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Abstract

Background: Methylated RNA immunoprecipitation sequencing (MeRIP-seq or m6A-seq) has been extensively used
for profiling transcriptome-wide distribution of RNA N6-Methyl-Adnosine methylation. However, due to the intrinsic
properties of RNA molecules and the intricate procedures of this technique, m6A-seq data often suffer from various
flaws. A convenient and comprehensive tool is needed to assess the quality of m6A-seq data to ensure that they
are suitable for subsequent analysis.

Results: From a technical perspective, m6A-seq can be considered as a combination of ChIP-seq and RNA-seq;
hence, by effectively combing the data quality assessment metrics of the two techniques, we developed the
trumpet R package for evaluation of m6A-seq data quality. The trumpet package takes the aligned BAM files from
m6A-seq data together with the transcriptome information as the inputs to generate a quality assessment report in
the HTML format.

Conclusions: The trumpet R package makes a valuable tool for assessing the data quality of m6A-seq, and it is also
applicable to other fragmented RNA immunoprecipitation sequencing techniques, including m1A-seq, CeU-Seq, Ψ-
seq, etc.
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Background
Recent studies have shown that reversible N6-Methy
l-Adnosine (m6A) RNA methylation plays important roles
in regulating many cellular processes, including mRNA ex-
pression, splicing, translation, RNA-protein interaction, cell
differentiation, etc. [1, 2]. Elucidating functions of RNA
methylation is one the most active areas of research. Cur-
rently, the most widely used sequencing technology for pro-
filing transcriptome-wide distribution of RNA methylation
is MeRIP-seq or m6A-seq, which pulls down the RNA frag-
ments that carry N6-Methyl-Adnosine modification with
an anti-m6A antibody in the immunoprecipitation (IP)
stage before sending them for sequencing [3, 4]; often, an
input control sample is also generated to serve as the back-
ground control.

In recent years, m6A-seq has been widely applied to
various species, such as, human, mouse, fly, zebrafish,
rice and yeast, to uncover the functions of RNA m6A
methylation. However, due to the chemical instability of
RNA molecules and the intricate experiment procedures,
special care is needed to ensure the quality of m6A-seq
experiments, and often the data generated from m6A-seq
technology may suffer from various defects, such as,
DNA contamination, RNA degradation, and immuno-
precipitation failure. Hence, assessing the quality of
m6A-seq data is necessary to ensure that they are suit-
able for subsequent analysis.
Data quality assessment has been a critical issue for

high-throughput sequencing technology in general, and
a number of software tools have been developed for this
purposes, including, e.g., FastQC for general sequencing
data quality [5], RNA-SeQC and RseQC for RNA-seq
data [6, 7], and CHANCE for ChIP-seq data [8]. How-
ever, due to the unique characteristics of m6A-seq data,
neither of the aforementioned tools along is sufficient.
To address this shortfall, we developed an R package,
trumpet, which stands for transcriptome-guided quality
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assessment of methylated RNA immunoprecipitation se-
quencing data. The trumpet package takes the aligned
BAM files from m6A-seq data together with the tran-
scriptome information as the inputs to generate a quality
assessment report in the HTML format, which covers a
number of metrics relevant to the m6A-seq data quality.

Implementation
The trumpet R package takes the aligned BAM files
of m6A-seq data together with the transcriptome an-
notation as the inputs, and returns an assessment re-
port concerning the data quality with a single line of
R command. The transcriptome annotation is neces-
sary for separating the signal (transcribed regions)
from the noise (non-transcribed regions), and may
be provided as a GTF file or converted from other
formats into a TxDb object [9]. This package sup-
ports the down-sampling of reads to ensure that the
comparison is not affected by the different sequen-
cing depths (library size) of the samples.
The quality of m6A-seq data is assessed by the trumpet

package from mainly 3 perspectives, including (1) statistics
of sequencing reads distribution with respect to different
genomic regions; (2) the strength of the immunoprecipita-
tion signal evaluated by the exome signal extraction scaling
(ESES) and other statistical approaches; (3) comparison be-
tween different biological replicates to identify possible
outliers. These assessment components are detailed in the
following with a sample dataset that profiles midbrain gene
under wild type and FTO knockdown conditions [10, 11].
The source code (see Additional file 1) and a compre-
hensive user’s manual are freely available at GitHub:
https://github.com/skyhorsetomoon/Trumpet.

Statistics of sequencing reads
This module is aimed to gain overall insights into sam-
ples via statistics of read counts, which is probably the
most fundamental way to check the quality of samples.
Relatively low number of reads or distinct proportion of
reads mapped to a specific genomic region may be nat-
urally associated to poor data quality due to unbalanced

sequencing in sample multiplexing, DNA contamination
or other bias during the experimental procedures. In this
section, we mainly evaluate read alignment and their dis-
tribution, with which we inspect the sequencing depth
of the input files, the heterogeneity of read coverage, the
read alignment mapped to different genomic regions,
such as exon, intron, 5’UTR, CDS and 3’UTR.
The Table 1 summarized the read alignment informa-

tion from 6 m6A-seq samples, which profile the m6A
epitranscriptome [12] in mouse midbrain under FTO
knock-down [11]. It is observed that sample IP2 with
GEO accession number GSM1147022 has less reads
mapped to 3’UTR (29.0%) compared with the other sam-
ples (36.93, 34.97, 37.41, 36.27 and 37.63%), which may
be due to the 3′ bias during sample preparation [13].

Whole-transcriptome heterogeneity of read coverage
In order to show the heterogeneity of read coverage
in the entire transcriptome due mainly to different
levels of gene expression, PCR artifacts and random-
ness, we used bin-based approach to check the per-
centage of regions covered different number of reads.
To make the result comparable and not affected by
different sequencing depth, the same number of reads
are randomly selected from each sample using the
built-in option. In Table 2, IP1, IP2 and IP3 are three
sample datasets from the mouse midbrain gene under
FTO knockdown [11]. The sample IP2 has a higher
percentage of reads in exonic regions and more re-
gions covered with > 104 reads compared with the
other samples, suggesting a higher degree of hetero-
geneity in read coverage, which may indicate potential
PCR artifacts during sample preparation or sequen-
cing. This has been confirmed by the FASTQC [5]
software, where the sample IP2 has highest Kmer
content among the samples (fold enrichment of the
most over-represented Kmer: 33.31 in IP2 vs 23.61
and 27.63 in IP1 and IP3). PCR artifacts may further
exacerbate the existing heterogeneity in reads cover-
age of an m6A-seq experiment.

Table 1 Number of Reads Aligned to Different Genomic Regions

Sample ID GEO Total Exon Intron Non-genic 5’UTR CDS 3’UTR

IP1 GSM1147020 28.9 M 14.1 M (48.78%) 1.5 M (5.18%) 13.31 M (46.04%) 1.1 M (7.72%) 7.92 M (55.35%) 5.28 M (36.93%)

IP2 GSM1147022 11.6 M 5.71 M (49.18%) 0.6 M (5.17%) 5.3 M (45.65%) 0.52 M (9.68%) 3.3 M (61.42%) 1.56 M (29.0%)

IP3 GSM1147024 36.86 M 17.85 M (48.42%) 1.92 M (5.2%) 17.1 M (46.38%) 1.19 M (6.82%) 10.17 M (58.21%) 6.11 M (34.97%)

Input1 GSM1147021 14.82 M 6.52 M (43.99%) 0.47 M (3.17%) 7.83 M (52.84%) 0.31 M (7.43%) 2.3 M (55.16%) 1.56 M (37.41%)

Input2 GSM1147023 17.15 M 6.9 M (40.26%) 0.42 M (2.45%) 9.82 M (57.29%) 0.17 M (8.81%) 1.06 M (54.92%) 0.7 M (36.27%)

Input3 GSM1147025 18.15 M 7.63 M (42.06%) 0.46 M (2.54%) 10.05 M (55.4%) 0.28 M (7.37%) 2.09 M (55%) 1.43 M (37.63%)

The number of reads mapped to different regions is summarized as following. A summary table matching the sample ID with the input BAM files is also provided
in the full report. Issues may be identified if a metrics is significantly different from other samples. E.g., the total number of reads and the reads mapped to 3’UTR
of IP2 sample are both significantly different than all other IP samples
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Visualization of reads distribution
It is known that, RNA m6A methylation is enriched
near the stop codon. In this module, the distribution
of reads in different genomic regions (5’UTR, CDS
and 3’UTR) is visualized. Since there exist highly
abundant genes, whose m6A enrichment signal may
dominate the analysis if raw reads are directly used
in the analysis, the same weight is assigned to all
the detected genes regardless of their read coverage.
Specifically, genes that are not expressed or have less
than 10 reads are first excluded; then, for the
remaining genes, the read coverages at different re-
gions of the same transcript are counted and then
standardized (divided by the read coverage’s mean
counts). The quantiles (25, 50 and 75%) of the stan-
dardized read coverage at different genomic regions
is then plotted as shown in Fig. 1.

Assessing immunoprecipitation efficiency with ESES
A major aspect of the m6A-seq data quality is the effi-
ciency of immunoprecipitation, which can be reflected
by the enrichment of immunoprecipitation signal. To
evaluate the enrichment of m6A signal in the IP sample,
trumpet package uses a metric called exome signal ex-
traction scaling (ESES), which is a modified form of the

signal extraction scaling (SES) approach previously de-
veloped for assessing the signal of ChIP-seq data [8].
The ESES approach is different from the SES approach
in two aspects. Firstly, the genome background of
ChIP-seq data used in SES approach was replaced by stan-
dardized gene-specific exome background of MeRIP-seq
data to exclude the influence of regions that do not carry
meaningful signal (introns and non-genic regions). Sec-
ondly, the read coverage in MeRIP-seq data is normalized
with respect to the expression level of that gene to elimin-
ate the impact of different expression level of genes. More
specifically, we first divide a gene into n bins and count
the number of reads mapped to each bin. Let yt, g, i be the
read count of the i-th bin on the g-th gene in the IP sam-
ple, andyc, g, i represent the read count of the i-th bin on
the g-th gene in the Input sample. The standardized the
read count that eliminates the difference in expression of
genes can be calculated as

yt;g ¼
P

∀iyt;g;i
n

ð1Þ

yc;g ¼
P

∀iyc;g;i
n

ð2Þ

Table 2 Exonic Regions of Different Read Coverage

Sample ID GEO 0 1~ 10 101~ 102 102~ 103 103~ 104 104~ 105

IP1 GSM1147020 11.77% 7.85% 25.45% 44.4% 10.34% 0.19%

IP2 GSM1147022 17.68% 8.91% 29.24% 35.55% 8.24% 0.38%

IP3 GSM1147024 11.15% 7.94% 26.01% 45.82% 8.94% 0.14%

a b

Fig. 1 Distribution of reads. Figure shows that the reads are strongly enriched near stop codon in the IP sample (a) compared with the input
sample (b), which is an expected pattern of the in an m6A-seq experiment. The enrichment is observed at all 3 different quantiles (25, 50 and
75%). The figure is plotted with metaPlotR R/Bioconductor package [34] via the trumpet package
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ŷt;g;i ¼ yt;g;i=yt;g ð3Þ
ŷc;g;i ¼ yc;g;i=yc;g ð4Þ

where yt;g and yc;g are the average number of reads
mapped to each bin of the g-th gene in the IP and Input
sample, respectively, which are proportional to the abun-
dance of that gene and the sequencing depth (total num-
ber of reads) of sample, and ŷt;g;i and ŷc;g;i are the

enrichment signal and the background signal, respect-
ively, which are normalized by yt;g and yc;g , respectively.

We then pool all the signal fŷt;g;ij∀ðg; iÞg together, and

sort them in an increasing order to obtain a list of order
statistics fŷt;ðiÞg, where ŷt;ðiÞ denotes the i-th element of

fŷt;ðiÞg, which is also the standardized read count of the

bin with the i-th least number of the normalized reads
mapped in fŷt;g;ij∀ðg; iÞg . By this way, the bins that are

enriched with m6A signals are likely to appear in the
end of the list. If we assume that there are a total of N
bins on the transcriptome surveyed in this analysis, then
we should have (i) ∈ {1, 2,⋯,N}. Meanwhile, let fŷc;ðiÞg
be the list of normalized read count of the merged Input
sample that has been reordered to match fŷt;ðiÞg, i.e., let
fŷc;ðiÞg and fŷt;ðiÞg denote the normalized read count of

the same ordinal bin in the Input and IP sample, re-
spectively. The following procedures are similar to the
original SES metrics. We denote the cumulative summa-
tion of fŷt;ðiÞg and fŷc;ðiÞg by.

yt jð Þ ¼
Xj

i¼1

ŷt; ið Þ ð5Þ

yc jð Þ ¼
Xj

i¼1

ŷc; ið Þ ð6Þ

If we consider a total of N bins on the transcriptome
surveyed in this analysis, it is then possible to calculate a
fraction of cumulative immunoprecipitation signal in the
IP sample as pj = yt(j)/yt(N) and also the cumulative
background information in the input sample asqj = yc(j)/
yc(N). Because the bins are arranged in an increasing
order of normalized read count, the bins that are
enriched with m6A signal are likely to appear in the very
end of the list. For this reason, as j increases from 1 to
N, pj should first increases slower than qj before reach-
ing bins absent of m6A and then increases faster than qj
afterwards. Moreover, ∣qj − pj∣, which computes the dif-
ference in the cumulative percentage between IP and In-
put samples, will also first increase from 0 with as j
increases but decrease rapidly once the bins with suffi-
ciently large read count or enriched signals are incorpo-
rated (see Fig. 2). Consistent with the SES approach, the
background component in the IP data can be obtained

by identifying the locations of the bin withk =maxj ∣ qj
− pj∣, where the fraction allocation of reads in the uni-
fied Input sample maximally exceeds that of the IP sam-
ple. The first k bins are then identified as the
background region of IP sample and the bins afterwards
are defined as the regions enriched with the immuno-
precipitation signal in IP sample. We then define the
fraction of regions enriched with signal (k/N) and also
the scale factor (maxj ∣ qj − pj∣) to show the degree of
difference between the IP and Input samples.
The reported ESES metrics on the sample dataset is

shown in Table 3, from which we can see that the
IP2 sample is substantially different from the others
with a much smaller region enriched with signal and
a much larger scale factor.

Assessing the enrichment of m6A signal with C-test
Besides the ESES metrics, the trumpet package also
include a C-test to detect the regions enriched with
m6A signals at different levels. The C-test compares
two Poisson means and is used in the exomePeak
package to predict RNA methylation sites [14]. This
is a more straightforward measurement to elucidate
the statistical difference of the IP and Input samples.
Specifically, only the bins that overlap with more than
10 reads are considered in the analysis, and the pro-
portion of bins that are enriched in the IP sample

Fig. 2 Quality assessment of immunoprecipitation signal with ESES.
In this figure, the black straight line divides IP sample into two parts:
the background (the left-hand side) and the region enriched with
immunoprecipitation signal (the right-hand side). The fraction of
cumulated signal (Faction of Reads) shows the fraction of reads
captured in the corresponding regions, and the difference in
cumulated signals between the IP and Input samples (or the scale
factor) is shown by the two cross-points between the two curves (IP
curve and Input curve) and the black straight line. Please refer to
section “Assessing immunoprecipitation efficiency with ESES” for
more details. Similar to before, we consider here only the genes that
have at least 10 mapped reads. Transcripts with less 10 reads
mapped are considered not readily detected and thus are excluded
from this analysis
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with m6A signal at different fold enrichment thresh-
olds are counted and plotted. It is then possible to
compare the difference between different samples. As
shown in Fig. 3, the C-test detected a major differ-
ence between IP2 and the others, which is consistent
with the previous analysis.

Hierarchical clustering and PCA analysis of samples
Hierarchical Clustering (HC) is then applied to all the
samples for the identification of possible outliers and for
assessing the relative similarity between samples and
groups (if applicable). To eliminate the impact of differ-
ent sequencing depth and transcriptional regulation, the
hierarchical clustering is performed as follows. Let xi, j

represent the number of reads of the i-th bin located on
the exome in the j-th sample. The standardized read
count after eliminating difference in sequencing depth
can be calculated as

y j ¼
XN
i

xi; j

s j ¼
y j

exp
1
N

XN
n¼1

log ynð Þ
" #

~yi; j ¼
yi; j
s j

where yj is the total number of reads in the j-th sample,
sj is the size factor of the j-th sample, and ~yi; jis the stan-
dardized reads count of the i-th bin in the j-th sample.
We can then perform HC and PCA analysis to study the
relationship between different samples, as shown in

Table 3 ESES metrics from the sample dataset

Sample
ID

GEO Percent of Region Enriched with
Signal

Scale
Factor

IP1 GSM1147020 13.23% 0.24

IP2 GSM1147022 11.93% 0.4

IP3 GSM1147024 13.62% 0.22

We can see that the second IP sample (IP2) is substantially different from the
other samples, which is consistent with the previous results. Reads are down-
sampled to 10 million for a fair comparison among all the samples

Fig. 3 Assessing the enrichment of m6A signal with C-test. Figure
shows that around 2.5% of regions are enriched with reads in the IP
samples with fold enrichment larger than 2.5 and a major difference
between the IP 2 sample and the other samples is observed in their
respective enrichment profiles, which is consistent with the previous
analysis (see Tables 1, 2 and 3)

a

b

Fig. 4 Hierarchical clustering and PCA analysis of the samples.
Hierarchical clustering and PCA analysis is performed to show
relative similarity of the samples. As shown in Fig. 4, the IP2 sample
is more different from the other samples based on both hierarchical
clustering analysis (a) and PCA analysis (b). The analysis of samples
were performed based on the normalized reads counts of all the
bins in the transcriptome in R. Specifically, the hierarchical clustering
is implemented with hclust command based on Euclidean distance
and the default setting; while the PCA analysis is implemented with
the prcomp function in the stats R package
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Fig. 4. Please note that this is a bin-based analysis, where
the association between bins and genes is not used.

Gene-specific heterogeneity of read coverage
In practice, the aligned reads are not evenly distrib-
uted on the same gene. In the IP sample, heterogen-
eity of read coverage may be generated from the
enrichment signal around the true methylation sites,
which may be complicated due to isoform ambiguity,
or some possible bias and artifacts due to PCR
process. Compared with the IP sample, the coverage
is more flat in the input sample. The gene-specific
heterogeneity of read coverage is assessed in the
trumpet package with the mean and standard devi-
ation (SD) of read count in each gene of each sample.
Specifically, let yj, g, i be the read count of the i-th
bin on the g-th gene in the j -th IP sample, and y j;g
and SDj, grepresent the average number of reads
mapped to the bins on theg-th gene in the j-th IP
sample and its standard deviation. We then use a
local regression to fit a curve between y j;g and SDj, g

for ∀g. As shown in Fig. 5, the IP2 sample has the
largest heterogeneity in the read coverage, suggesting
that it is quite different from the other samples,
which is consistent with our previous results.

Replicates are usually expected to exhibit similar pat-
terns, and this is especially true if the pattern is a ro-
bust pattern obtained by summarizing from signals in
the entire transcriptome. If a sample is quite different
from the other replicates, it is probably worthwhile to
investigate the cause of it. Additionally, compared
with the unified input sample (generated by merging
all the input samples under that condition), the IP
samples should have much larger heterogeneity, be-
cause the IP samples contain additional enrichment
signals and are generated with a more complex pro-
cedure that may introduce additional noise.

Sample consistency and reproducibility
This metric is used to assess the degree of difference
between multiple biological replicates. In order to
eliminate the difference in sequencing depth between
theses biological replicates, we first normalize the
read count of the each bin in each sample. The
normalization method is the same as the hierarchical
clustering analysis detailed in Section “Hierarchical
clustering and PCA analysis of samples”. Let ~yi; j be

the standardized read counts of the i-th bin in the
j-th sample. Also assume that we have multiple bio-
logical replicates (j ∈ {1, 2,⋯, J}) obtained from the
same experimental condition. Then, the mean and
standard deviation of the read counts of the same bin
across different samples can be calculated as:

μi ¼
1
J

XJ

j¼1

~yi; j

si ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX J

j¼1
~yi; j−μi

� �2
r

1ffiffiffiffiffiffiffiffi
J−1

p

It is possible to fit the variables with a local regression
curves to show the consistency between different sam-
ples, or compare the reproducibility of the samples ob-
tained from different conditions.

Results
We included in the following 4 case studies to show
that: (a) There exists increased variability in the RNA
methylation level due to gene knock down operation;
(b) Different immunoprecipitation efficiency is ob-
served on datasets using antibodies from different
companies, (c) The RNA m6A methylation level of
U2OS cell line is relatively high compared with other
cell line, (d) m6A-seq is enriched near stop codon
while m1A is enriched on 5’UTR.

Fig. 5 Gene-specific heterogeneity of read coverage. The IP2 sample
has the largest heterogeneity in read coverage, while the other two
IP samples are quite similar. This is consistent with our previous
results, which suggest that IP2 sample may be problematic (see
Tables 1, 2 and 3 and Figs. 3 and 4)
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Gene knock down induces additional variability among
replicates
In this example, we compared the m6A-seq samples ob-
tained under wild type and FTO knock down condition
[10, 11] in terms of sample consistency and reproduci-
bility (see Section “Sample consistency and reproducibil-
ity”). As shown in Fig. 6, the samples obtained under
FTO knock down condition show higher within-group
variability compared with those obtained under the
wild-type condition, suggesting the FTO knock down
process induced additional variability among the sam-
ples. Direct comparison of two groups of samples is sup-
ported by trumpet package.

Failure to capture enrichment signal in lowly expressed
genes
In this example, we considered reads distributions of the
m6A-seq samples profiling the m6A epitranscriptome in
HEK293T using anti-m6A antibodies made from different
companies (SYSY and NEB) [4] (see section “Visualization
of reads distribution”). In order to eliminate the impact of
different sequencing depth of the samples, down-sampling
of the m6A-seq samples to 10 million mapped reads was
first performed before further analysis. As shown in Fig. 7,
the enrichment of reads near the stop codon can be ob-
served for the highly expressed genes (corresponding to
75% quantile blue curve) in all 3 samples, suggesting that
all 3 samples no matter which the antibody was made cap-
tured the m6A signal. The m6A signal can still be readily
observed on relatively lowly expressed genes (correspond-
ing to 25 and 50% quantile green and red curves) in the
two SYSY samples, but not in the NEB sample, suggesting
NEB sample suffers from potential artifacts. One possible
explanation is that there was insufficient amount of RNA in
the NEB sample. Because the input material did not contain
a large variety of RNAs, the sequencing data thus failed to
capture the m6A signal in lowly expressed genes. Please
note that all the samples here were from the same study,
were generated by the same protocol, had the same number
of reads after down-sampling, and profiled the same cell
type (HEK293T).

Comparison of the m6A signal in different cell types
In this example, we compared the m6A signal detected
in different cell types. The raw data was downloaded
from published studies [4, 15–18] profiling the m6A epi-
transcriptome in different cell types, including A549,
embryo stem cell (ESC), HEK293T, HeLa, neural pro-
genitor cells (NPC), fibroblasts and U2OS. Under the
default setting of the trumpet R package, the U2OS cell
line is reported to have the largest percentage of regions
enriched with m6A signal, suggesting the m6A

Fig. 6 Comparing the sample reproducibility. The samples obtained
under wild type condition shows obvious higher reproducibility
compared with those obtained under FTO knock down condition,
which requires additional operations that may account for the
increased variability in samples

5'UTR CDS 3'UTR 5'UTR CDS 3'UTR 5'UTR CDS 3'UTR
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Fig. 7 Reads distribution in samples using antibody from different companies. The m6A signal can still be readily observed on lowly expressed
genes (corresponding to 25 and 50% quantile green and red curves) in the two SYSY samples, but not in the NEB sample, suggesting NEB
sample suffers from some artifacts
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methylation level is relatively high in this cell line, as
shown in Fig. 8.

Assessing m1A epitranscriptome sequencing data
Besides m6A-seq data, the trumpet package can also be
applied to other affinity-based fragmented RNA immu-
noprecipitation sequencing data, such as m1A-seq [19]
and PSU-seq [20]. As an example, we applied trumpet
package to the m1A-seq dataset profiling the m1A epi-
transcriptome in HEK293T cell line [19], and compared
this dataset with the m6A-seq data obtained from the
same cell line [4].
As shown in Table 4, there exists distinct difference

between m1A-seq and m6A-seq, the less abundant m1A
modification is enriched in 7–8% of regions, while the
more abundant m6A modification is enriched in 14.5%
of region. The scale factor of the m1A-seq samples are a
lot larger compared with that of m6A-seq.
Additionally, the reads in the IP sample of m1A-seq

data is enriched in the 5’UTR, which is consistent with
the known distribution of m1A modification. However,
similar to case study 2, m1A signal was not observed for
very lowly expressed genes (see Fig. 9).

Typical metric values obtained on published datasets
The trumpet package reports a few metrics related to the
quality of m6A-seq data, including notably, the scale factor,
enriched regions, and signal read counts. However, due to
the lack of a gold standard dataset and the variable m6A
methylation level in different cell types, tissues and condi-
tions, it is difficult to assert whether a dataset is of reason-
able quality even provided with those metrics. To provide a
global assessment of the m6A data quality, we collected 61
m6A-seq IP samples together with 59 corresponding Input
samples from recent high impact studies [4, 15–18] and
calculated these metrics as the positive control for refer-
ence; meanwhile, a number of m6A-seq samples of ques-
tionable data quality are generated by sample swapping, i.e.,
treating IP samples as input samples, or input samples as
IP samples. As shown in Fig. 10, the metrics obtained on
data of good quality (IP/Input) shows distinct pattern com-
pared with those of poor quality (generated by sample
swapping, i.e., IP/IP, Input/IP, and Input/Input). The ranges
of these metrics for good quality samples are as follows;
enriched region:12%~ 25%), scale factor: 0.08~ 0.3, and sig-
nal reads count: 87%~ 95%.

Conclusion
An open source R package is developed for m6A-seq
data quality control. With detailed documentation and
the metrics of 61 datasets obtained from existing studies,
it is possible to evaluate whether a new dataset is of rea-
sonable quality. Although originally developed for the
quality assessment of m6A-seq data, the trumpet pack-
age is equally applicable to other fragmented RNA im-
munoprecipitation sequencing techniques [14],
including m1A-seq [19], CeU-Seq [21], Ψ-seq [22] and
hMeRIP-seq [17], and may facilitate various epitranscrip-
tome analysis, such as, site detection [23], differential
methylation [24, 25], epitranscriptome module detection
[26–28], network-based analysis [29], etc. [30, 31].
Nevertheless, it is worth mentioning that there are some
general data quality metrics not covered by trumpet,
e.g., reads quality, PCR artifacts, adaptor contamination,
GC bias, etc., which should be assessed in the data ana-
lysis pipeline by other existing quality assurance software
tools, such as, FastQC [5] and Qualimap [32].
Additionally, the gene annotation required by the

trumpet package may still affect the metrics. Larger
gene annotation databases may report more reads

Fig. 8 The percentage of regions enriched with m6A signal in
different cell types. U2OS cell line has the highest proportion of
regions enriched with m6A signal, while Fibroblast has the lowest

Table 4 Comparison of m1A-seq and m6A-seq with ESES metrics

Modification Type Technique Sample ID Region enriched with Signal Scale Factor

m1A m1A-seq Rep1 7.01% 0.66

Rep2 8.62% 0.6

m6A m6A-seq Rep1 14.48% 0.1
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aligned to the exonic regions compared with smaller
gene annotation database, and the ESES enrichment
metrics can also be slightly affected (see Additional file 2:
Table S1-S4). It is important to use similar gene annota-
tion database for comparison purpose. By default, the
UCSC gene annotation can be downloaded automatically
from the internet from the trumpet package. Since the
majority m6A-seq samples are constructed from polyA
selected RNA libraries, only the exonic signals mapped
to mRNA will be used, and the intronic signals are dis-
carded from the analysis. In case it is desirable to
analyze intronic signals or the RNA methylation on
pre-mRNA, the library should be constructed from
ribo-minus RNA library, and a gene annotation database
including pre-mRNA should be constructed and pro-
vided to trumpet. From a computational perspective,
pre-mRNA is no difference from an isoform

transcript; however, the analysis performed will be af-
fected by added transcriptome complexity and add-
itional intronic regions with relatively lower
signal-to-noise ratio. Another concern is from the
rRNA. In theory, rRNA should not exist in the
m6A-seq library when the two popular protocols, i.e.,
polyA selected or ribo-minus library, are used, and as
a result, the trumpet package did not specifically test
the impact of rRNA annotations on the m6A-seq data
quality. As shown in Additional file 2: Table S1-S3,
the amount of rRNA in m6A-seq data is likely to be
very small; however, in practice, it may be still pos-
sible to see m6A-seq data targeting rRNAs, because
the existence of RNA modifications on rRNA has
been well established and their functions are often of
interests [33]. The trumpet package should be used
with extra caution in such cases because when the

5'UTR CDS 3'UTR 5'UTR CDS 3'UTR 5'UTR CDS 3'UTR

IP1 IP2 Input
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Fig. 9 The reads distribution on m1A-seq data. The reads in the IP sample of m1A-seq data is enriched at 5’UTR, consistent with the distribution
of m1A modification. The reads in the Input control sample are relatively evenly distributed and slightly enriched near start codon and stop
codon. It is unclear whether this pattern is related to the experiment protocol

a b c

Fig. 10 Reasonable ranges of metrics. The 3 major metrics, i.e., the percentage of enrichment region, scale factor and percentage of signal read
counts, are calculated on data from recent high impact studies, representing data of reasonable good quality (IP/Input) and from data of poor
quality generated by sample swop. Specifically, the Input samples are replaced with IP samples from other condition in IP/IP group, the IP
samples are replaced by Input samples from other condition in Input/IP group, and the Input and IP samples are swopped in Input/Input group.
The datasets of reasonable quality shows quite different pattern compared with other groups. The reasonable ranges of the enriched region,
scale factor and signal reads count are 12%~ 25%, 0.08~ 0.3 and 87%~ 95%, respectively
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rRNA is highly abundant and it would dominate the
evaluation metrics.
Due to a lack of gold standard m6A-seq datasets,

we can only assess the relative data quality by com-
paring among samples without being able to deter-
mine with certain the true quality of data. It is thus
necessary to generate gold standard datasets with
carefully designed experiments or from using higher
precision and higher resolution alternative technology
such as miCLIP.

Additional files

Additional file 1: Source code of the trumpet R package. (ZIP 2229 kb)

Additional file 2: Supplementary Material (including Table S1-S4) for
trumept. (DOCX 21 kb)
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