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Abstract

biological samples.

Background: Component-based structural equation modeling methods are now widely used in science, business,
education, and other fields. This method uses unobservable variables, i.e, “latent” variables, and structural equation
model relationships between observable variables. Here, we applied this structural equation modeling method to
biologically structured data. To identify candidate drug-response biomarkers, we first used proteomic peptide-level
data, as measured by multiple reaction monitoring mass spectrometry (MRM-MS), for liver cancer patients. MRM-MS
is a highly sensitive and selective method for proteomic targeted quantitation of peptide abundances in complex

Results: We developed a component-based drug response prediction model, having the advantage that it first
combines collapsed peptide-level data into protein-level information, facilitating subsequent biological interpretation.
Our model also uses an alternating least squares algorithm, to efficiently estimate both coefficients of peptides and
proteins. This approach also considers correlations between variables, without constraint, by a multiple testing problem.
Using estimated peptide and protein coefficients, we selected significant protein biomarkers by permutation testing,
resulting in our model for predicting liver cancer response to the tyrosine kinase inhibitor sorafenib.

Conclusions: Using data from a cohort of liver cancer patients, we then “fine-tuned” our model to successfully predict
drug responses, as demonstrated by a high area under the curve (AUC) score. Such drug response prediction models
may eventually find clinical translation in identifying individual patients likely to respond to specific therapies.

Keywords: Biomarkers, Component-based structural equation modeling, Drug response, Liver cancer, Multiple reaction
monitoring mass spectrometry (MRM-MS), Prediction model, Sorafenib

Background

Liver cancer (hepatic cancer), is predominantly found in
the tissue parenchyma, and is thus known as hepatocel-
lular carcinoma (HCC), the most common form of liver
cancer in adults. HCC can exert different growth pat-
terns from one tumor to the next [1, 2]. In Eastern Asia,
HCC is the third-most common form of cancer, and the
second-leading cause of cancer death, with a worldwide
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total of 600,000 deaths each year [3, 4]. However, as
many treatment methods have been developed for treat-
ing HCC, overall, these have shown little benefit in im-
proving patients’ prognosis [5]. More efficient treatment
of HCC may lie in “personalized medicine,” i.e., tailoring
therapies for individual patients [6]. Such ability to clas-
sify HCC patients, with therapies optimized for specific
stage and growth patterns, would reduce time and cost,
and likely prolong survival.

Toward that objective, accurate prediction models are
essential. Historically, methods of building cancer pre-
diction models were based on the classification methods
of linear/logistic regression, support vector machine, or
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random forest [7—9]. While these models are effective
for prediction, they do not consider any structural or
hidden biological data, making it difficult to derive more
meaningful biological interpretation.

Here, we built a drug response prediction model, by
identifying candidate protein biomarkers, via multiple
reaction monitoring-mass spectrometry (MRM-MS)
technology. MRM-MS is a targeted proteomics technol-
ogy that is highly selective and sensitive for quantitating
targeted proteins or peptides in biological samples [10,
11]. MRM-MS can also measure several hundred protein
targets per sample, simultaneously, generating consist-
ent, precise, and reproducible datasets [12]. Conse-
quently, MRM-MS holds high potential for biomarker
discovery. Unlike other protein data, MRM-MS data is
hierarchically structured.

Following mass spectrometry, our MRM-MS data con-
sisted of 231 peptides, from 124 proteins, with each pro-
tein containing >1 peptide. While classical methods for
prediction model building only select the best peptides
as variables, to optimize prediction performance, these
do not consider any biological relationship between pep-
tides and proteins.

In this study, we built a drug response prediction
model, using a component-based structural equation
modeling method, based on the biological structure of
MRM-MS data (e.g., peptide to protein). Structural
equation modeling (SEM) is used to analyze the struc-
tural relationship between unobserved (latent) variables
and observed variables. SEM can be classified as factor
based SEM and component based SEM. Confirmatory
factor analysis (CFA) and partial least squares path mod-
eling (PLS-PM) analysis are the most popular methods
of factor based SEM and component based SEM, re-
spectively [13]. Our proposed model is based on general-
ized structured component analysis (GSCA) [14],
resembling our earlier derivation of a pathway-based ap-
proach. That analysis, using hierarchical components of
collapsed rare variants (PHARAOH), uses a hierarchical
structure of pathways and genes [15].

Using latent variables, we can collapse multiple pep-
tides into a structured form of proteins that they com-
prise of, providing more feasible biological explanations
of the results. In addition to hierarchical structure, we
further showed that HisCoM effectively cover
protein-level analysis, taking all peptides into account
simultaneously. Moreover, for real biological data ana-
lysis, using MRM-MS, we discovered possible protein
biomarkers associated with patients’ response to the
multiple tyrosine kinase inhibitor sorafenib (Nexavar®)
[16]. Sorafenib is known as effective and safe drug for
recovering liver cancer (hepatocellular carcinoma) pa-
tients not only Asian-Pacific region but also in the North
American region [17, 18]. Using these protein
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biomarkers, we then evaluated the performance of our
drug response prediction model. Additionally, we com-
pared the performance of our prediction model, using
area under the curve (AUC) scores, to performances by
generalized linear models of logistic regression, without
ridge parameters, and logistic regression, with ridge pa-
rameters. Furthermore, through extensive simulation
studies, we compared the performance of our proposed
method with other logistic regression methods. For hier-
archical structuring, in this case, for proteins with mul-
tiple peptides, our HisCoM was shown to perform better
than logistic regression, as assessed by AUC scores.

Methods
Preparing samples and materials
Hepatocellular carcinoma (HCC) patient serum samples
(n=115) were collected at Seoul National University
Hospital, from 2013 to 2015 [19]. Upon diagnosis of
liver cancer, patients were placed on a regimen using the
tyrosine kinase inhibitor Sorafenib (Nexavar®, Bayer, Inc.,
Whippany, NJ, USA). Patients’ tumor sizes were first ex-
amined immediately following HCC diagnosis, at the
start of hospital admission. Six weeks after first diagnosis
(sufficient time to see a response), patients’ tumors were
again measured, by contrast-enhanced computed tomog-
raphy or magnetic resonance imaging, and staged
according to the standardized Modified Response
Evaluation Criteria in Solid Tumors (mRECIST) [20].
After the second examination, patients were divided into
two groups, based on positive and negative drug re-
sponses. The positive drug response group consisted of
patients with complete response (CR), partial response
(PR), or stable disease (SD), according to mRECIST [20].
CR and PR responses were diagnosed when the tumor
size was reduced after 6 weeks. Also, SD was diagnosed
when the size of the tumor remained stable, from the
first to second visit. On the other hand, the negative
drug response group consisted of patients with progres-
sive disease (PD), wherein the size of their tumors in-
creased, from first diagnosis to 6 weeks later. The study
protocol was approved by the Institutional Review Board
of Seoul National University Hospital (IRB No. 0506—
150-005), and written, informed consent was obtained
from each patient or legally authorized representative.
Among all 115 patients (101 men and 14 women), 40 pa-
tients (37 men and 3 women) were grouped into the posi-
tive drug response group, and 75 (64 men and 11 women)
were grouped into the negative drug response group. From
each patient’s serum, data for 231 peptides was generated
by multiple reaction monitoring mass spectrometry
(MRM-MS), a highly sensitive and selective method for tar-
geted quantitation of peptide abundances, in complex bio-
logical samples [21]. Here, the 231 peptides can represent
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124 proteins. Since the MRM-MS technique measures the
quantity of targeted peptides in patients’ serum, we used
the log2-transformed ratio of light peptide intensity to
heavy peptide intensity. Light peptide intensity represented
the quantity of peptides from specific patient’s blood, as
measured by MRM-MS, while heavy peptide intensity rep-
resented the quantity of artificially built, same sequences as
the light peptides, but using heavier isotope elements, also
as measured by MRM-MS. The software Skyline was used
to measure the intensity of light and heavy peptides by
MRM-MS [22]. Demographic information, such as age and
sex, were also available. The range of age varied from 34 to
84, with 101 male and 14 female samples.

Constructing the drug response model

The overall schematic procedure is shown in Fig. 1. At
the beginning, we selected protein level biomarkers by
HisCoM method with 1000 permutation test, for pos-
sible prediction of sorafenib response, using MRM-MS
data. Second, we constructed prediction models, via a
component-based structural equation-modeling method.
Finally, we evaluated the constructed drug response pre-
diction models’ performances, by AUC scores.

An example of our proposed drug response prediction
model is shown in Fig. 2. This model combines collapsed
peptide-level MRM-MS data into protein-level informa-
tion, and efficiently estimates both peptide and protein
coefficients. In this example, two proteins were involved
(K'=2), and each protein consisted of two or three pep-
tides (T =2 and 3). Weight (w) and path coefficients (5)
were estimated using alternating least squares [23].

Here, suppose that there are K proteins, and the k™
protein contains T peptides, for k=1,...,K. To estimate
parameters, the following penalized log likelihood
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function was maximized. The y; represent the drug re-
sponse group, based on mRECIST: y; = 0 for a negative
response, and y; = 1 for a positive response. Let y; is
distributed independently with a mean of y4; = E[y;] and
#7; is defined as #; = g(y;) by a logit link function g. Then,
we can derive a penalized log likelihood function with
dispersion parameter § and canonical parameter y; as
following:

N 1 K Ti 1 K
P1 = Z lOgP<yj;Yi:5)_§/1pepZZWit_EAprot Zﬁ%
=1 k=1 t=1 k=0
(1)

Here, A and A, are the ridge parameters for pro-
teins and peptides represent as “tuning” parameters, re-
spectively: one for the peptides within a protein and the
other for the proteins themselves.

Let wy = [wig, -5 wir ], B = [Bo, Bv 5 Bl F=[fv 5 fuls
and f; = [1, f, -5 fix] where fjk = ZtT:kl KW . We
define x;,as the quantity of i peptide of the K protein
in sample j. The wy; as a weight coefficient of i™ peptide of
the K protein. Also, the S as a path coefficient of K" pro-
tein. Maximizing the eq. (1), via iteratively reweighted
least squares, is identical to minimizing the follow-
ing penalized least squares eq. (2):

N X 2 K Ty K
9= ( Zf,kﬁk> oy D23 W+ s 3B
j=1 k=0 k=0

k=1 t=1

K
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After estimating the wy; and S coefficients, we con-
structed a drug response prediction model for ;=
Plyj=1] =p;, as follows, after standardization of x;
The coefficients of age and sex are also estimated by
maximizing the log-likelihood function simultaneously
while penalizing the coefficients of peptides. In our

N diagonal matrix with elements v; =

final prediction model, the beta coefficients of age
and sex are fixed across the individuals.

log(

j

) =B+ (Z x/ki"’ki) Bi + AGE B, + SEX B,
k i

(3)
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When our final drug response prediction model was
constructed, we evaluated its performance by area under
the receiver operating characteristic curve (AUC) score,
based on the training, validation, and test sets. The ap-
proach for separating the training set from the validation
and test sets, is depicted in Fig. 3. First, we then randomly
selected 39 out of 115 samples (35 men and 4 women) as
a test set, excluded from the modelling process, while
assessing the remaining 76 samples. This test set will be
used to measure the performance of our final drug re-
sponse prediction model. The ratio of positive responses
to negative responses was sustained (14 positive responses
and 25 negative responses). The range of age in test set
was distributed from 41 to 84. The remaining 76 samples
were randomly (without replacement) divided into train-
ing and validation set. For a fair comparison, the ratio of
positive responses to negative responses was retained (13
positive responses and 25 negative responses). The con-
cept of a sample separation process was based on a previ-
ously developed intraductal papillary mucinous neoplasm
(IPMN) patient prediction model [26].

Lastly, our drug response prediction model was com-
pared to the generalized linear model with a binary re-
sponse (GLM), and the generalized linear regression
with a binary response via ridge parameter (GLMwR)
methods. All the analyzes were calculated and computed
via software R (Version R 3.2.3) [27].

Simulation design

For the simulation study, we designed two models: the
first model composed of two significant proteins and the
second model with both significant and nonsignificant
protein in the presence of a hierarchical structure of
MRM-MS data (e.g., peptide to protein). Let the first
simulation model contain JCHAIN and RBP4 with param-
eters estimated by HisCoM. Note that JCHAIN was a sig-
nificant protein (p-value: 0.0142), with 3 peptides, and
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Table 1 P-values for our 6 candidate biomarkers: APOC4,
CD163, CDSL, JCHAIN, SERPINGT, and RBP4, based on MRM-MS
data

Protein P-value
APOC4 0.0061
CD163 0.0112
CD5L 0.0031
SERPING1 0.0102
JCHAIN 0.0142
RBP4 0.0031

RBP4 was also a significant protein (p-value: 0.0031), with
2 peptides. The simulation model is given by

) =B+ (Z xjt‘“’t‘)ﬁ]@/ + (Z xiiwi>ﬁRET4

T
1 J
% (1_”1
+AGE B, + SEX B,
(5)

For the Simulation model 2, we assume the true model
contains RBP4 and APOA1, with parameters estimated
by HisCoM. Note that RBP4 was a significant protein
(p-value: 0.0031), with 2 peptides, and APOA1 was a
nonsignificant protein (p-value: 0.4794), with 7 peptides.
The second simulation model is given by

2 9
.
log (ﬁ) =B+ (Z x,iwi> Prera + (Z xﬂ‘“’l‘) Baron
J i=1 =3

+AGE B, + SEX;

age sex

(6)

In this case, x; ; represents the j* individual’s peptide
data (xj1, %2, ***» %jo). From the estimated fs and ws,

Protein: SERPINF2
a
0 _| Beta: 0.0546
2 9
2 =
c
)
o
o -
© ( ]
I I I
0.00 0.05 0.10
Distribution of beta coefficient
the estimated path coefficient of the protein

Fig. 4 Estimation of beta coefficients (path coefficients) for each protein example. a non-significant proteins; b significant proteins. Red dot indicates

Protein: CD5L
b

Beta: 0.503

Density

00 01 02 03 04 05
Distribution of beta coefficient




Kim et al. BMC Bioinformatics 2018, 19(Suppl 9):288

Table 2 AUC score comparison between HisCoM, GLM, and
GLMwR drug response models using single candidate protein
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Table 3 AUC score comparison between HisCoM, GLM, and
GLMwR drug response models using double candidate proteins

Protein HisCoM GLM GLMwR Protein HisCoM GLM GLMwR
APOC4 0617 0611 0611 APOC4_CD163 0.851 0.837 0.837
D163 0.697 0.703 0.697 APOC4_CD5L 0.886 0.851 0.880
CD5L 0.860 0.883 0.897 APOC4_SERPINGT 0.834 0.871 0.846
SERPINGT 0.837 0.857 0.846 APOC4_JCHAIN 0.886 0814 0.897
JCHAIN 0717 0.709 0.700 APOC4_RBP4 0.786 0.794 0.789
RBP4 0.803 0.829 0.826 CD163_CD5L 0.866 0.883 0.897
CD163_SERPING1 0.894 0917 0914
CD163_JCHAIN 0731 0731 0.729
derived from the data, we estimated 7y, 75,-*, 7115 COTO3RAEP 0900 0850 0889
Then, the responses were generated from the Bernoulli CDSL_SERPINGI 0923 0923 0934
distribution B(1, ), for j=1, 2, -+, 115. We then con- ~ CP>LJCHAN 0854 0931 0886
structed HisCoM, GLM, and GLMwR drug response  CD5L_RBP4 0917 0937 0926
prediction models, using MRM-MS peptide data  SERPINGT_JCHAIN 0.940 0943 0.946
(%1, %72+, %}, o), to generate response variables. For each  srppinGT Repa 0871 0891 0897
simulation model, we measured the AUC score. Using the JCHAIN_ RBP4 0929 0011 0931

same estimated values of 7y, 7y, -+, 7115, we repeated the
whole process 1000 times, and obtained 1000 AUC
scores for each of the HisCoM, GLM, and GLMwR
models. We then calculated the mean of the 1000
AUC scores, based on those models.

Results

Biomarker discovery for the drug response prediction
model

To evaluate our model, at the beginning, we randomly se-
lected 39 out of 115 samples, as a separate, test set, to
evaluate the overall performance of the final drug re-
sponse prediction model. We performed cross-validation
analysis using remaining 76 samples. The dataset was ran-
domly divided into training/validation sets (38 samples for

each set). From the training data set, the significant pro-
teins were selected based on p-values. Then the prediction
model was build, and its AUC score was computed from
the validation set. We repeated this cross-validation 100
times. Through 100 cross-validation, we evaluated
whether the significant proteins were selected repeatedly
by HisCoM. Also, using the estimated path coefficients by
training set, we evaluated the performance of the predic-
tion model from the validation set.

The significances of the protein path coefficients were
then determined, using a 1000 permutation test, for each
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Fig. 5 AUC score comparison between HisCoM, GLM, and GLMwR drug response prediction models using single candidate protein
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Fig. 6 AUC score comparison between HisCoM, GLM, and GLMwR drug response prediction models using double candidate proteins

replicate. The permutation test was performed by shuf-
fling drug response variables randomly across subjects
while retaining the ratio of positive response to negative
response and then estimating the path coefficients.
Using path coefficients estimated by 1000 permutation
test, we construct distribution of each protein’s path
coefficient. Through comparing the path coefficient value
of the original data with those from the permuted data,
p-values were computed for each protein, with the signifi-
cant (P < 0.05) ones being selected for further analysis.

Figure 4 shows the null distribution of path
coefficients (f5x), derived from 1000 permutation tests.
Figure 4a show the case of non-significant protein,
while the Fig. 4b does the case of significant protein.
The red dots indicate the estimated path coefficients
from the data. In our analysis, the path coefficients
(Bx) of six proteins were significant.

During the processing of the training/validation sets,
with 76 samples, we repeated this process 100 times, to
check the consistency of possibly significant proteins.
Since our method uses two ridge parameters, we defined
the same tuning parameter values as 10 for peptides and
proteins, for computational efficiency. As a result, we se-
lected the top 6 significant proteins (APOC4, CD163,
CD5L, JCHAIN, SERPINGI, and RBP4), which were re-
peatedly selected as significant by the process of 100
replications. We noted that these six proteins were pre-
viously identified as possible proteomic biomarkers, for
hepatocellular carcinoma [28-30].

We then repeated the process once more, with only
those 6 proteins, as MRM-MS data, for more accurate
estimation of p-values and path coefficients, for the drug
response prediction model. We next calculated p-values
and path coefficients. In Table 1, p-values are shown for
the six selected proteins.

Using the selected 6 proteins, we constructed a drug
response prediction model, with estimated w and S

values. We also constructed different prediction models,
limiting the number of proteins. In this case, we con-
structed models using 1 of the 6 proteins, 2 of the 6, 3
of the 6, and all six. For all these models, age and sex
were considered as covariates (see eqs. 3 and 4, below).
All the analyzes were calculated and computed via soft-
ware R (Version R 3.2.3) [27].

Table 4 AUC score comparison between HisCoM, GLM, and
GLMwR drug response models using triple candidate proteins

Protein HisCoM GLM GLMwR
APOC4_CD163_CD5L 0.920 0.883 0.920
APOC4_CD163_SERPINGT 0.880 0.886 0877
APOC4_CD163_JCHAIN 0917 0.89%4 0914
APOC4_CD163_RBP4 0.886 0.866 0.874
APOC4_CD5L_SERPINGT 0.920 0.937 0.931
APOC4_CD5L_JCHAIN 0.920 0.891 0.926
APOC4_CD5L_RBP4 0.897 0.886 0.906
APOC4_SERPING1_JCHAIN 0.946 0.960 0.943
APOC4_SERPING1_RBP4 0.877 0.863 0.869
APOC4_JCHAIN_RBP4 0.920 0.866 0.929
CD163_CD5L_SERPINGT 0.940 0.923 0.949
CD163_CD5L_JCHAIN 0.869 0.929 0914
CD163_CD5L_RBP4 0951 0.943 0.949
CD163_SERPING1_JCHAIN 0957 0957 0.954
CD163_SERPING1_RBP4 0.923 0.929 0911
CD163_JCHAIN_RBP4 0.954 0.909 0.954
CD5L_SERPING1_JCHAIN 0923 0937 0.940
CD5L_SERPING1_RBP4 0.946 0.957 0.949
CD5L_JCHAIN_RBP4 0.943 0.937 0.940
SERPINGT_JCHAIN_RBP4 0.946 0.943 0.943
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Model evaluation by AUC results

With the selected proteins, we first constructed a sorafe-
nib drug response prediction model given in eq. (4),
using HisCoM. The performance of the drug response
prediction models was measured by AUC scores. In this
case, the numbers k and i varied, depending on the
number of proteins in the model.

Table 2 shows the AUC score of our single protein
prediction model, compared to a corresponding the
generalized linear model with a binary response
(GLM), and the generalized linear model with a bin-
ary response via ridge parameters (GLMwR). The per-
formance of the single protein prediction models
showed similar AUC scores, across all three different
statistical methods, while the AUC scores, for each
individual protein, varied from 0.60 to 0.90. Figure 5
provides a visual comparison of AUC scores, by dif-
ferent single protein statistical models.

The prediction model, using 2 of the 6 proteins, had
higher AUC scores, compared to the single protein
models, across all three different statistical methods.
Table 3 shows the AUC scores for the models with 2 of
the 6 proteins. The AUC scores across each statistical
model varied from 0.73 to 0.95, higher than those for
the single protein prediction models. Figure 6 shows a
visual comparison, of AUC scores, by different
two-protein statistical models. The HisCoM’s AUC score
was similar to those of GLM and GLMwR, but had
higher performance or lower performance, depending on
the combination of proteins. The best performing pro-
tein combination, across each HisCoM, GLM, and
GLMWR statistical model, was the combination of SERP-
ING1 and JCHAIN.

Similarly, most of the prediction models, with 3 of the 6
proteins, scored higher than 0.9 AUC, using all three mod-
eling methods. Table 4 shows the AUC scores for each
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model using exhaustive combinations of the three proteins,
varying from 0.86 to 0.95. Figure 7 shows a visual compari-
son of AUC scores, by different 3-protein statistical models.

Using all 6 proteins, we also constructed HisCoM drug
response prediction models, with estimated w and f as
the covariates age and sex, respectively. In Fig. 8, the
AUC score for our HisCoM model was 0.96, using the
validation set. At first, we tried to compare our predic-
tion model to the generalized linear model with a binary
response. However, the latter had a convergence prob-
lem, due to high correlation among peptides, as shown
in Fig. 9. To resolve this problem, we fit the logistic re-
gression model with a ridge penalty, using the
“GLMNET” R Package. The result is shown in Fig. 8,
and the AUC score for the generalized linear model with
a binary response via ridge parameter (GLMwR), was
0.949, using the same validation set. As a result, our His-
CoM had a slightly better AUC score (0.96), compared
to that of GLMwR (0.949).

Simulation results

The performance of Simulation model 1 (JCHAIN + RBP4)
results, the mean AUC scores of HisCoM, GLM and
GLMwR are shown in Table 5. The mean AUC score of
HisCoM was 0.8362. Figure 10 shows the range of 1000
AUC scores, as depicted by box plots, with respect to
each statistical method. It shows that the HisCoM
performed better than others. The performance of
Simulation model 2 (RBP4 + APOA1) results, the mean
AUC scores of HisCoM, GLM and GLMwR, are shown

in Table 6. These results show that HisCoM had the
highest mean AUC score, compared to the two other
statistical methods. The mean AUC score of model 2 by
HisCoM was 0.7270, while the means of the other stat-
istical methods were less than 0.7. Also, Fig. 11 shows
the range of 1000 AUC scores, as depicted by box plots,
with respect to each statistical method model.

In summary, both simulation model results show that
HisCoM was the best performing model, compared to
the other statistical methods, when there exists a hier-
archical structure of MRM-MS data (e.g., peptide to
protein).

Discussion

In this study, we developed a prediction model for
tumor response to the multiple tyrosine kinase inhibitor
sorafenib (Nexavar®), for liver cancer patients [16], using
a component-based structural equation modeling
method. We used HisCoM to construct the model, for
Korean hepatocellular carcinoma (HCC) patients, using
MRM-MS proteomic data, including some demographic
variables. HisCoM fit the whole data set at once. In this
case, we measured 231 peptides’ weights, and 124

Table 5 Mean AUC scores of HisCoM-based Simulation model 1

Methods Mean AUC
HisCoM 0.8362
GLM 0.8142
GLMwR 0.8018
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protein’s path coefficients, to the drug response variable,
all at once. The positive or negative drug response vari-
ables were defined by tumor responses according to
mRECIST [20]. Thus, this model can be used for
large-scale, structured data, with marker selection (as
well as model building), simultaneously. The second,
and most important advantage of HisCoM, is that it gen-
erates latent variables, which are not directly observed,
while collapsing other (observed) variables. For example,
our HisCoM combines several collapsed peptides’
MRM-MS data, into several proteins, as latent variables.
Unlike other classical methods, such as linear/logistic re-
gression, support vector machine, and random forest,
our HisCoM approach considers peptide-to-protein com-
putational structure, and peptide-to-protein biological
structure. In the analysis, we found 6 possible protein bio-
markers that significantly associate with sorafenib drug re-
sponse. On the other hand, other classical prediction
modeling methods do not consider structure of biological
information. Using peptide-level data, we found significant
proteins, as possible biomarkers, for building a sorafenib
response prediction model for liver cancer patients. The
overall work flow, with our statistical analysis, using a His-
CoM schema, can be accurately applied not only to other
cancers, but also to most any large-scale structured data.

Conclusions
From possible biomarker selection, to AUC performance

test scores, through a model-building process, we

Table 6 Mean AUC scores of HisCoM-based Simulation model 2

Methods Mean AUC
HisCoM 0.7270
GLM 06515
GLMwR 0.6812

compared the performance of our model, constructed
using a HisCoM method, to other classical statistical
methods such as generalized linear models, using logistic
regression (alone) or logistic regression with ridge pa-
rameters. For possible drug response biomarkers, 6 sig-
nificant proteins were statistically selected, using
p-values, as computed by permutation tests: APOC4
(p-value: 0.0061), CD163 (p-value: 0.0112), CD5L
(p-value: 0.0031), JCHAIN (p-value: 0.0102), SERPING1
(p-value: 0.0142), and RBP4 (p-value: 0.0031). All six of
these proteins were previously reported as possible bio-
markers for hepatocellular cancer (HCC) [31-33]. Of
these, CD5L is the best-known HCC biomarker [28].
For the single protein model, using HisCoM, the AUC
scores varied from 0.60 to 0.90, depending on the spe-
cific protein. For modeling combinations of 2 of the 6
proteins, by HisCoM, the AUC scores varied from 0.73
to 0.95, showing increased performance, compared to
single-protein prediction models. On the other hand,
AUC scores varied from 0.86 to 0.95, for the 3-protein
model, by HisCoM. Finally, using all six of the
above-mentioned proteins in the model, we successfully
constructed a drug response prediction model using 1-,
2-, 3-, or all six-protein models. By comparing our
model’s performance with the generalized linear model
with a binary response via ridge penalization, the per-
formance of our six-protein HisCoM prediction model
was an AUC score of 0.96, slightly better than the gen-
eralized linear model with a binary response via ridge
parameter, for the 6-protein panel, with an AUC score
of 0.949 (Fig. 8). Thus, both the HisCoM and GLMwR
methods had high AUC scores. Overall, we conclude
that our model was marginally superior to the classical
model types.

For future research, we can apply this overall predic-
tion model-building approach, using HisCoM, to other
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cancer data especially derived from MRM-MS platform.
Since these potential biomarkers were identified in pa-
tients’ serum, these could be obtained by a minimally in-
vasive procedure (e.g., as compared to biopsies, lumbar
puncture, etc.). Such models could ultimately assist phy-
sicians in discerning which therapies might be effective,
for individual patients.
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