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Abstract

Background: Data generated by RNA sequencing (RNA-Seq) is now accumulating in vast amounts in public
repositories, especially for human and mouse genomes. Reanalyzing these data has emerged as a promising
approach to identify gene modules or pathways. Although meta-analyses of gene expression data are frequently
performed using microarray data, meta-analyses using RNA-Seq data are still rare. This lag is partly due to the
limitations in reanalyzing RNA-Seq data, which requires extensive computational resources. Moreover, it is nearly
impossible to calculate the gene expression levels of all samples in a public repository using currently available
methods. Here, we propose a novel method, Matataki, for rapidly estimating gene expression levels from RNA-
Seq data.

Results: The proposed method uses k-mers that are unique to each gene for the mapping of fragments to
genes. Since aligning fragments to reference sequences requires high computational costs, our method could
reduce the calculation cost by focusing on k-mers that are unique to each gene and by skipping uninformative
regions. Indeed, Matataki outperformed conventional methods with regards to speed while demonstrating
sufficient accuracy.

Conclusions: The development of Matataki can overcome current limitations in reanalyzing RNA-Seq data toward
improving the potential for discovering genes and pathways associated with disease at reduced computational
cost. Thus, the main bottleneck of RNA-Seq analyses has shifted to achieving the decompression of sequenced
data. The implementation of Matataki is available at https://github.com/informationsea/Matataki.

Keywords: RNA-Seq, Mapping, Gene expression

Background
The number of published studies on RNA sequencing
(RNA-Seq) data is rapidly increasing owing to improve-
ments in RNA-Seq measurement technology. Thus,
meta-analyses of publicly available data have become a
new promising approach to obtain novel insights into
biological systems. However, merging quantified expres-
sion data provided by authors is generally difficult be-
cause of the use of different reference sequences, ID
systems, and quantification methods among individual
studies. These variations make it impossible to distinguish

true biological differences from calculation protocol biases
when comparing gene expression profiles quantified using
different methods. Therefore, quantification using raw se-
quences for all data is an important step for RNA-Seq
meta-analyses.
Many quantification methods for RNA-Seq data have

been proposed to date, including the most common
pipeline method using TopHat2 [1, 2] and cufflinks [3].
This method aligns sequenced reads to a reference gen-
ome, counts the number of fragments mapped onto
gene regions, and estimates gene expression as transcript
levels. Importantly, this method can be applied to spe-
cies without a reference transcript and can predict tran-
script candidates. Some other methods such as RSEM [4]
and eXpress [5] map sequences to the transcript reference;
since they require only reference transcript sequences, they
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can be applied to species without a reference genome. A
de novo transcript assembler or an expressed sequence tag
database can be used as reference transcript sequences in
place of curated reference transcript databases. Both RSEM
and eXpress employ bowtie [6] to map a read sequence to
a transcript, and some read sequences are mapped to mul-
tiple transcripts due to splicing variants. RSEM and eXpress
use the Expectation-Maximization (EM) algorithm to re-
solve the problem of assigning multi-mapped reads to tran-
scripts for quantifying the expression level of transcripts.
Despite their advantages for quantification, these

alignment-based methods require extensive computa-
tional resources. When quantifying the expression levels
of an RNA-Seq sample, alignment is an optional step be-
cause the position of a read is not essential for quantifi-
cation. Thus, several methods have also been proposed
to reduce the calculation cost for large RNA-Seq ana-
lyses and avoid the mapping step by focusing on the
k-mers in transcripts. For example, Sailfish [7] uses all
k-mers that appear in the reference transcript, creates a
transcript table containing the k-mers, counts the num-
ber of occurrences of each k-mer in the RNA-Seq data,
and finally estimates the most probable expression level
of each transcript from the counts using the EM algo-
rithm. RNA-Skim [8] uses a similar but more efficient
approach by introducing sig-mers that appear only once
in a subset of reference transcripts, counts the number
of occurrences of the sig-mers while processing the
RNA-Seq data, and then estimates the most probable ex-
pression levels using the EM algorithm. Kallisto [9] also
uses k-mers, and further reduces the calculation cost by
skipping fragments when searching an index. When a
k-mer appears, the next k-mer is limited to one or a few
patterns. If the next k-mer is limited to one pattern, hash-
ing the k-mer is not required to determine the source iso-
form. Kallisto then skips these non-informative k-mers,
resulting in a faster estimation process.
The speed of quantification is a critical step in develop-

ing a method to process thousands of publicly available
RNA-Seq reads. Although these alignment-free methods
such as Sailfish, Kallisto, and RNA-Skim are much faster
than the alignment-based methods, the recent accumula-
tion of large-scale sequence data requires development of
an even faster method for data management and reanaly-
sis. In addition, all of these alignment-free methods rely
on transcript-level quantification, although gene-level ex-
pression data contain sufficient information for most ana-
lyses. Moreover, several RNA-Seq studies [10–13] do
not include isoform-specific expression data; even if
isoform-specific expression is relevant, these analyses
typically only focus on a few splicing changes [14, 15]. For
example, Wu et al. [14] performed gene-level quantifica-
tion for all genes initially, followed by isoform-level quan-
tification. Therefore, gene-level expression data are useful

in many cases. In particular, large-scale reanalysis of hu-
man and mouse RNA-Seq data such as in gene
co-expression analysis [16] or comparison of similar ex-
pression profiles does not require precise expression data
at the transcript level. For example, the growing the num-
ber of expression profiles provides a better quality gene
co-expression dataset [17]. In this case, simple gene-level
quantification is sufficiently accurate, which can then be
improved by transcript-level estimation [18].
To further enhance large-scale meta-analyses of

RNA-Seq data, we here propose a new quantification al-
gorithm called Matataki. Similar to Kallisto, our method
uses k-mers that appear only once in a gene and quanti-
fies expression from the number of unique k-mers. How-
ever, our method has an additional advantage of
reducing computational costs with the integration of
two novel approaches. First, Matataki quantifies expres-
sion directly without implementation of the EM algo-
rithm by focusing on the gene level. Second, our method
checks fragments of reads at fixed skips even if the
k-mer was not indexed. Because k-mers unique to a
gene are usually found continuously, hashing all frag-
ments of a read does not improve performance. Thus,
Matataki provides a novel approach for ultra-fast
RNA-Seq quantification based on unique k-mers to each
gene. More specifically, our method searches for all
k-mers that appear only once in a gene among a set of
transcripts in only two steps: an index building step and
a quantifying expression step. Here, we describe the pro-
posed method and its implementation, and compare the
performance against available methods using reference
sequence and simulation datasets as test data.

Methods
Index building step
To achieve a fast mapping process, Matataki has to
search for all k-mers that are unique to each gene. When
multiple transcripts are available for a gene, the selected
k-mers should include all isoforms of the gene to avoid
any effects of the differential expression of isoforms.
First, Matataki searches all unique k-mers to each gene

in consideration of all k-mers in all transcript sequences.
To judge the uniqueness of the k-mers, Matataki stores
the k-mers in a hash table. Except in cases of a
strand-specific read, all reverse complements of the
k-mers are also considered. Second, Matataki checks
whether all of the isoforms of a gene have a k-mer. Be-
cause Matataki quantifies expression at the gene level,
differences in isoform-specific expression will be ig-
nored. In other words, Matataki builds an index of
k-mers that are unique to a gene and are found in all
isoforms of the gene. Finally, Matataki counts the num-
ber of indexed k-mers for each gene, which will be used
to determine the fragment per kilobase of million
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(FPKM) and transcript per million (TPM) values that
are used in the quantification step. The pseudocode is
shown in Additional file 1: Method S1. This building
step is required only once for each species before using
Matataki.

Quantification step
The quantification step can be divided into two
sub-steps: counting the k-mers, and calculating FPKM
and TPM values from the read counts.
First, Matataki searches the indexed k-mers in a short

read obtained through a next-generation sequencing ex-
periment. When a read has k-mers associated with a
gene, it is assigned to that gene. Matataki then counts
the number of reads assigned to each gene. When a read
has k-mers from two or more genes, the read will be ex-
cluded from further analyses.
In the first step, the identified k-mers tend to be found

sequentially; thus, we considered that searching all frag-
ments of reads in a step-by-step manner is not required.
Therefore, Matataki creates k-mers in step-size (S) base
intervals instead of creating all possible k-mers from a
sequenced read so as to reduce the number of k-mer
searches, and ultimately the computational time and
cost. We also introduced the “accept-count” parameter
M, which is the minimum number of matched k-mers
required to select a gene, to avoid the noise caused by
fragments of a read sequence that matched to an
indexed k-mer by chance. A read without an M times
match to a gene is neglected because it is considered to
have potentially matched by chance. Since some reads
might have a sequencing error, mutation, or insertion/
deletion, a fragment of a read might incorrectly match
to an indexed k-mer. Usually, these incorrect matches
are not found consecutively in a read; thus, the
accept-count parameter M helps to avoid this type of in-
correct match. When processing a pair-end sequenced
file, each read is processed separately. The pseudocode is
shown in Additional file 1: Methods S2.
In the next step, Matataki calculates FPKM and TPM

from gene-specific read counts using the following
formulas:

Fi ¼ Ci=KiP
jC j

109 ð1Þ

Ti ¼ Ci=Ki
P

j C j=K j
� � 106 ð2Þ

where Fi is FPKM, Ti is TPM, Ci is the count of gene-
specific reads, and Ki is the number of indexed k-mers
in a gene. Because Matataki uses only gene-specific k-
mers, the EM or another algorithm is not needed to cal-
culate the expression levels.

Implementation
We implemented Matataki with C++ 03, autotools, and
KyotoCabinet [19]. To reduce memory usage and in-
crease speed, a hash table format was optimized for the
RNA/DNA k-mers. The first 4 K bytes contain the
header of an index, including the number of entries, size
of the hash table, and k, and the k-mers and correspond-
ing gene indexes are written after each header. Each
entry has two subsections: a gene index and k-mers. A
k-mer is compressed as a 2-bit representation of nucleic
acids to reduce memory usage and hash value calcula-
tion time. Because each k-mer has a fixed length in one
index, the entries do not contain length data. The hash
function is also important for enabling a quick search of
items in the table. We used the fast and widely accepted
hash function MurMurHash3 for the hash table. Since
building an index requires abundant resource, we dis-
tributed the pre-calculated index for publicly available
human and mouse sequences.
The source code, pre-built binaries, and pre-calculated

index of human and mouse data are available at Github
(https://github.com/informationsea/Matataki) and Add-
itional file 2.

Comparison with other software products
We compared the performance of Matataki with that of
the currently available quantification methods bowtie
1.1.2 [6]/eXpress 1.5.1 [5], RSEM 1.2.22 [4], Sailfish
0.10.0 [7], and Kallisto 0.44.0 [9]. These comparisons
were carried out using the default parameters of each
software. We used binary-distributed files for bowtie/eX-
press. Matataki, Sailfish, Kallisto, and RSEM were com-
piled with GCC 5.2.0. For this study, all running times
and memory usages were measured in cluster machines.
Each cluster node had two Intel® Xeon® CPU Silver 4116
2.10 GHz and 96 GB RAM.

Test dataset
We used RefSeq and gene2refseq [20] to create a refer-
ence database, which were downloaded on June 26, 2015
from the Human Genome Center, a mirror site of the
National Center for Biotechnology Information. In the
human RefSeq, 25,894 genes and 55,100 transcripts were
available at the time of download. We also used GEN-
CODE version 28 to create a reference database [21].
To examine the quantification quality, we used

ERR188125. This run is a part of ERS185259, “RNA-se-
quencing of 465 lymphoblastoid cell lines from the 1000
Genomes.” The length of reads in ERR188125 was 75,
and the number of reads was 28,810,860.
We also compared quantification quality using simula-

tion data. To create the simulation data, we used the
rsem-simulate-reads included in RSEM. The simulation
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models were created by quantifying ERR188074,
ERR188125, ERR188171, and ERR188362 with RSEM.

Results & Discussion
Statistics of indexed k-mers
Number of genes with indexed k-mers
We first checked the number of genes with indexed
k-mers in human, mouse, and Arabidopsis genomes when
the parameter k in the considered k-mer was varied from
10 to 100. To effectively compare the results for different
species, the numbers were converted to the ratio of
genes (i.e., the gene coverage), which are shown in
Additional file 1: Figure S1A. For k = 10, only a few
human genes had unique k-mers in all species, while
for k = 14, 96.8% of the human genes in RefSeq had
indexed k-mers. The coverage of indexed genes reached a
maximum at k = 34. However, k values that were too large
resulted in lower gene coverage because some genes had
only small transcripts.
Similarly, we evaluated the nucleotide coverages of

indexed k-mers, ratio of the number of total indexed pos-
ition for each transcript, and total length of the transcripts
(see Additional file 1: Figure S1B). For the human data, k
= 14 did not allow for sufficient coverage of sequences
with indexed k-mer regions, and the nucleotide coverage
almost reached its maximum at k = 18. This observation
suggested that k should be larger than 18 to cover a suffi-
cient number gene-specific gene regions. Similar trends
were observed in the mouse and Arabidopsis datasets. Be-
cause the average length of genes in Arabidopsis is smaller
than that in human and mouse genes, both gene and nu-
cleotide coverage for Arabidopsis at k = 10 and 12 were
better than those for the other species.

Distribution of indexed k-mers in human transcript sequences
To check the distribution of unique k-mers in each gene,
we calculated the nucleotide coverage for each human
gene at k = 32 (see Additional file 1: Figure S2A). As a re-
sult, most human genes (86.4%) had a coverage rate higher
than 50, and 61% of the human genes had coverage rates
higher than 90%, indicating the existence of successive
unique k-mers. As this pattern is reminiscent of islands in
the sea, we call such a continuous region of nucleotides
made from a successive index of k-mers a “cover island”.
To clarify the nature of the cover islands, we checked

the number of cover islands and their lengths for each
gene (see Additional file 1: Figure S2B, S2C). As a result,
60% of the genes had only one or two cover islands, and
the median length of second longest cover island for
each gene (327) was much smaller than that of the lon-
gest cover island (1262). We determined the existence of
successive continuous nucleotides of unique k-mers,
designated as “cover islands”, and found that most genes
have a main cover island and several small satellite cover

islands. Because the lengths of the longest cover islands
for each gene were sufficiently longer than the k and the
step size S used in this study, they did not interfere with
the quantification accuracy when introducing the step size
S. It may be noteworthy that all unique k-mers should be
listed in the index to implement the idea of step size, indi-
cating that fast heuristic methods such as bloom filter [22]
cannot be applied to build the index, as such methods
could miss some hits of unique k-mers. Therefore, al-
though introduction of the step size parameter will require
a longer time to construct the indexes, for large-scale
meta-analyses, the speed of quantification is more import-
ant than the speed of building the index. Importantly, our
method depends on the quality and completeness of the
transcript database. For this assessment, we used RefSeq
instead of GENCODE, because GENCODE has less reli-
able transcripts that are not our target [23].

Comparison of quantification quality using simulation data
We also compared TPM among eXpress, RSEM, Sailfish,
Kallisto, and our method using simulation data. In this
comparison, we used k = 32, S = 12, and M = 2 for Mata-
taki, and default parameters were used for the other
methods. The results (Additional file 1: Figure S3, Fig. 1)
indicated that our method had the second best perform-
ance with respect to correlation (Additional file 1: Figure
S3A, C, E, G and I; Fig. 1a except MatatakiSubset) and the
minimum absolute mean difference among alignment free
methods (Additional file 1: Figure S3B, D, F, H and J; Fig. 1b
except MatatakiSubset). Because RSEM had the best per-
formance for both correlation and error, using the result
from this alignment-based method would be the best
choice to evaluate prediction performance if the calculation
costs are acceptable. In this analysis, we used all genes;
however, some genes did not have any indexed k-mers,
which cannot be managed by our method. Therefore, as a
practical reference, we have provided the results obtained
when excluding the genes without any indexed k-mers in
Fig. 1a and b as the MatatakiSubset. Since we used RSEM’s
RNA-Seq simulator for this evaluation, comparison with
RSEM was not appropriate. Therefore, we used eXpress to
compare the results with real data, which emerged as the
best performance tool aside from RSEM and our method.

Comparison of quantification quality using real data
Comparison of TPM
Figure 2 shows the comparisons of TPM values obtained
with our method and eXpress for different k values. Our
method gave similar TPM values for all k values, and lar-
ger k values provided better Spearman correlation coeffi-
cient (SCC) values, reaching up to 0.949 with k = 56.
These results indicated that higher k values are prefera-
ble for better estimation; however, a large k is not always
the best choice for a given analysis. For example, in the
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Short Read Archive, 9.2% of human RNA-Seq data have
reads with a length shorter than 50. Accordingly, to
cover 99% of human RNA-Seq data, k should be smaller
than 34. Therefore, we used k = 32 in the following ana-
lyses, for which the SCC of TPM values obtained be-
tween our method and eXpress was 0.931. We summed
the TPM values of a given gene for comparison with
Matataki’s TPM.
We also determined the effect of the correlation of

TPM values between eXpress and Matataki when chan-
ging the step size parameter S from 1 to 16 with a step of
4 (see Additional file 1: Figure S4). Overall, larger S values
produced better correlations based on SCC values, sug-
gesting that introducing the step size parameter S can re-
duce accidental matches of indexed k-mers with short
reads. Usually, an indexed k-mer is matched in a succes-
sive way and forms a few cover islands, whereas accidental
matches will show a different pattern and can therefore be
eliminated by skipping all matches. Similar to the consid-
erations for selecting k values, an S value that is too large
will be problematic; therefore, we used S = 12 for the fol-
lowing analyses as a representative value showing a suffi-
cient degree of correlation with the existing method.

We further checked the effects of the accept-count M
parameter by changing it from 1 to 4 (Additional file 1:
Figure S5). This parameter was introduced with the aim of
avoiding the mis-assignment of some reads to genes due
to accidental matches between indexed k-mers and the
reads. We found that the SCC value was better with M > 1
than with M = 1, indicating that some reads were actually
counted as mis-assigned genes. However, the SCC value
was worse at M = 4 than at M = 3. These results indicated
that a certain level of mis-assignment should be allowed
for more accurate quantification.
The mapping rate is also an important measure for

evaluating the performance of the method. We compared
mapping rates by varying k, S, and M. As expected, the
mapping rate became smaller as k became larger, because
the matching condition was stricter for larger k values (see
Additional file 1: Figure S6A). When k= 16, the mapping
rate exceeded the rate of bowtie, indicating that k= 16 may
be too small to avoid accidental matches of indexed k-mers
and the resulting mis-assignment of the read to genes. In a
similar way, largerM values resulted in lower mapping rates,
as expected (Additional file 1: Figure S6C). In particular,
the mapping rate dropped rapidly at M = 4, suggesting that

Fig. 1 Summary of the results using simulation data. a Spearman correlation coefficient with the expected expression and estimated expression
values using each method. “Matataki” indicates the results of the proposed method, and “MatatakiSubset” indicates the results of the proposed
method without uncovered genes. To compare the gene-level expression profile and transcript-level expression profile, the sum of TPM by each
gene was calculated. b Means of absolute difference from the expected expression levels
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M = 4 may be too strict for these data. By contrast, S only
had a minimal effect on the mapping rates (Additional file 1:
Figure S6B), and selection of the S parameter was not prob-
lematic in this case. Thus, selection of the best combination
of k, step size S, and accept-count M is one of the problems
that must be addressed in implementing the method, which
will depend on the read length and experimental qualities.
When k= 32, the number of genes without indexed

k-mers was 717. The details of these uncovered genes are

shown in Table 1, and the full coverage list of transcripts is
shown in Additional file 3: Table S1. Half of the uncovered
genes were non-coding genes. Because non-coding genes
cannot be amplified in the translation step, a high copy num-
ber in the genome is required for functional activity. The
other half of the uncovered genes were protein-coding genes.
Noted that paralogous genes can be one of the causes of
finding non-unique k-mers. According to the HomoloGene
group, but only 21.1% of paralogous genes were uncovered.
(see Additional file 3: Table S2). We also performed enrich-
ment analysis of the uncovered genes with TargetMine [24],
which revealed five biological-process Gene Ontology (GO)
terms (Additional file 3: Table S3) and four molecular func-
tion GO terms (Additional file 3: Table S4) that were signifi-
cantly enriched. Since genes related to ubiquitin and defense
response have many paralogous genes, these GO terms were
particularly enriched.

Comparison of CPU time and memory usage
We compared the CPU time and memory usage of six
existing methods with those of Matataki using real data
in four runs, ERR188074, ERR188125, ERR188171, and
ERR188362. In this comparison, we used k = 32, S = 12,
and M = 3 as the parameters. The results confirmed that
our method was much faster than the alignment-based
methods bowtie without quantification, RSEM, and

Fig. 2 Comparison of TPM when k was varied. The x-axis shows the TPM values of eXpress, the y-axis shows the TPM values of our method, and
the color indicates the indexed k-mer coverage of each gene when changing k from 16 to 56 with a step of 8

Table 1 Details of the uncovered genes

Type of Gene Number of
uncovered genes

Total number
of genes

Percentage of
uncovered genes

Non-coding RNA 393 6250 6.3%

MicroRNA 233 1880 11.9%

Ribosomal RNA 19 21 90.5%

Small nuclear
RNA

35 109 32.1%

Small nucleolar
RNA

45 390 11.5%

Other
non-coding RNA

61 3850 1.6%

Pseudo-gene 21 927 2.7%

Protein-coding
gene

303 18,720 1.6%

Paralogous gene 137 505 27.1%
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eXpress. Matataki was twice as fast as the alignment-free
methods Sailfish and Kallisto (Table 2, Fig. 3). With re-
spect to memory usage, Matataki used 3.5 GB RAM,
while the other methods used 3.8 GB or more RAM. It
should be noted that Matataki was also faster than gzip
(~ 55 s) and bzip2 (~ 285 s).

It should be noted that our approach is not designed for
precise quantification of transcripts and minor expressed
genes. The speed of quantification takes priority over these
limitations in our method because increasing the amount
of RNA-Seq data improves the value of reanalysis, such as
the quality of gene co-expression network [17].

Table 2 Comparison of running times among methods

Run accession ERR188074 ERR188125 ERR188171 ERR188362

Run and mapping statics Number of reads 31,540,813 28,810,860 30,386,179 26,255,381

Length of reads 75 75 75 75

Bowtie mapping rate 84.7% 80.2% 84.6% 80.4%

CPU time comparison (s)a eXpress 14,546.6 24,036.1 13,429.5 23,103.9

RSEM 22,700.6 20,545.9 21,753.1 18,842.2

Bowtie 1487.8 1477.5 1472.6 1319.5

Sailfish 299.0 281.0 294.2 285.5

Kallisto 138.7 144.2 136.7 129.5

Matataki 57.2 46.4 43.9 42.5

Acceleration rate compared
with existing methods

eXpress 254 517 305 543

RSEM 397 442 495 443

Bowtie 26.0 31.8 33.5 31.0

Sailfish 5.23 6.05 6.69 6.71

Kallisto 2.43 3.107 3.11 3.05
aValues represent the median for 10 measurements

Fig. 3 Comparison of CPU time for different methods
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Expected use-cases and limitations
Since Matataki was designed with the objective of im-
proving the speed of quantifying RNA-Seq data, the ac-
curacy of quantification can be worse than that of other
methods. Therefore, Matataki is suitable for large-scale
reanalysis such as searching similar gene expression
profiles or gene co-expression. As shown in Additional
file 1: Figure S7, a larger number of samples in gene
co-expression improves the accuracy of GO term pre-
diction. Since the amount of RNA-Seq data is rapidly
increasing in public databases, it is important to in-
crease the number of reanalyzed samples to determine
gene co-expression patterns.
Nevertheless, Matataki is not suitable for common

RNA-Seq purposes because other methods are suffi-
ciently fast and provide better accuracy. For example, a
single nucleotide substitution has larger effects in
Matataki than in other methods, because even a single
point substitution changes the k-mer for 2 k − 1 bases,
which ultimately affects the number of k-mers in a
transcript and calculation of the TPM value. It was also
previously reported that transcript-level abundance in-
ference improves gene-level expression estimation, both
theoretically [25] and practically [18]. Another weak
point of this method is that the ratio of uncovered
genes was over half when we used GENCODE version
28 [21] to create the index, because the comprehensive
GENCODE annotation includes many incomplete tran-
scripts without a start codon and stop codon (see Add-
itional file 3: Table S5). Since Matataki requires unique
k-mers between genes and common k-mers among tran-
scripts, major transcripts should be selected as reference
transcripts. For these reasons, the expected use-case of
Matataki is in the large-scale reanalysis of RNA-Seq data,
such as for gene co-expression or searching similar ex-
pression profiles.

Conclusion
We present Matataki, a much faster and user-friendly
quantification method for RNA-Seq data analysis. This
method archived the data at a rate more than 300 times
faster than achieved with the alignment-based method
bowtie/eXpress and two times faster than that achieved
with other alignment-free methods, and had smaller
memory requirements. In addition, Matataki had shorter
calculation times, comparable quantification accuracy
levels to alignment-based methods, and better accuracy
than alignment-free methods. Because Matataki was
even faster than decompressing gzip and bzip2, the im-
proved computational cost and speed of Matataki re-
solves one of the major limitations of RNA-Seq analyses,
shifting the bottleneck to decompression from mapping
reads.

Additional files

Additional file 1: Supplementary methods (pseudocode and mapping)
and figures. (DOCX 1581 kb)

Additional file 2: Source code of Matataki. (GZ 7760 kb)

Additional file 3: Table S1. Numbers of indexed k-mer for each transcript.
Table S2. List of paralogous genes and number of indexed k-mers. Table S3.
List of enriched biological process GO terms in uncovered genes. Table S4.
List of enriched molecular function GO terms in uncovered genes. Table S5:
Details of the uncovered genes in GENCODE transcripts. (XLSX 3579 kb)
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