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Abstract

Background: Novel sequence motifs detection is becoming increasingly essential in computational biology.
However, the high computational cost greatly constrains the efficiency of most motif discovery algorithms.

Results: In this paper, we accelerate MEME algorithm targeted on Intel Many Integrated Core (MIC) Architecture
and present a parallel implementation of MEME called MIC-MEME base on hybrid CPU/MIC computing framework.
Our method focuses on parallelizing the starting point searching method and improving iteration updating strategy
of the algorithm. MIC-MEME has achieved significant speedups of 26.6 for ZOOPS model and 30.2 for OOPS model
on average for the overall runtime when benchmarked on the experimental platform with two Xeon Phi 3120
coprocessors.

Conclusions: Furthermore, MIC-MEME has been compared with state-of-arts methods and it shows good scalability
with respect to dataset size and the number of MICs. Source code: https://github.com/hkwkevin28/MIC-MEME.
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Background
Identifying meaningful patterns (i.e., motifs) from bio-
logical sequences is an important problem and a major
challenge in bioinformatics research. A motif [1] is a nu-
cleotide or amino-acid sequence pattern that recurs in dif-
ferent DNA or protein sequences and has a biological
significance. For example, a 12-base-pair motif is a DNA
sequence that is repeated several times within the mouse
MT-I and other MT promoters and can confer metal

regulation [2]. Specific sequence motifs usually mediate a
common function. A sequence motif that appears in the
exon of a gene may encode the structural motif of a
protein [3]. A motif outside of gene exons such as being
DNA binding sites for regulatory protein [4] can affect the
shape of nucleic acids. And a RNA motif embedded in a
common secondary structure may be able to bind ATP [5].
In recent years, it has emerged a large number of com-

putational algorithms for motif discovery which can be
categorized into two groups, including word-based
(string-based) methods and probabilistic methods [1].
Word-based methods mostly exhaustive enumerate in
their computation and probabilistic methods employ
probabilistic sequence models where the model parame-
ters are optimized by maximum-likelihood principle or
Bayesian inference. Probabilistic methods have the ad-
vantage of few parameters and are more appropriate for
finding longer or more general motifs especially for
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prokaryotes, whose motifs are generally longer than
eukaryotes.
MEME (Multiple EM for Motif Elicitation) [2] is one of

the currently widely-used algorithms based on
maximum-likelihood principle for de novo motif discovery
[3]. The time complexity of MEME is O(N2 × L2), where N
is the number of input sequences and L is the average
length of each sequence. However, the high computational
cost constrains MEME for handling large datasets [4]. To
accelerate motif discovery algorithm, most of previous ap-
proaches focus on using parallelization on distributed
workstations, Graphics Processing Unit (GPU) and Field
Programmable Gate Arrays (FPGA). Farouk et al. paralle-
lized the Brute Force algorithm targeted on FPGAs [5].
Marchand et al. scaled Dragon Motif Finder (DMF) to
IBM Blue Gene/P using mixed-mode MPI-OpenMP
programming [6]. mCUDA–MEME is a parallel imple-
mentation of MEME running on multiple GPUs using
CUDA programming model [7].
Intel Many Integrated Core (MIC) Architecture [8] is

the latest parallel technique which targets high perform-
ance computing (HPC) and other parallel computing
segments. It is a brand-new many-core architecture that
delivers massive thread parallelism, data parallelism, and
memory bandwidth in a CPU form factor for high
throughput workloads [9]. To accelerate MEME algo-
rithm, we parallelize it targeted on MIC Architecture
and presented a parallel implementation of MEME
called MIC-MEME based on hybrid CPU/MIC comput-
ing framework. We can improve the efficiency of MEME
algorithm without losing accuracy. Comparing with the
other methods, our method which harnesses the power-
ful compute capability of MIC is faster and robustness.
In this paper, we first introduce sequential MEME
algorithm and hybrid CPU/MIC computing framework.
Then we present the method to accelerate MEME
algorithm which focuses on parallelizing the starting
point searching method and improving iteration updat-
ing strategy of the algorithm. At last, we discuss the ex-
periments and the performance is presented to evaluate
our method.

Methods
MEME algorithm
The MEME algorithm [2] is a popular and well estab-
lished motif discovery algorithm, which extends the ex-
pectation maximization (EM) [10] algorithm. Given a set
of biopolymer sequences where little or nothing is
known in advance about any motifs that may be present,
MEME attempts to discover new motifs using a statis-
tical motif model θ [11]. A motif model θ is a matrix of
letter frequencies representing frequency estimates of
letters occurring in different positions of a shared motif.
Given a motif of width W from an alphabet Σ = {X1,X2,

...,XN}which has N letters (eg. the alphabet of DNA is
{A,T,C,G}), the size of the matrix θ is N×(W+ 1) and the
matrix value θi, j (1≤i≤N and 0≤j≤W) is defined as
follows:

θi; j ¼
(
probabilty of Xi appearing at position j of the moti f ; i f 1≤ j≤W

probabilty of Xi not appearing ∈ the moti f ; i f j ¼ 0

ð1Þ

With a set of input sequences, the EM algorithm is
carried out from an initial model θ(0) which repre-
sents a starting point. Then it runs until convergence
in order to find the final motif model θ(q) with max-
imal posterior probability. Besides, it can just run for
a fixed number of iterations before convergence.
MEME provides support for three different types of
search modes: one occurrence per sequence (OOPS),
zero or one occurrence per sequence (ZOOPS), and
two component mixture (TCM) [2]. The type of
model chosen by a user depends upon prior know-
ledge concerning the dataset. The OOPS model as-
sumes that there is only one occurrence per sequence
of the motif in the dataset, the ZOOPS model is a
generalization of OOPS and assumes zero or one oc-
currence per sequence of the motif, and the TCM
model assumes zero or more non-overlapping occur-
rences of the motif per sequence. Since the OOPS
and ZOOPS models are sufficient for most motif
finding applications, this paper concentrates on the
support for the OOPS and the ZOOPS search
models.
During each motif search, MEME does a multi-

start search of a given motif width W and the search
consists of two stages: starting point searching and
EM [11].
In the starting point searching stage, MEME iter-

ates over all possible initial models and chooses the
initial models with the highest statistical significance.
More specifically, MEME converts each W length
substring occurring in a sequence dataset into a motif
model and calculates the weighted log likelihood ra-
tio on different numbers of predicted sites. The po-
tential motif models with the highest weighted log
likelihood ratio are selected as starting points for the
successive EM stages. Also in this stage, a P-value is
calculated, which represents the probability of a ran-
dom string, generated from the background letter
frequencies.
In the EM stage, An EM algorithm is performed for a

fixed number of iterations or until convergence from
each of the highest-scoring initial models and then the
best motif model is chosen.
During the starting point searching, Given the input

dataset S = {S1, S2, ..., Sn} of n biological sequences from Σ,
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and motif width W, The following notations are used
for the convenience of discussion: Li denotes the
length of sequence Si, si denotes the reverse comple-
ment of Si, Si, j denotes the substring starting at pos-
ition j in sequence Si, Si(j) denotes the jth letter in Si,
for 1≤i≤n and 0≤j≤Li −W. The starting point search-
ing process primarily consists of four steps for the
OOPS and ZOOPS models:
• Calculate the probability score P(Si, j, Sk, l) from the

forward strand (or P(Si, j, sk;l ) from the reverse com-
plement), which represents the probability that a site
starts at position l in Sk when a site starts at position
j in Si. The time complexity is O(li·lk) for each se-
quence pair Si and Sk.
• select the highest-scoring substring Sk, maxk (as well

as its strand orientation) for each sequence Sk. The time
complexity is O(lk) for each sequence Sk.
• Sort the nsites0 highest-scoring substrings {Sk, maxk}

in decreasing order of scores and determine the poten-
tial starting points. The time complexity is O(nlogn) for
OOPS and O(n2W) for ZOOPS.
• Update the hash map and starting point heap.
The probability score P(Si, j, Sk, l) is computed as:

PðSi; j; Sk;lÞ ¼
XW−1

p¼0

mat½Sið jþ pÞ�½Skðl þ pÞ�

ð2Þ

where mat denotes the letter frequency matrix of size
|Σ| × |Σ|. To reduce computation redundancy, Eq. (2)
can be further simplified to Eq. (3), where the computa-
tion of the probability scores {P(Si, j, Sk, l)} in the jth iter-
ation depends on the resulting scores {P(Si, j − 1, Sk, l − 1)}

in the (j-1)th iteration. However, {P(Si, j, Sk, 0)} needs to
be computed individually using Eq. (2).

P Si; j; Sk;l
� � ¼ P Si; j−1; Sk;l−1

� �þmat Si jþW−1ð Þ½ � Sk l þW−1ð Þ½ �

−mat Si j−1ð Þ½ � Sk l−1ð Þ½ �
ð3Þ

The detailed algorithm for the starting point searching
is illustrated in Algorithm 1. And Fig. 1 shows the
process of starting point searching algorithm for the
OOPS and ZOOPS models. MEME Suite [12] is an open
source implementation of MEME algorithm. The
method presented in this paper is based on MEME Suite
(version 4.11.2).

Hybrid CPU/MIC computing framework
Intel Many Integrated Core (MIC) Architecture [8] is a
co-processor computer architecture developed by Intel,
which combines many Intel processor cores onto a
single chip. The Intel Xeon Phi processor is a bootable
host processor that delivers massive parallelism and
vectorization to support the most demanding high-
performance computing applications. The latest Intel
Xeon Phi processor which targets HPC segments

Fig. 1 Process of starting point searching algorithm
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provides up to 72 out-of-order cores, Intel Advanced
Vector Extensions 512 instructions, and up to 16GB
of on-package high-bandwidth memory along with the
capacity for 384GB DDR4 platform memory [9].
MIC provides a processor-centric “offload” model

where the program is viewed as running on processors
and offloading the work selected to coprocessors. To
make full use of computing resources, we have investi-
gated a CPU/MIC collaborated parallel framework which
overlaps the computation of the CPU and MIC using
offload mode. In this framework, the work is divided
into two parts, one runs on CPU and another runs on
MIC. The processes on CPU offload the work of MIC to
the coprocessor. While the computation of MIC, CPU
computes at the same time. After MIC completed its
work, the result is transferred to CPU using offload
mode. Structure of hybrid CPU/MIC computing frame-
work is present in Fig. 2. In this framework, OpenMP
[13] is used for parallelization.

Improved starting point search strategy
To accelerate MEME algorithm, we analysis sequential
MEME with Intel VTune Amplifier. Profiling of MEME
algorithm reveals that over 98% of the overall running
time is usually spent on the starting point searching
stage and the computation of the probability scores
{P(Si, j, Sk, l)} is the hotspot of the stage. Since the start-
ing point searching stage is the runtime bottleneck of
the algorithm, our MIC parallelization approach focuses
on parallelizing the starting point searching stage [14].
And in EM stage, the M step and E step of EM
algorithm are simply parallelized using OpenMP.
Our parallelization approach of MEME algorithm sep-

arates the starting point searching into two parts: prob-
ability score computation and highest score sortation.
In probability score computation part, the probability

scores {P(Si, j, Sk, l)} are calculated in parallel. We take
advantage of the fact that for a given W length substring
Si, j (1≤i≤n and 0≤j≤Li-W), the computation of scores

Fig. 2 Structure of hybrid CPU/MIC computing framework

Fig. 3 Process of probability score computation algorithm
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{P(Si, j, Sk, l)} are independent of each other for any se-
quence Sk (1≤k≤n and 0≤l≤Lk-W). Let several threads com-
prise a thread group. Each thread group is assigned to
compute the scores of all W length substrings in one
sequence Siagainst any sequence Sk. For one substring Si, j in
sequence Si, all threads in the thread group compute the
scores against all the sequences, where for each sequence Sk,
the set of all the W length substrings {Sk, l} are roughly
equally divided and distributed tom threads. After calculating
the probability score, each thread p (1≤p≤m) selects the local
highest-scoring substring Sk;maxklocalp for each set of substrings
{Sk, l}, which will be used in highest score sortation part.
As observed in Eq. (3), the score computation for the

jth iteration depends on the scores for the (j-1)th iteration.
Therefore we create two vectors to store the scores for
two iterations using a simple cyclic vector swapping
method. In jth iteration, vector A as input stores the score
for (j-1)th iteration and vector B as output stores the score
for jth iteration. In next iteration, the two vectors are
swapped, vector B serves as input and vector A serves as
output. All threads in a group have to synchronize and
swap the input and output score vector in each iteration.
The detailed algorithm for the probability score computa-
tion is illustrated in Algorithm 2. And Fig. 3 shows the
process of probability score computation.
By dividing threads into thread groups, the number of

the threads which have to communicate to each other in
one iteration is decreased and the overhead of
synchronization is reduced in this method.
Using the method presented in Algorithm 2, it usually

achieves high performance except for datasets with a small
number of long sequences. To improve the performance of
datasets with a small number of sequences, we present a
new method which swaps the outermost loop and the sec-
ond outermost loop presented in Algorithm 2. The

computation of scores {P(Si, j, Sk, l)} for sequence Si (1≤i≤n)
in S against any sequence Sk are independent of each other.
After swapping the loops, for a given position j, scores {P(Si,
j, Sk, l)} for all substrings Si, j (1≤i≤n) against any sequence
Sk are computed in one iteration. Although the workload of
each thread is increased, it does not influence too much
since the number of sequences is small. On the contrary,
the times of synchronization are decreased, which reduces
overhead of synchronization and improves the perform-
ance. The detailed algorithm for the probability score com-
putation for datasets with a small number of long
sequences is illustrated in Algorithm 3. And Fig. 4 shows
the process of the algorithm. In the outermost loop of Fig.
4, scores P(Si, j, Sk, l) are computed in the order of j instead
of in the order of i. And the threads synchronize after cal-
culate n scores instead of one score.

Fig. 4 Process of probability score computation for datasets with a small number of long sequences algorithm
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However, the algorithm presented in Algorithm 3 may not
work well for datasets with a large number of sequences,
since the large number of sequences contributes to large
workload which is not appropriate for each thread. So to
achieve the highest performance, the number of sequences
is checked at first to decide to use which algorithm.
After probability score computation part, the local

highest-scoring substring Sk;maxklocalp for each set of sub-
strings {Sk, l} has been selected. In highest score sorta-
tion part, each thread is assigned to select the
highest-scoring substring Sk, maxk for each Sk depending
on the local highest-scoring substrings {Sk;maxklocalp } and
sort the nsites0 highest-scoring substrings {Sk, maxk} in
decreasing order of scores to determine the potential
starting points. At the end, the hash map and starting
point heap are updated serially.
During starting point searching stage, the hybrid CPU/

MIC computing framework is used only in the probabil-
ity score computation part. The framework is not used
in highest score sortation part since there are some
complex structures like hash map in this part which are
hard to be offloaded to MIC.

Improved iteration updating strategy
MEME Suite has defined an option “-revcomp” [12] to
consider both the given strand and the reverse comple-
ment strand when searching for motifs in a complemen-
table alphabet (ie DNA). Without this option, the
algorithm will search for motifs of complementable al-
phabets on the given strand only. In this paper, we
present an improved iteration updating strategy to avoid
synchronization and improve the performance when op-
tion “-revcomp” is not selected. As observed in Eq. (3),
the score computation for the (j + 1)th iteration depends
on the scores for the jth iteration. Assume that thread A

computes q scores {P(Si, j, Sk, l)} for Si, j against {Sk,
l},1≤k≤n and 0≤l≤q − 1. In this method, scores {P(Si, j, Sk,
l)}, 1≤k≤n and 0≤l≤q − 1, are computed by thread A in
the first iteration. In the next iteration, the task is changed
to scores {P(Si, j, Sk, l)}, 1≤k≤n and 1≤l≤q, so that the scores
computed by thread A in next iteration only depend on
the scores computed in this iteration by itself. In this way,
each thread does not need to transfer scores to each other
in one iteration, which avoids synchronization. The strat-
egy is shown in Fig. 5.
To get good performance out of the Intel MIC Architec-

ture, applications need to take advantage of the 512-bit
vectorization unit. Verctorization [15] advances many data
in the array by just one instruction, which is the most im-
portant method to obtain better performance.
In this method, the hotspot, computation of the prob-

ability scores {P(Si, j, Sk, l)} presented in Eq. (3) is vector-
ized. By vectorizing the hotspot, we have achieved a
speedup of 2 for the overall runtime.

Results and discussion
Data and platform
Our experimental platform is a high-performance server
which consists of 8 Xeon E7–8800 v3 18 core CPU pro-
cessors with 2 Xeon Phi 3120 57 core coprocessors and
2 K40 M GPU. Other specifications of the experimental
platform are listed in Table 1. And Intel C++ Compiler
(icc) 16.0.3 is used to compile the MIC-MEME.
To evaluate the scalability of our algorithm with re-

spect to dataset size, the following datasets with different
numbers of sequences and base pairs (bps) were used
during this experiment: the mini-drosoph dataset and
three datasets of human promoter regions consisting of
100, 200 and 400 sequences of lengths 5000 base-pairs
each (called HS_100, HS_200 and HS_400, respectively).
Table 2 shows the detailed specifications of datasets.

Fig. 5 Improved task partitioning strategy

Table 1 Platform specifications

CPU MIC

Clock Frequency(GHz) 2.5 1.1

VPU width(bits) 256 512

L1/L2/L3 Cache(KB) 32/256/2560 32/512/−

Memory Size(GB) 2048 6

Table 2 Datasets specifications

Datasets Number of sequences Min(bps) Max(bps) Total(bps)

mini-drosoph 4 12,850 297,266 499,297

HS_100 100 5000 5000 500,000

HS_200 200 5000 5000 1,000,000

HS_400 400 5000 5000 2,000,000
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Speedup
To evaluate the performance of MIC-MEME, the follow-
ing parameters were used: “-dna -mod zoops –revcomp”,
“-dna -mod oops –revcomp”, “-dna -mod zoops” and
“-dna -mod oops”. They include all the situations of
ZOOPS and OOPS models.
We just evaluated the performance of MIC-MEME run-

ning on the server with 24 processes on CPU and 224 pro-
cesses on a single MIC. The ratio of workload on CPU
and one MIC is 1/3. Fig. 6a demonstrates the speedups of
MIC-MEME using these parameters for all datasets.
As Fig. 6a shows, when considering both the given

strand and the reverse complement strand, MIC-MEME
achieves an average speedup of 22.8 for the overall run-
time (with the highest of 26.4 and the lowest of 15.5)
using ZOOPS model and achieves an average speedup of
24.5 for the overall runtime (with the highest of 29.5 and
the lowest of 15.8) using OOPS model. When consider-
ing the given strand only, MIC-MEME achieves an aver-
age speedup of 23.5 for the overall runtime (with the
highest of 26 and the lowest of 21.1) using ZOOPS
model and achieves an average speedup of 25.4 for the
overall runtime (with the highest of 26.7 and the lowest
of 22.5) using OOPS model. Note that, MIC-MEME
produces the same results as sequential MEME using
these parameters and the results demonstrate increasing
trends as the datasets become larger.

And in addition to the scalability with respect to dataset
scale, we further evaluated the scalability of our algorithm
with respect to the number of MIC. The test was performed
on CPU only, CPU with one MIC and CPU with two MICs
respectively. Note that, the ratio of workload on CPU with
one MIC is 1/3 and the ratio of workload on CPU with two
MIC is 1/1. The parameter “-dna -mod zoops -revcomp”
was used. The test result is shown in Fig. 6b.
It can be seen that the average speedup of

MIC-MEME running on CPU only is 15.3 (with the
highest of 16 and the lowest of 14.2), the average
speedup of MIC-MEME running on CPU with one MIC
is 23.5 (with the highest of 26 and the lowest of 21.1)
and the average speedup of MIC-MEME running on
CPU with two MIC is 26.6 (with the highest of 30 and
the lowest of 25). Therefore, the average speedup of our
algorithm increases as the number of MIC increasing,
which demonstrates the good scalability of MIC-MEME
respect to the number of MIC.
We also evaluated the performance of Algorithm 2

and Algorithm 3 with datasets that have different num-
bers of sequences. In this test, the parameter “-dna -mod
zoops -revcomp” was used. Fig. 7a shows the perform-
ance of Algorithm 2 and Algorithm 3. As observed,
Algorithm 2 runs faster than Algorithm 3 except for the
mini-drosoph dataset. But Algorithm 3 is 1.8 times faster
than Algorithm 2 when handling mini-drosoph. Note

a b

Fig. 6 Performance and Scalability of MIC-MEME. (a) Performance of MIC-MEME with different datasets and parameters. (b) Scalability of MIC-
MEME with respect to the number of MIC

ba

Fig. 7 (a) Performance of Algorithm 2 and Algorithm 3. (b) Performance of Improved Iteration Updating Strategy
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that, the number of sequences of mini-drosoph is only 4
and the numbers of sequences of other datasets are larger
than 100. The result proves that Algorithm 3 performs
better than Algorithm 2 when handling datasets with a
small number of sequences. However, Algorithm 3 does
not work well for datasets with a large number of se-
quences such as HS_100, HS_200 and HS_400. To achieve
the highest performance, the number of sequences needs
to be checked to decide which algorithm will be used.
To prove the merit of improved iteration updating strat-

egy, the performance of the algorithm with improved iter-
ation updating strategy was compared with the
performance of the algorithm without improved iteration
updating strategy. The parameter used in this test is “-dna
-mod zoops”. As Fig. 7b shows, the algorithm with im-
proved iteration updating strategy is average 2.2 times faster
than the algorithm without improved iteration updating
strategy. The result demonstrates the effectiveness and ad-
vantage of improved iteration updating strategy.

Comparing with state-of-arts methods
Furthermore, we have compared the performance of
MIC-MEME with three other state-of-arts methods: EX-
TREME [16], mCUDA-MEME and BoBro2.0 [17]. EX-
TREME is a recent improvement of MEME which applies
the online EM algorithm to discover motifs and uses the
same model as MEME. BoBro [18] is an algorithm for pre-
diction of cis-regulatory motifs in a given set of promoter
sequences. And BoBro2.0 is an improved version of
BoBro. To compare with the other state-of-arts methods,

MIC-MEME was evaluated running on CPU with one
MIC, mCUDA-MEME was benchmarked on our server
with CPU and one K40 m GPU, BoBro2.0 and EXTREME
were benchmarked on our server with CPU only. As ob-
served, MEME algorithm searches for motifs which con-
tain seven kinds of lengths during one execution.
Therefore, we make BoBro2.0 search for motifs with seven
kinds of lengths respectively to make the workload of
BoBro2.0 similar to the MIC-MEME’s. Because
mCUDA-MEME and MIC-MEME are both based on
MEME algorithm, they have the similar workload when
using the same parameter. In this test, parameters “-dna
-mod zoops -revcomp” and “-dna -mod zoops” were used
to evaluate mCUDA-MEME and MIC-MEME. Fig. 8
shows the performance of mCUDA-MEME comparing
with MIC-MEME. And Table 3 shows the time cost of
each method with different datasets.
As Table 3 shows, the time spent by BoBro2.0 and EX-

TREME is much longer than the time spent by
mCUDA-MEME and MIC-MEME, especially BoBro2.0.
Besides, during the execution of BoBro2.0, segment fault
error occurred when the searching with mini-drosoph
and memory corruption error occurred when the search-
ing with HS_400. However, BoBro2.0 and EXTREME are
both written in scripting languages, which contributes to
low efficiency. And we also find that EXTREME spends
much more time on generating seeds which is the hot-
spot of the program.
As observed, using ZOOPS model without “revcomp”

option, MIC-MEME is average 3 times faster than

ba

Fig. 8 Performance of mCUDA-MEME and MIC-MEME. (a) performance of mCUDA-MEME and MIC-MEME without “revcomp” option. (b) performance
of mCUDA-MEME and MIC-MEME with “revcomp” option

Table 3 Time cost of each method with different dataset. The time is given in seconds(s)

mini-drosoph HS_100 HS_200 HS_400

MIC-MEME without “revcomp” 140 s 185 s 642 s 2608

with “revcomp” 731 s 444 s 1788s 7744 s

CUDA-MEME without “revcomp” 760 s 437 s 1535s 5428 s

with “revcomp” 1298s 688 s 2362 s 8225 s

BoBro2.0 segment fault error 143,246 s 463,802 s memory corruption error

EXTREME 1453s 4440 s 11,189 s 21,592 s
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mCUDA-MEME (with the highest of 5.4 and the lowest of
2.1) and MIC-MEME is average 1.4 times faster than
mCUDA-MEME (with the highest of 1.7 and the lowest of
1.1) using ZOOPS model with “revcomp” option. In con-
clusion, MIC-MEME outperforms mCUDA-MEME when
considering the given strand only because of the improved
iteration updating strategy which avoids synchronization.
When considering both the given strand and the reverse
complement strand, MIC-MEME just runs a little faster
than mCUDA-MEME due to synchronization overhead es-
pecially for HS_400 dataset. Furthermore, MIC-MEME ab-
solutely outperforms BoBro2.0 and EXTREME. However,
MIC-MEME might not be able to work well in the situation
where the number of sequences of datasets is extremely
large because of synchronization and the limitation of com-
puting resources of a single node. Maybe MIC together
with MPI, Spark or Hadoop could solve this problem [19],
which would be our future works.

Conclusions
Discovering motifs in biological sequences is a crucial
problem. For example, in DNA sequences, the phospho-
diester oligonucleotide containing a newly identified
CpG DNA motif can strongly stimulate CD86, CD40,
CD54, and MHC class II expression, IL-6 synthesis, and
proliferation of primary human B cells [20]. And a
motif in DNA sequences may result in DNA binding
sites [21, 22]. In protein sequences, C-terminal microbody
targeting motifs are known to be targeted to microbodies
[23] and LXXLL motif present in RIP-140, SRC-1 and
CBP is necessary and sufficient to mediate the binding of
these proteins to liganded nuclear receptors [24]. And in
RNA sequences, motif may be able to bind ATP [25] or be
recognized by RNA-binding proteins [26].
In this paper, we have improved MEME algorithm and

present MIC-MEME to make use of the powerful compute
capability of MIC. MIC-MEME primarily focuses on paral-
lelizing the starting point searching stage and an improved
iteration updating strategy is presented. It has achieved
average speedups of 26.6 for ZOOPS model and 30.2 for
OOPS model for the overall runtime on the server with 24
processes on CPU and 224 processes on multiple MICs.
Furthermore, our algorithm shows good scalability with
respect to dataset size and the number of MICs. And
MIC-MEME has been compared favorably with mCUDA-
MEME on the server with K40 m GPUs to prove its
merit. With the increase of biological data, we hope
the efficient motif discovery of MIC-MEME will be
able to help the bioresearch work. However, the
synchronization and limited computing resources of a
single server node still constrain the efficiency of
MIC-MEME. In the future, we will focus on parallel-
izing MIC-MEME on multiple nodes cluster.
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