and clr versus iglr versus
malr versus iilr transformation. When applying ALDEx2
to the real data, we used the “non-filter” procedure with
128 Monte Carlo instances. For ALDEx2, we considered
an expected Benjamini-Hochberg (FDR) adjusted p-value
of the Wilcoxon Rank Sum test (i.e., column “wi.eBH”)
less than 0.05 significant. We also repeated this proce-
dure using Welch’s t-test (i.e., column “we.eBH”) (see
Additional file 5: Figures). For clarity of visualization,
all figures show results from “non-filter” runs with 128
Monte Carlo instances and the column “wi.eBH” (except
where otherwise noted).

When applying edgeR to the simulated data, we per-
formed DE analysis by applying these functions in
order: calcNormFactors, estimateCommonDisp, estimate-
TagwiseDisp, and exactTest. When applying DESeq2 to
the simulated data, we used the functions DESeqDataSet-
FromMatrix and DESeq. As above, we tested whether non-
filter versus filter affects performance. For both methods,
we considered an FDR-adjusted p-value less than 0.05
significant. For clarity of visualization, all figures show
results from “non-filter” runs (except where otherwise
noted).

When applying edgeR and DESeq2 to the Williams
data, we used the protocols from Williams et al. [16].
When applying edgeR to the cane toad data, we used
these same protocols. For both methods, we considered
an FDR-adjusted p-value less than 0.05 significant.

Performance estimates
For the simulated data, we calculated precision and
recall from a contingency table of the simulated state of
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differential expression (as a binary) compared with the
predicted state of differential expression (as a binary). For
the Williams et al. [16] data, consistent with the original
publication, we calculated precision and recall for each of
the four microarray “truth sets” (available from the sup-
plemental materials of [16]) separately, then reported the
average precision and average recall [16].

Since the microarray “truth sets” were based on HGNC
symbols, we needed to convert the aligned and quan-
tified transcript-level and gene-level counts to HGNC-
level counts; for this, we used code adapted from the
Williams et al. methods in conjunction with a conver-
sion table provided by the authors [16]. Using microar-
ray “truth sets” also required an additional filter step to
remove HGNC symbols detected by the microarray plat-
form but not RNA-Seq (and vice versa). For this, we ref-
erenced the hgu133plus2.db, illuminaHumanv4.db, and
illuminaHumanv2.db databases (from Bioconductor) to
build an HGNC-level “gene universe” for each microarray
platform [42]. We then performed a simple set intersec-
tion between the microarray “gene universe” with the
RNA-Seq HGNC-level “gene universe” prior to calculat-
ing precision and recall. Note that our “gene universes”
likely differ from those used by Williams et al. (which
are not available from their Additional files) [16]. As
such, any gene uniquely present (or absent) in our uni-
verse could marginally change the measured performance.
Specifically, the numerator or denominator of the preci-
sion and recall estimates could change by an offset up to
the number of genes uniquely present (or absent) in our
universe.

We refer the reader to Additional file 6 for a table of
all performances from the simulated data benchmark, and
Additional file 7 for a table of all performances from the
Williams et al. data benchmark. We make all scripts used
in this analysis available in Additional file 8.

Results

In order to evaluate the performance of ALDEX2 as a
differential expression (DE) method for RNA-Seq data,
we tested its performance on four data sets using sev-
eral combinations of run-time parameters. Specifically, we
assessed how changes in the alighment and quantification
process, sample size, and log-ratio transformation affect
the precision and recall of DE analysis. We also performed
a DE analysis using edgeR and DESeq2 to provide a point
of reference.

ALDEXx2 performance on a low variance simulated data set

Before generating any figures, we tested whether some of
the run-time parameters (i.e., non-filter versus filter and
8 versus 128 Monte Carlo instances) impacted ALDEx2
performance (across all alignment and quantification pro-
cedures, log-ratio transformations, and sample sizes). We
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found that filtering the data before DE analysis did not
change precision or recall for ALDEx2, nor did increas-
ing the number of Monte Carlo instances to 128 (all
unadjusted p > 0.01 by ¢-test) [for low variance data, fil-
tered or not]. Filtering the data before DE analysis also
did not change precision or recall for edgeR and DESeq?2
(all unadjusted p > 0.01 by ¢-test) [for low variance
data, regardless of the number of instances]. For clarity
of visualization, all figures show results from “non-filter”
runs with 128 Monte Carlo instances and the column
“wi.eBH” (except where otherwise noted).

Figure 1 shows the precision (top panel) and recall
(bottom panel) for a DE analysis of the low variance simu-
lated data set as plotted as a function of software method
and log-ratio transformation, organized by the number
of replicates per group. When there are 5 replicates per
group, clr-based and iqlr-based ALDEX2 is more precise
than edgeR and DESeq2 (all p < 0.0001 by ¢-test). When
there are 10 or 20 replicates per group, iqlr-based ALDEx2
is even more precise than these three (all p < 0.0001 by
t-test). However, for 5 and 10 replicates per group, ALDEx2
has less recall than edgeR and DESeqg2 (all p < 0.0001
by ¢-test), but, for 20 replicates per group, has similar
recall (though still significantly less; all p < 0.0001 by
t-test). When there are only 2 or 3 replicates per group,
ALDEx2 does not make any DE calls, and therefore has
no precision or recall (though a Wilcoxon Rank Sum test
cannot find significant differences with so few replicates).
Figure 2 shows another projection of these data, orga-
nized by the alignment and quantification procedure used.
Here, it becomes clear that the choice between STAR and
Salmon alignment has no apparent impact on the results
of DE analysis. Note that Figs. 1 and 2 show results from
a transcript-level, not gene-level, analysis. We refer the
reader to the Additional file 5: Figures for a replication
of these figures using the column “we.eBH” from ALDEx2
(which improves recall when there are 3 or 5 replicates per
group), as well as empiric false discovery rates (FDR) for
low variance data. For these low variance data, all methods
control FDR below & = 0.05, although ALDEx2 appears to
control FDR better than edgeR and DESeq_2.

ALDEx2 performance on a high variance simulated data set
Figure 3 reproduces Fig. 1 for a DE analysis of the
high variance simulated data, organized by the num-
ber of replicates per group. Maximum recall rates less
than 0.40 (even with 20 replicates per group) sug-
gest that the data are indeed extremely variable. When
there are 5 or less replicates per group, edgeR and
DESeg2 have poor precision, while ALDEx2 does not
make any DE calls (and therefore has no precision or
recall). When there are 10 replicates per group, ALDEx2
tends to have higher median, but more variable, preci-
sion when compared with edgeR and DESeq2. Across
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Differential Expression Performance using a Simulated Reference (Low Variance Data)
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Fig. 1 Differential expression analysis of low variance simulated data. This figure shows the performance (y-axis) of a complete differential
expression analysis, organized by differential expression method (x-axis) and the number of replicates per group (panel). The acronyms clr, iglr, malr,
ii1, and ii5 describe log-ratio transformations (see Methods). The acronyms sIFMD, sIQUASI, and stsl describe alignment and quantification
procedures (see Methods). Missing data suggest that the method did not call any transcripts differentially expressed (and therefore has no precision
or recall). The horizontal line indicates a precision of 0.95, equivalent to the requested false discovery rate (FDR) of 0.05

all sample sizes, edgeR and DESeq2 outperform ALDEx2
in terms of recall. Note that Fig. 3 shows results from
a transcript-level, not gene-level, analysis. We refer the
reader to the Additional file 5: Figures for a replica-
tion of these figures using the column “we.eBH” from
ALDEx2 (which does not seem to improve ALDEX2 per-
formance for high variance data), as well as empiric false
discovery rates (FDR) for high variance data. For these
high variance data, edgeR and DESeq2 have an FDR
above o« = 0.05.

ALDEx2 performance on a previously benchmarked data
set

Figure 4 shows precision (y-axis) versus recall (x-axis)
for a gene-level (top panel) and transcript-level (bot-
tom panel) DE analysis of the Williams et al. RNA-
Seq data (that uses pooled microarray data as a “truth
set”) [16]. Here, the smear of lightly colored transparent

points indicate the precision and recall recorded by the
original Williams et al. publication (sourced from their
Additional files) [16]. Meanwhile, the dark opaque dots
indicate the precision and recall measured during our
replication of their procedure. Compared with a myriad
of other alignment, quantification, and DE method com-
binations (including edgeR and DESeq2), ALDEx2 tends
toward higher precision and lower recall, especially for the
gene-level analysis. Interestingly, differences between the
choice of log-ratio transformation appear unimportant for
these data. Note that the multiplicity of points for each DE
method represent different alignment and quantification
procedures.

Agreement between ALDEx2 and edgeR

Figure 5 shows the intersection of differentially expressed
transcripts selected by four differential expression meth-
ods (organized by the alignment and quantification
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Differential Expression Performance using a Simulated Reference (Low Variance Data)
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Fig. 2 Differential expression analysis of low variance simulated data. This figure shows the performance (y-axis) of a complete differential
expression analysis, organized by differential expression method (x-axis) and alignment and quantification procedure (panel). The acronyms clr, iglr,
malr, i1, and ii5 describe log-ratio transformations (see Methods). The acronyms sIFMD, sIQUASI, and stsl describe alignment and quantification
procedures (see Methods). Missing data suggest that the method did not call any transcripts differentially expressed (and therefore has no precision
or recall). Precision (top-panel) and recall (bottom-panel) appear largely unaffected by choice in the alignment and quantification procedure. The
horizontal line indicates a precision of 0.95, equivalent to the requested false discovery rate (FDR) of 0.05

procedure used) using the Rollins et al. [37] RNA-Seq
data. These data derive from a study of the transcrip-
tomic differences between two wild populations of cane
toads (with 10 samples in each group). Here, we com-
pare ALDEx2 with edgeR (i.e., the method used in the
original publication), and find that the overwhelming
number of transcripts called differentially expressed by
ALDEX2 (regardless of the log-ratio transformation used)
are also called differentially expressed by edgeR. How-
ever, edgeR calls many transcripts differentially expressed
that ALDEx2 does not. This is consistent with the prior
benchmarking that suggests while both methods have
high precision, edgeR tends to have higher sensitiv-
ity, especially for data with 10 or less replicates per
group.

Figure 6 shows the mean (or median) absolute between-
group differences for differentially expressed transcripts

(y-axis) versus the differential expression method (x-axis)
(organized by the alignment and quantification procedure
used). Between-group differences are reported as mea-
sured by the respective method (i.e., mean for edgeR
and median for ALDEx2). This figure suggests that both
methods can detect between-group differences at approx-
imately the same threshold. We interpret this to mean
that the decreased sensitivity of ALDEx2 is not easily
explained by an inability to detect small-fold differences in
expression between groups (although edgeR does appear
to detect more small-fold differences). Figure 7 shows the
average number of counts for each of the transcripts called
DE by any ALDEx2 compared with those called DE by
only edgeR (organized by the alignment and quantifica-
tion procedure used). This suggests that ALDEx2 tends
to “miss” DE among transcripts with the least relative
abundance.
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Differential Expression Performance using a Simulated Reference (High Variance Data)
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Fig. 3 Differential expression analysis of high variance simulated data. This figure shows the performance (y-axis) of a complete differential
expression analysis, organized by differential expression method (x-axis) and the number of replicates per group (panel). The acronyms clr, iglr, malr,
ii1, and ii5 describe log-ratio transformations (see Methods). The acronyms sIFMD, sIQUASI, and stsl describe alignment and quantification
procedures (see Methods). Missing data suggest that the method did not call any transcripts differentially expressed (and therefore has no precision
or recall). The horizontal line indicates a precision of 0.95, equivalent to the requested false discovery rate (FDR) of 0.05

Discussion

ALDEXx2 has high precision and variable recall for RNA-Seq

data

The ALDEx2 package, most often used to detect differen-
tial abundance in 16S rRNA data, has received extensive
use for that purpose (e.g., [33, 34]). In previous studies,
ALDEx2 was shown to produce low false discovery rates
(FDR) for highly sparse compositional data [35] (FDR =
1 — precision). However, we have not yet encountered a
study that independently evaluates ALDEx2 as a differen-
tial expression (DE) analysis method for RNA-Seq data
(excepting a manuscript by the ALDEx2 authors which
defended its use for RNA-Seq data [32]).

In general, our analysis of simulated and real data agrees
with Fernandes et al. [32]: ALDEx2 can accurately iden-
tify differentially expressed genes (and transcripts) in
RNA-Seq data. Specifically, ALDEx2 identifies differen-
tially expressed genes with high precision (i.e., few false

positives), but can suffer from low recall (i.e., many false
negatives) in the setting of small sample sizes. Overall,
based on our simulations, we find that ALDEx2 performs
best when there are at least 10, but ideally 20, replicates
per group.

We offer three explanations for the low recall. First,
ALDEX2 uses non-parametric statistical modeling which
tend to have reduced power for small RNA-Seq studies
[16, 43] (though, the package authors note that log-ratio
transformed data do not necessarily adhere to a normal
distribution [32]). Indeed, using the column “we.eBH” (a
parametric alternative to the column “wi.eBH”) improves
recall when there are only 3 or 5 replicates per group (see
Additional file 5: Figures). Second, methods like edgeR
use an empiric Bayes method that “shares information
between genes” to shrink per-gene variance estimates
and improve power [18]. Presumably, ALDEx2 would
perform better if one could extend moderation to its
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Differential Expression Performance using a Microarray Reference

toward higher precision and lower recall
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expression analysis applied to real RNA-Seq data. The “truth set” is established using a microarray reference (see Methods). The acronyms clr, iglr,
and ii1 describe log-ratio transformations (see Methods). The acronyms sIFMD, sIQUASI, stsl, and stst describe alignment and quantification
procedures (see Methods). Translucent data points show performance calculated from a previously published systematic benchmark. ALDEx2 tends

transformation-based analysis. Third, ALDEx2 generates
models of the data by drawing from the Dirichlet distri-
bution. As such, it is not deterministic, and transcripts
close to the margin of significance may not get called
DE. This is supported by Fig. 7 which suggests that
transcripts called DE by edgeR only (and not ALDEx2)
have, on average, lower counts than those called DE
by ALDEx2.

Throughout this benchmarking exercise, we had the
opportunity to see how two run-time parameters affect
ALDEx2 performance. First, we noted that the removal
of lowly abundant counts does not impact performance
(all unadjusted p > 0.01 by t-test) (see Additional file 6:
Tables), nor did it affect edgeR or DESeq2. Second, we
noted that ALDEx2 performs almost as well using only 8
Monte Carlo instances when compared with using 128
Monte Carlo instances (all unadjusted p > 0.01 by
t-test) (see Additional file 6: Tables). Although the

package vignette recommends “128 or more mc.samples
for the t-test’, this change improves run-time 16-fold.

ALDEx2 performance does not depend on alignment and
quantification used

Across all four data sets used in this study, the choice
in the alignment and quantification procedure did not
change the overall performance of differential expression
analysis by ALDEx2 (or edgeR or DESeq2). This even
holds true for the Salmon “quasi-mapping” method
that runs many-fold times faster than other quantifica-
tion algorithms [44]. Although the computational basis
of “quasi-mapping” differs from other approaches, this
method produces (pseudo-)counts that appear to work
well for trimmed M of means (TMM) normalization
(used by edgeR) and log-ratio transformation (used by
ALDEx2) alike. Broadly speaking, our results agree with
the Williams et al. paper in that the choice in differential
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Gene Overlap Diagram for Cane Toad Transcripts Aligned by the sIFMD Method

Fig. 5 Gene overlap diagrams of Rollins et al. data. This figure shows the intersection of differentially expressed transcripts selected by four
differential expression methods (organized by the alignment and quantification procedure used). The acronyms clr, iglr, and ii1 describe log-ratio
transformations (see Methods). The acronyms sIFMD, sIQUASI, and stsl describe alignment and quantification procedures (see Methods).
Differentially expressed transcripts selected based on an FDR < 0.05 as calculated by the respective method. Figure prepared from Rollins et al. data

expression method matters more than the choice in the
alignment and quantification method [16].

ALDEx2 performance depends on log-ratio transformation
used

First of all, it is necessary to emphasize that, although
log-ratio transformations can be used in lieu of normaliza-
tion, such transformations do not formally reclaim abso-
lute abundances from relative abundances (see [29]). Yet,
benchmarking a transformation-based analysis against a
“truth set” implies that the transformation is interpreted
as if it were a normalization (i.e., that the reference
denominator used for the transformation has rescaled the
data to absolute terms [29]). In other words, the more that
the reference approximates a feature with fixed abundance
across all samples, the more that the transformed data
resemble the absolute data. Therefore, the benchmarked

performance of a log-ratio transformation-based analy-
sis depends on whether the reference denominator of the
transformation is an ideal reference with fixed abundance.

When interpreting the clr transformation as if it were
a normalization, there is an implicit assumption that the
majority of genes (or transcripts) are not differentially
expressed [21]. Meanwhile, the iglr transformation would
assume that a portion of genes (i.e., those with their
variances within the inter-quartile range) are not differ-
entially expressed. Likewise, the iterative transformation
assumes that the results of an ALDEx2 analysis selects
(non-)differentially expressed genes more accurately than
a simpler transformation. Therefore, all else being equal,
one can interpret the performance of each transformation
as a proxy for how well it reclaims absolute information
(i.e., how well it approximates an ideal reference with fixed
abundance).
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Absolute Between-Group Differences for DE Transcripts (Cane Toad Data)
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Fig. 6 Between-group differences of Rollins et al. data. This figure shows the mean (or median) absolute between-group differences for differentially
expressed transcripts (y-axis) versus the differential expression method (x-axis) (organized by the alignment and quantification procedure used).
Between-group differences are reported as measured by the respected method (i.e., mean for edgeR and median for ALDEx2). The acronyms clr, iglr,
and ii1 describe log-ratio transformations (see Methods). The acronyms sIFMD, sIQUASI, and stsl describe alignment and quantification procedures
(see Methods). Differentially expressed transcripts selected based on an FDR < 0.05 as calculated by the respective method. Figure prepared from
Rollins et al. data

For simulated data, some transformations perform bet-
ter than others. First, the iqlr transformation is more
precise than the clr transformation. This is expected
because the iqlr transformation should be more robust
to imbalances in up- or down- regulation [45]. Second,
the iterative transformations is more precise than the
iqlr, suggesting that novel log-ratio transformations could
improve performance beyond those routinely used. Per-
haps surprisingly, this trend was not apparent among the
Williams et al. [16] data: there were no impressive differ-
ences in precision or recall between transformation-based
methods. This could be due to either the absence of any
imbalance in this data set (such that iqlr and others offer
no clear benefit over clr) or limitations in the microarray-
based “truth set” (which may not have controlled for a
systematic imbalance in the biological samples). How-
ever, for the Rollins et al. [37] data, the iqlr-based analysis
not only agreed most with edgeR, but also identified the

greatest number of differentially expressed transcripts,
suggesting an advantage to using the iglr transformation
(although the lack of a truth set makes it impossible to
quantify precision and recall directly).

Limitations of ALDEx2 and other transformation-based
methods

Users may encounter some practical limitations with
ALDEx2 as it is currently implemented. First, owing to
the replication of non-parametric analyses across mul-
tiple Monte Carlo instances, ALDEx2 runs much slower
than edgeR and other methods (though in preparing this
manuscript we submitted code to speed up the software).
Second, ALDEx2 does not contain a well-documented gen-
eralization to mixed models. Although this package does
have a multi-group procedure (i.e., using Kruskal-Wallis),
it takes even longer to run than the standard two-group
comparisons.
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Average Abundances for DE Transcripts Called by edgeR Only (Cane Toad Data)
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Fig. 7 Mean relative abundance of transcripts missed by ALDEx2. This figure shows the mean relative abundance for differentially expressed
transcripts (y-axis) versus the differential expression method (x-axis) (organized by the alignment and quantification procedure used). Mean relative
abundances are provided for all transcripts selected by either (a) any ALDEx2 method (regardless of log-ratio transformation used) or (b) edgeR
method only (and not any ALDEx2 method). The acronyms sIFMD, sIQUASI, and stsl describe alignment and quantification procedures (see Methods).
Differentially expressed transcripts selected based on an FDR < 0.05 as calculated by the respective method. Figure prepared from Rollins et al. data

There are also limitations that come with interpreting
the log-ratio transformation as a kind of normalization.
As mentioned above, using the clr in this way assumes
that the majority of genes (or transcripts) are not dif-
ferentially expressed [21], the same assumption held by
the trimmed mean of M (TMM) normalization [20].
When this assumption does not hold, it is not possi-
ble to infer absolute differences in expression between
samples. As such, both will fail if one of the experi-
mental groups has massively more up-regulation than
down-regulation (or vice versa). This scenario is exem-
plified by a cell line with high levels of c-Myc, a protein
with widely variable expression in tumors that can amplify
gene expression to produce 2-3 times more total RNA
[46]. When comparing high c-Myc cells against low c-Myc
cells, a standard RNA-Seq analysis would conclude that
there is both up- and down-regulation, even though the
cells actually only have up-regulation (as determined by
using spike-in controls normalized to cell number) [46]. A

transformation-based approach would not fair any better
here, unless one was exclusively interested in identifying
transcripts that were differentially expressed relative to
a reference [29]. Newer methods that avoid normaliza-
tion and transformation altogether by analyzing tran-
script ratios directly may serve as an alternative in these
cases [47, 48].

Finally, ALDEX2 is said to suffer from another limita-
tion based on how it uses the Dirichlet distribution to
generate Monte Carlo instances. Weiss et al. note, “this
formulation assumes a Dirichlet-multinomial framework,
which imposes a negative correlation structure on every
pair of [features]” [49]. In fact, Hawinkel et al. showed that,
when simulating 16S relative abundance data to have a
positive correlation structure, ALDEX2 results depart from
the uniformity of the p-value distribution (in the liberal
direction) and show an increase in the nominal false dis-
covery rate (FDR) (although FDR-adjustment still brought
FDR below the 0.05 threshold) [50]. This publication
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also found that a positive correlation structure negatively
impacted the performance of popular differential expres-
sion analysis methods like DESeq2 and edgeR (the latter
of which had very high FDR-adjusted FDR rates) [50].
Yet, criticizing the Dirichlet-based framework for this
reason is problematic because, by definition, all composi-
tional data have a negative correlation bias that is different
than the correlation structure of the underlying absolute
abundances [51]. Nevertheless, we find that, for technical
replicates of simulated data, ALDEx2 better controls false
discoveries at « = 0.05 than either edgeR or DESeq2, and
in all cases has an FDR less than « (see Additional file 5:
Figures).

Conclusions

Using simulated and real RNA-Seq data, we find that
the ALDEx2 package has very high precision in identify-
ing differentially expressed genes (and transcripts). With
enough replicates per group, it also has good recall. Con-
sistent with other benchmark studies, we also find that
the choice in the alignment and quantification procedure
does not seem to affect performance, freeing investiga-
tors to choose a method based on convenience. Yet, when
interpreting log-ratio transformations as if they were nor-
malizations, some transformations work better than oth-
ers: the inter-quartile range log-ratio (iglr) transformation
tends to out-perform the centered log-ratio (clr) trans-
formation, likely owing to its ability to correct for some
data asymmetry. We recommend using the iqlr transfor-
mation as the default setting when using ALDEx2, unless
researchers have already established a known reference set
that makes normalization with a (multi-)additive log-ratio
(malr) transformation preferable. Altogether, our results
suggest that ALDEX2, as a log-ratio transformation-based
method, given a sufficient number of replicates, is appro-
priate for the analysis of RNA-Seq data. With previously
demonstrated applicability to 16S rRNA data, ALDEx2
can thus serve as a single tool for data from multiple
sequencing modalities.
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Additional file 1: Estimated relative abundance for Rollins et al. data (by
sIFMD method). This table contains the relative transcript abundances as
estimated using the sIFMD procedure. (CSV 6166 kb)

Additional file 2: Estimated relative abundance for Rollins et al. data (by
sIQUASI method). This table contains the relative transcript abundances as
estimated using the sIQUASI procedure. (CSV 4758 kb)

Additional file 3: Estimated relative abundance for Rollins et al. data (by
stsl method). This table contains the relative transcript abundances as
estimated using the stsl procedure. (CSV 4579 kb)

Additional file 4: Group labels for Rollins et al. data. This table contains
the group labels for all samples from the Rollins et al. cane toad data set.
(CSV 1 kb)
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Additional file 5: Supplemental figures. This file contains all
supplemental figures referenced in this document. (PDF 7488 kb)

Additional file 6: Simulated data benchmark performance. This table
contains the precision and recall estimates for several methods as applied
to the low and high variance simulated data. This table is used to make
figures. (CSV 2945 kb)

Additional file 7: Benchmark performance for Williams et al. data. This
table contains the precision and recall estimates for several methods as
applied to the Williams et al. data. This table is used to make figures.
(CSV 6 kb)

Additional file 8: Analysis scripts. This file contains all the scripts used to
generate the simulated data, benchmark methods on the simulated data,
benchmark methods on the real data, parse the results, and make the
figures. (PDF 3948 kb)
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