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Abstract

Background: Human Microbiome Project reveals the significant mutualistic influence between human body and
microbes living in it. Such an influence lead to an interesting phenomenon that many noninfectious diseases are
closely associated with diverse microbes. However, the identification of microbe-noninfectious disease associations
(MDAs) is still a challenging task, because of both the high cost and the limitation of microbe cultivation. Thus, there is
a need to develop fast approaches to screen potential MDAs. The growing number of validated MDAs enables us to
meet the demand in a new insight. Computational approaches, especially machine learning, are promising to predict
MDA candidates rapidly among a large number of microbe-disease pairs with the advantage of no limitation on
microbe cultivation. Nevertheless, a few computational efforts at predicting MDAs are made so far.

Results: In this paper, grouping a set of MDAs into a binary MDA matrix, we propose a novel predictive approach
(BMCMDA) based on Binary Matrix Completion to predict potential MDAs. The proposed BMCMDA assumes that the
incomplete observed MDA matrix is the summation of a latent parameterizing matrix and a noising matrix. It also
assumes that the independently occurring subscripts of observed entries in the MDA matrix follows a binomial model.
Adopting a standard mean-zero Gaussian distribution for the nosing matrix, we model the relationship between the
parameterizing matrix and the MDA matrix under the observed microbe-disease pairs as a probit regression. With the
recovered parameterizing matrix, BMCMDA deduces how likely a microbe would be associated with a particular
disease. In the experiment under leave-one-out cross-validation, it exhibits the inspiring performance (AUC = 0.906,
AUPR =0.526) and demonstrates its superiority by ~ 7% and ~ 5% improvements in terms of AUC and AUPR
respectively in the comparison with the pioneering approach KATZHMDA.

Conclusions: Our BMCMDA provides an effective approach for predicting MDAs and can be also extended to other
similar predicting tasks of binary relationship (e.g. protein-protein interaction, drug-target interaction).
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Background
Human intestine provides a nutrient-rich and
temperature-constant habitat for microbes, such that the
microbes have a mutualistic association with their host [1].
Diverse communities of microbes, especially bacteria, are
found by sequencing techniques (e.g. 16S ribosomal RNA
sequencing) in human bodies [2]. It is surprising that the
number of genes in human microbiome is up to 5 million
[3]. Both these genes and their products are participating in
a diverse range of biological activities, such as metabolic
capabilities, pathogens, immune system, and gastrointestinal
development [4]. It can be said that they somehow serve as
a physiological complement in the human body. Meanwhile,
both communities and populations of microbes can be sig-
nificantly influenced by their dynamic habitat in the human
body. Diverse environmental variables, such as season [5],
host diet [6], smoking [7], hygiene [3] and use of antibiotics
[8], may change the habitat of microbes frequently. This
kind of mutualistic associations between human host and
its microbiota would cause the modifications of transcrip-
tomic, proteomic and metabolic profiles in the human body.
However, some of the modifications could be harmful.
Beyond the fact that microbe is the main player in the

pathogenic mechanism of infectious diseases, an increas-
ing number of clinical studies have demonstrated that the
microbiota in human body is strongly associated with a
wide range of human non-infectious diseases, such as can-
cer [9], obesity [10, 11], diabetes [12, 13], kidney stones
[14] and systemic inflammatory response syndrome [15].
Nevertheless, people have only a limited understanding of
what microbes cause the diseases and how they do.
Fortunately, the increasing number of experimentally val-

idated associations between human non-infectious diseases
and microbes enable us to perform a systematic analysis on
microbe-disease associations (MDAs). For example, Ma et
al. recently published the first database of MDA, Human
Microbe-Disease Association Database (HMDAD), by col-
lecting a large number of MDAs from previously published
literature [16]. The MDA entries in HMDAD mainly fo-
cuses on experimentally supported associations between di-
verse microbes and non-infectious diseases, and all of them
are experimentally supported with sufficient samples. The
systematic analysis on a large scale of MDAs provides a
new insight to discover the mechanism of microbe-related
non-infectious diseases [17]. As one of the most important
steps towards that goal, the identification of MDA is helpful
to understand how non-infectious diseases develop and ex-
ploit novel methods for disease diagnosis and therapy.
However, traditional experiment-based approaches for dis-
covering MDAs are time-consuming and costly. Even
worse, many bacteria cannot be cultivated at all by current
culturing bio-techniques [18].
As the complement of biological experiment-based ap-

proaches, computational approaches are promising to

rapidly screen MDA candidates, such that the further bio-
logical validation reduces the cost and time significantly.
More importantly, they are expected to output the MDA
candidates involving uncultivable microbes. A few efforts
have been made to develop computational models for the
large-scale MDA prediction. Recently, a pioneering work
developed an approach, KATZHMDA, for predicting po-
tential MDAs on a large scale [19]. After constructing an
MDA network based on HMDAD, KATZHMDA models
MDA prediction as link prediction on the network.
In this work, by modeling MDA prediction as a problem

of matrix completion (Fig. 1), we propose a new predictive
approach based on Binary Matrix Completion (BMCMDA)
to predict potential MDAs on a large scale by only using a
set of approved microbe-disease associations. The following
sections are organized as follows. Section Method first in-
troduces the basic idea to model MDA prediction, then
represents the algorithm of binary matrix completion. Sec-
tion Experiments briefly describes the benchmark dataset
of MDA, shows how to tune the parameters in the pro-
posed model, and demonstrates the ability of BMCMDA by
the comparison with other state-of-the-art approaches. The
final section draws our conclusion. In addition, human
non-infectious diseases are termed as ‘diseases’ and their
microbes in the body are termed as ‘microbes’ in the fol-
lowing texts for concision.

Methods
Problem formulation
Given p kinds of microbes M = {mi}, q types of dis-
eases D = {dj}, and a set of associations between them,
we aim to deduce or predict new potential associations
among them. Those microbe-disease associations can be
organized into a p × q binary adjacent matrix A = {aij},
where aij = + 1 and aij = − 1 account for whether mi is
associated with dj or not respectively, and aij = ? if the
association between mi and dj is NOT observed. Our
problem is to deduce how likely those unobserved en-
tries are MDAs (Fig. 1).
Matrix completion is one of the popular techniques to

deduce the relationship between two types of objects
(i.e. users and items) in recommendation system. How-
ever, the standard algorithms of matrix completion
working on real-valued or categorical observations fail
to infer the binary relationship between the objects [20],
such as MDA prediction. Therefore, we adopted a differ-
ent technique in the next section.

Binary matrix completion
We state the problem as a matrix completion with 1-bit
observation, in which each observed entry represents a
positive (yes) or negative (no) response to MDA. Such a
binary matrix completion can be defined as a generalized
linear model,
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aij ¼ þ1 xij þ zij≥0
−1 xij þ zij < 0

�
ð1Þ

where only a subset Ω of entries of A is observed, X = {xij}
is a low-rank parameterizing distribution matrix of A, and
Z = {zij} is a stochastic matrix containing noise. The recov-
ery of matrix X is usually transformed to another form to
solve as follows [21].
Given an incomplete observed MDA matrix A ∈ℝp × q,

a subset of its observed entry subscripts Ω ⊂ [p] × [q]
and a differentiable function f :ℝ→ [0, 1], we observe

aij ¼ þ1 with the probability f xij
� �

−1 with the probability 1− f xij
� ��

for ∀ i; jð Þ∈Ω

ð2Þ
where [d] denotes the set of integers {1,..,d}. In other words,
the entries of A depend on a p × q underlying low-rank
preference matrix X = {xij} ∈ℝ

p× q somehow (Fig. 2).
We assume that the subscript subset Ω follows a bino-

mial model, in which the subscript (i, j) ∈ [p] × [q] of
each observed entry in A occurs with probability m/(pq)
independently, where m is the cardinality (the number
of observed entries) of Ω. The assumption reflects p×q
independent experiments, of which each determines
microbe-disease associations with m/(pq) success
probability.
In addition, if we suppose that the entries of the under-

lying noising matrix Z are independently and identically
drawn from the distribution, whose cumulative distribu-
tion function (CDF) is given by FZ(x) = P(z ≤ x) = 1 − f(−x),
then the model in Formula (2) reduces to its special case
in Formula (1). In such a sense, the selection of CDF f is
equivalent to that of Z. Thus, X can be also viewed as a
parameter of a distribution.

Since our aim is to determine the likelihood that a mi-
crobe would be associated with a particular disease, we
naturally model MDA prediction as the problem that re-
covers the latent low-rank matrix X.
When defining the CDF f(xij) = 1 −Φ(−xij/σ) =Φ(xij/σ),

where Φ is the cumulative distribution function of a
standard Gaussian (a standard mean-zero Gaussian with
variance σ2 for the noising matrix Z), Formula (2) cap-
tures a probit regression model. Thus, the recovery of X
can be achieved by solving the following optimization
problem [21],

X̂ ¼ arg max
X

FΩ;A Xð ÞFΩ;A Xð Þ ¼
X
i; jð Þ∈Ω

ðB aij ¼ þ1
� �

log f xij
� �� � þ B aij ¼ −1

� �
log 1− f xij

� �� �Þ
f xij
� � ¼ 1−Φ −xij=σ

� � ¼ Φ xij=σ
� �

s:t: Xk k�≤
ffiffiffiffiffiffiffi
rpq

p

ð3Þ
where B(ε) is the binary indicator function for an event
ε(i.e. B(ε) = 1 if ε occurs and 0 otherwise), Φ(xij/σ) ∈
ℝ→ [0, 1] is the cumulative distribution function of a
standard Gaussian distribution with variance σ2, and r is
the expected rank of X.
Consider that Formula (3) is just a special instance of

the general formulation

min
x

f xð Þ subject to x∈C ð4Þ

where f(x) is a smooth convex function from ℝn→ℝ, and
C is a closed convex set in ℝn. In particular, defining V as
the bijective linear mapping that vectorizes ℝp× q to ℝpq, we

Fig. 1 A Toy MDA Example for Matrix Completion. The left matrix is an observed matrix, in which xij are the observed MDA entries and ‘?‘s
denote the unobserved microbe-disease pairs. The right matrix is the expected matrix with fully observed entries

Fig. 2 Binary matrix completion. The left matrix is the latent preference matrix. The right matrix is the observed matrix, in which the observed
entries are labelled with ‘+ 1’ if an MDA is found, with ‘-1’ if a non-MDA is found, and ‘?’ if the entry is not observed
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have f(x) = − FΩ, A(V
−1x) and C=V({X : ‖X‖∗ ≤ τ}). There-

fore, non-monotone Spectral Projected Gradient (SPG) can
be applied to solve the above optimization [22]. It is an it-
erative algorithm, which requires at each iteration the
evaluation of f(x), its gradient g(x) =∇f(x) and an orthog-
onal projection PC(v) onto C, PC(v) = argmin ‖x − v‖2
subject to x ∈C. Since the orthogonal projection onto
the nuclear-norm ball C amounts to singular-value soft
thresholding [23], the projection is equivalent to

PC Xð Þ ¼ Sλ Xð Þ≔U max Σ−λI; 0f gVT ð5Þ

where X ¼SVDUΣVT ,Σ = diag (σ1,…, σn), the maximum
operation is taken entry-wise and λ ≥ 0 is the smallest
value for which

Pn
i¼1 maxfσ i−λg≤τ.

Cross validation
As a standard technique, cross-validation (CV) is
popularly adopted to evaluate the performance of ma-
chine learning models and estimate their power of
generalization on future samples. Usually, there are
two kinds of CV, k-fold cross-validation (k-CV) and
leave-one-out cross-validation (LOOCV).
In the scheme of k-CV, all the observed samples

are randomly split into k subsets of approximately
equal size. Among them, one subset is taken as the
testing set, in which the samples are masked as un-
observed. Meanwhile, the remaining k-1 subsets are
merged as the training set, in which the observed
samples are used to train a predicting model. Once
the training is done, the predicting model is per-
formed on the testing set and outputs the confi-
dence scores of being observed samples for all the
masked samples. This procedure repeats k times by
taking each subset as the testing set in turn. In each
round of k-CV, the performance of the predicting
model is measured and recorded. Its final perform-
ance is defined as the average of the performance in
all the rounds.
LOOCV can be regarded as an extreme case of k-CV,

where k is equal to the number of observed samples. In
each step of LOOCV, each observed sample is blinded as an
unobserved one and the remaining observed samples are
used to build the predicting model. The procedure of
LOOCV takes each of the observed samples as the testing
sample in turn. When the number of samples is enough
large, the results of k-CV and LOOCV have no significant
difference in statistics.
The performance of MDA prediction is measured by

Receiver Operating Characteristic (ROC) curve as well as
Precision-Recall (PR) curve. Two measuring metrics
adopted are both the Area Under ROC curve (AUC) and
the Area Under PR curve (AUPR). One could easily obtain
other metrics, such as true positive rate (TPR, Recall, or

Sensitivity) and false positive rate (FPR, 1-Specificity), by
setting thresholds on ROC or PR curves.

Results and discussion
Dataset
We adopted the same dataset of MDAs as that in [19].
The dataset was originally collected from the Human
Microbe-Disease Association Database (HMDAD, http://
www.cuilab.cn/hmdad), which was built in 2016 and
published in 2017 [16]. HMDAD collected MDA entries
from 61 publications in microbiome studies based on
16s RNA sequencing. Each entry is an experimentally
supported association between diverse microbes and
non-infectious diseases with sufficient samples. HMDAD
provides a benchmark source for developing prediction
model [19].
Originally, there are 483 MDAs, including 292 mi-

crobes and 39 human diseases in the dataset. After re-
moving the duplicate MDAs, which come from different
experiments, Chen et al. [19] give 450 distinct MDAs
among those microbes and diseases, and organizes them
into a 292×39 association matrix. The corresponding
MDA network is shown in Fig. 3.

Parameter tuning
In this section, we investigated the influence of two
important parameters in Formula 2, the standard der-
ivation σ and the estimated rank r. First, we tuned it
from the list {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9,
1.0}. Since the maximum rank rmax of the underlying
matrix is equal to min(p, q), we then tuned r from
the ratio list of f 1

10 ;
1
9 ;

1
8 ;

1
7 ;

1
6 ;

1
5 ;

1
4 ;

1
3 ;

1
2 ; 1g w.r.t rmax

and searched the best values on the 10 × 10 grid ex-
panded by both σ and r.
Considering that AUPR is a better metric than

AUC when the number of positive samples is signifi-
cantly less than that of negative samples [24], we re-
corded the performance of BMCMDA for each
pairwise value of (σ, r) under 5-CV in terms of
AUPR (Fig. 4). When running BMCMDA, all the pa-
rameters (e.g. the number of iterations and the toler-
ance of stopping iteration) in SPG were set to their
default values.
Finally, we picked up the pair of ðσ�; r�Þ ¼ ð0:2; 13 rmax Þ,

which achieves the highest one among 100 values of
AUPR, as the best value of (σ, r), and further applied them
in all the following experiments.

Comparison with the state-of-the-art approach
With the best pair (σ∗, r∗), we compared BMCMDA
with three approaches, including one baseline ap-
proach and two state-of-the-art approaches,
RKNNMDA [25] and KATZHMDA [19]. The
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baseline approach directly applies singular value de-
composition (SVD) on the MDA adjacency matrix
with missing entries and uses the product of two
unitary matrices and the rectangle diagonal matrix
to recover the missing values. RKNNMDA was ori-
ginally designed for miRNA-disease associations
[25]. It performs MDA prediction by directly apply-
ing a ranking-based KNN on the MDA prediction
[19]. KATZHMDA also constructs a heterogeneous
network, which consists of the known MDA network
and two MDA-induced networks [19]. The first
MDA-induced network indicates a microbe similarity
network, while the second one accounts for a dis-
ease similarity network. Both of them are derived
from the MDA network by Gaussian interaction pro-
file kernel. By leveraging KATZ index to calculate
similarities between microbe nodes and disease
nodes in the heterogeneous network, KATZHMDA
infers the potential association between a microbe
node and a disease node if the value of their KATZ
index is large. The comparison was performed with
the exactly same dataset under LOOCV as men-
tioned in [19]. The results in Fig. 5. show that
BMCMDA wins the best and outperforms those ap-
proaches significantly.

Fig. 3 The Network of Microbe-Disease Associations. Blue triangles and red circles denote microbes and diseases respectively. Lines between
nodes are the associations between them. The minimum, the median, the mean, and the maximum of microbe degrees are 1, 1, 1.54 and 11,
while those of disease degrees are 1, 3, 11.54 and 167 respectively

Fig. 4 Illustration of Determining the Best Value Pair of (σ, r). The
position w.r.t (σ∗, r∗) is highlighted by a white circle
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Furthermore, we selected the second best approach
KATZHMDA to make a detailed comparison. Con-
sidering the fact that AUPR is a better metric than
AUC when the number of positive samples is significantly
less than that of negative samples [24], we measured the
prediction by not only ROC curves but also PR curves.
The results illustrated in Fig. 6 show that BMCMDA,
compared with KATZHMDA, achieves a significant im-
provement of both ~ 7% increment in terms of AUC and
~ 5% increment in terms of AUPR.

Conclusions
As the complement of biological experiments, computa-
tional methods have a potential to be a promising ap-
proach, which predicts MDA candidates rapidly among
a plenty of microbe-disease pairs with the advantage of
no limitation on microbe cultivation.
In this paper, we have modeled MDA prediction in a

novel sight, which utilizes an underlying real-valued
matrix to reflect the magnitude of MDAs and regards
the binary MDA adjacent matrix as its incomplete and
noisy observation. Upon this model, we have proposed a
new approach based on Binary Matrix Completion

(BMCMDA) to predict potential MDAs among a large
scale of microbe-disease pairs. The comparison with
other state-of-the-art approaches demonstrates the su-
periority of BMCMDA for predicting microbe-disease
associations on a large scale and also validates that the
assumption we adopted is reasonable. Obviously,
BMCMDA can be directly applied to other similar forms
of problems in bioinformatics, including the inference of
the binary relationship between mono-partite objects
(e.g. protein-protein interaction, drug-drug interaction
[26, 27] and drug combination [28]) or that between
bi-partite objects (e.g. drug-target interaction [29, 30],
gene-disease association, RNA-disease association [31]).
In addition, we consider the possible improvement of

BMCMDA. First, we may enhance the MDA prediction
by integrating additional and independent microbe/dis-
ease similarities or features with BMCMDA. Secondly,
as suggested in [31], we may generalize BMCMDA to be
appropriate in more predicting scenarios, including the
prediction of the associations between newly-found
microbes (having no known MDA) and existing dis-
eases, the prediction of the associations between
existing microbes and newly-concerned diseases

Fig. 5 Comparison with state-of-the-art approaches

Fig. 6 Comparison between BMCMDA and KATZHMDA in terms of ROC curve and PR curve
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(having no known MDA), and the prediction of the
associations between newly-found microbes and
newly-concerned diseases.
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