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Abstract

Background: Changes in spatial chromatin interactions are now emerging as a unifying mechanism orchestrating
the regulation of gene expression. Hi-C sequencing technology allows insight into chromatin interactions on a
genome-wide scale. However, Hi-C data contains many DNA sequence- and technology-driven biases. These biases
prevent effective comparison of chromatin interactions aimed at identifying genomic regions differentially
interacting between, e.g., disease-normal states or different cell types. Several methods have been developed for
normalizing individual Hi-C datasets. However, they fail to account for biases between two or more Hi-C datasets,
hindering comparative analysis of chromatin interactions.

Results: We developed a simple and effective method, HiCcompare, for the joint normalization and differential
analysis of multiple Hi-C datasets. The method introduces a distance-centric analysis and visualization of the
differences between two Hi-C datasets on a single plot that allows for a data-driven normalization of biases using
locally weighted linear regression (loess). HiCcompare outperforms methods for normalizing individual Hi-C datasets
and methods for differential analysis (diffHiC, FIND) in detecting a priori known chromatin interaction differences
while preserving the detection of genomic structures, such as A/B compartments.

Conclusions: HiCcompare is able to remove between-dataset bias present in Hi-C matrices. It also provides a user-

friendly tool to allow the scientific community to perform direct comparisons between the growing number of pre-
processed Hi-C datasets available at online repositories. HiCcompare is freely available as a Bioconductor R package

https://bioconductor.org/packages/HiCcompare/.
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Background

The 3D chromatin structure of the genome is emerging
as a unifying regulatory framework orchestrating gene
expression by bringing transcription factors, enhancers
and co-activators in spatial proximity to the promoters
of genes [1-4]. Changes in chromatin interactions shape
cell type-specific gene expression [5-8], as well as misre-
gulation of oncogenes and tumor suppressors in cancer
[9-11] and other diseases [3]. Identifying changes in
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chromatin interactions is the next logical step in under-
standing genomic regulation.

Evolution of Chromatin Conformation Capture (3C)
technologies into Hi-C sequencing now allows the detec-
tion of “all vs. all” long-distance chromatin interactions
across the whole genome [6, 12]. Soon after public Hi-C
datasets became available, it was clear that technology-
and DNA sequence-driven biases substantially affect
chromatin interactions [13]. The technology-specific
biases include the cutting length of a restriction enzyme
(HindIll, Mbol, or Ncol), cross-linking conditions,
circularization length, etc. The DNA sequence-driven
biases include GC content, mappability, nucleotide com-
position. Discovery of these biases led to the develop-
ment of methods for normalizing individual datasets [6,
13-16]. Although normalization of individual datasets
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improves reproducibility within replicates of Hi-C data
[13, 15], these methods do not consider biases between
multiple Hi-C datasets.

Accounting for the between-dataset biases is critical
for the correct identification of chromatin interaction
changes between, e.g., disease-normal states, or cell
types. If between dataset biases (due to technology,
batch effects, processing, etc.) are left unchecked, biases
can be mistaken for biologically relevant differential in-
teractions. While DNA sequence-driven biases affect
two datasets similarly (e.g,, GC content of genomic re-
gions tested for interaction differences is the same),
technology-driven biases are poorly characterized and
affect chromatin interactions unpredictably between
Hi-C libraries. Importantly, another source of chromatin
interaction differences stems from large-scale genomic
rearrangements, such as copy number variations [17], a
frequent event in cancer genomes [18]. Accounting for
such biases is needed for the accurate detection of differ-
ential chromatin interactions between Hi-C datasets.

We developed an R package, HiCcompare, for the
joint normalization and comparative analysis of proc-
essed Hi-C datasets. Our method is based on the obser-
vation that chromatin interactions are highly stable [7,
19-21], suggesting that the majority of them can serve
as a reference to build a rescaling model. We present
the novel concept of the MD plot (Minus, or difference
vs. Distance plot), a modification of the MA plot [22].
The MD plot allows for visualizing the differences be-
tween interacting chromatin regions in two Hi-C data-
sets while explicitly accounting for the linear distance
between interacting regions. The MD plot concept nat-
urally allows for fitting the local regression model, a pro-
cedure termed loess, and jointly normalizing the two
datasets by balancing biases between them. The
distance-centric view of chromatin interaction differ-
ences allows for detecting statistically significant differ-
ential chromatin interactions between two Hi-C
datasets. We show improved performance of differential
chromatin interaction detection when using the jointly
vs. individually normalized Hi-C datasets. Our method is
broadly applicable to a range of biological problems,
such as identifying differential chromatin interactions
between tumor and normal cells, immune cell types, and
normal tissues/cell types.

Implementation

HiCcompare is implemented as a Bioconductor R pack-
age. All functions are written in R and vectorized where
possible for the greatest computational speed. The big-
gest advantage of loess - the ability to model any biases
in the data without explicitly specifying them - comes at
the cost of increased computation. The Bioconductor
BiocParallel package was used to implement parallel
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processing for the normalization and comparison steps
on a chromosome-specific basis. If enough cores are
available, such as on a computing cluster, each chromo-
some’s normalization and comparison steps can be sent
to their own processor for analysis, improving the total
run time (Additional file 1: Figure 3.1).

Additionally, the package includes vignettes with test
data and documentation for all functions, as well as code
to generate the results referenced in this manuscript.
The general workflow of a HiCcompare analysis is dia-
grammed in the flow chart (Fig. 1). HiCcompare can be
run interactively on a laptop to analyze a single pair of
chromatin interaction matrices or utilized in a script for
analyzing the entire genome in parallel on a cluster.
HiCcompare is released under the MIT open-source
software license.

Results and discussion

Hi-C data representation and properties

HiCcompare focuses on the joint analysis of multiple
Hi-C datasets represented by chromatin interaction
matrices, where rows and columns represent genomic
regions (bins), and cells contain interaction counts (fre-
quencies). A chromosome-specific Hi-C matrix is a
square matrix of size N x N, where N is the number of
genomic regions (bins) of size X on a chromosome. The
size X of the genomic regions defines the resolution of
the Hi-C data. Each cell in the matrix contains an inter-
action frequency IF; ; where i and j are the indices of
the interacting regions. The values on the diagonal trace
represent interaction frequencies (IFs) of self-interacting
regions. Each off-diagonal trace of values represents
interaction frequencies for a pair of regions at a given
unit-length  distance. The unit-length distance is
expressed in terms of resolution of the data (the size of
genomic regions, typically measured in millions (thou-
sands) of base pairs, MB (KB)). The concept of consider-
ing interaction frequencies at each off-diagonal trace is
central for the joint normalization and differential chro-
matin interaction detection (Fig. 2).

The interaction frequency drops as the distance between
interacting regions increases. Numerous attempts have
been made to parametrically model the inverse relationship
between chromatin interaction frequency and the distance
between interacting regions. However, Hi-C data are af-
fected by technology- and DNA sequence-driven biases
[13-15], unpredictably altering chromatin interaction fre-
quencies. Consequently, parametric approaches fail to
model interaction frequencies across the full range of dis-
tances [12], confirmed by our observations (Additional file
1: Figure 2.1). For this study, data in the sparse upper tri-
angular format from the GM12878, K562, and RWPEL1 cell
lines were used (Supplemental Methods, Additional file 1).
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Fig. 1 HiCcompare flow chart. Processed Hi-C libraries in the form of
sparse upper triangular matrices are the starting data type for
HiCcompare. Data is then plotted on the MD plot, and a loess
model is fit to remove bias between the libraries. Next, the filtering
threshold needs to be determined. Finally, the libraries can be
compared for differences and plotted again on the MD plot

Regions across chromosome 1

Regions across chromosome 1

Fig. 2 Distance-centric (off-diagonal) view of chromatin interaction
matrices. Each off-diagonal vector of interaction frequencies
represents interactions at a given distance between pairs of regions.
Triangles mark pairs of genomic regions interacting at the same
distance. Data for chromosome 1, K562 cell line, 50 KB resolution,
spanning 0-7.5 Mb is shown

It is also important to note that HiCcompare is designed
to analyze pre-processed Hi-C data, unlike many other tools
which require the user to deal with the raw sequencing
data. There are a growing number of Hi-C libraries, already
processed into matrix format, available for download on
many public repositories such as GEO. HiCcompare is spe-
cifically designed to make it easy for the user to perform
their own analyses on these pre-processed Hi-C matrices.

Visualization of the differences between two Hi-C
datasets

The first step of the HiCcompare procedure is to con-
vert the data into what we refer to as an MD plot. The
MD plot is similar to the MA plot (Bland-Altman plot)
commonly used to visualize gene expression differences
[22]. M is defined as the log difference between the two
data sets M = log,(IF,/IF,), where IF; and IF, are inter-
action frequencies of the first and the second Hi-C data-
sets, respectively. D is defined as the distance between
two interacting regions, expressed in unit-length of the
X resolution of the Hi-C data. In terms of chromatin
interaction matrices, D corresponds to the off-diagonal
traces of interaction frequencies (Fig. 2). Because chro-
matin interaction matrices are sparse, i.e., contain an ex-
cess of zero interaction frequencies, and it cannot be
determined if a zero IF represents missing data or a true
absence of interaction, by default only the non-zero pair-
wise interaction are used for the construction of the MD
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plot. However, if the user wishes to include partial zero
interactions, i.e. with a zero value in one of the matrices
and a non-zero IF in the other the option is available.

Elimination of biases in jointly, but not individually,
normalized Hi-C data

Discovery of biases in Hi-C data led to the development
of numerous methods for normalizing individual data-
sets [6, 14-16]. Although normalization of individual
datasets improves reproducibility of replicated Hi-C data
[13, 15], these methods focus on correcting biological
and internal biases and do not explicitly account for
biases between multiple Hi-C datasets. When the goal is
to compare two Hi-C libraries it can be assumed that
many of these internal and biological biases affect both
libraries similarly and thus their correction is less im-
portant. It is the between-dataset biases that are particu-
larly problematic when comparing Hi-C datasets
between biological conditions (Section 4, Additional file
1). To detect chromatin interaction differences due to
biology, not biases, it is critical to use a normalization
method that removes the between-dataset biases.

To assess the between-dataset biases, we visualize two
Hi-C datasets on a single MD plot. Visualizing replicates
of Hi-C data (Gm12878 cell line) showed the presence of
biases in the individually normalized datasets (Fig. 3 and

Page 4 of 10

Section 4, Additional file 1), suggesting that the perform-
ance of individual normalization methods may be
sub-optimal when comparing multiple Hi-C datasets.

To account for between-dataset biases, we developed a
non-parametric joint normalization method that makes
no assumptions about the theoretical distribution of the
chromatin interaction frequencies. It utilizes the
well-known loess (locally weighted polynomial regression)
smoothing algorithm - a regression-based method for fit-
ting simple models to segments of data [23]. The main ad-
vantage of loess is that it accounts for any local
irregularities between the datasets that cannot be modeled
by parametric methods. Thus, loess is particularly appeal-
ing when normalizing two Hi-C datasets, as the internal
biases in Hi-C data are poorly understood (Fig. 3).

The HiCcompare joint normalization procedure pro-
ceeds by first plotting the data on the MD plot, then
loess regression [23] is performed with D as the pre-
dictor for M. The fitted values are then used to
normalize the original IFs:

log, (ﬁ:w) = log,(IF1p) + f(D)/2
log, (ﬁ'"zD) = log,(IFap)-f(D)/2

where fiD) is the predicted value from the loess regres-
sion at a distance D. The log,(IF) values are then anti-

Distance

Distance

Fig. 3 MD plot data visualization and the effects of different normalization techniques. MD plots of the differences M between two replicated
Hi-C datasets (GM12878 cell line, chromosome 11, 1 MB resolution, Dpnll and Mbol restriction enzymes) plotted vs. distance D between
interacting regions. a Before normalization, b after loess joint normalization, ¢ ChromoR, d Iterative Correction and Eigenvector decomposition
(ICE), e Knight-Ruiz (KR), f Sequential Component Normalization (SCN). The general shift of the data above M =0 is due to one of the Hi-C
libraries having more total reads. The trends emphasized by the loess curve imposed on the data are due to distance dependent between-
dataset biases which only HiCcompare's joint normalization procedure can successfully remove
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logged to obtain the normalized IFs. Note that for both
Hi-C datasets the average interaction frequency remains
unchanged, as [F; is increased by the factor of fiD)/2
while IF, is decreased by the same amount. Any normal-
ized IFs with values less than one are not considered in
further analyses. The joint normalization was tested
against five methods for normalizing individual Hi-C
matrices, ChromoR [24], ICE [15], KR [16], SCN [14],
MA [25] (Supplemental Methods, Additional file 1).

Existing Hi-C data at high resolutions (e.g., 10 kb)
still suffer from a limited dynamic range of chromatin
interaction frequencies, with the majority of them being
small or zero, especially at large distances between
interacting regions. This sparsity places limits on loess
joint normalization, as it builds a rescaling model from
many non-zero pairwise comparisons. A way to allevi-
ate this limitation is to consider interactions only
within a range of short interaction distances, where
genomic regions interact more frequently, and the pro-
portion of zero interaction frequencies is the lowest.
Our evaluation of loess joint normalization showed it
performs best at resolutions between 1 MB and 50 KB
(Section 4 & Section 7, Additional file 1). The issue of
sparsity limiting the usefulness of loess normalization
will be alleviated as sequencing techniques continue to
improve and Hi-C datasets with deeper sequencing be-
come available.

Excluding potentially problematic regions from the joint
normalization

Some between-dataset biases may occur due to
large-scale genomic rearrangements and copy number
variants (CNVs), a frequent case in tumor-normal com-
parisons [18]. Similar to removing other biases, the joint
loess normalization removes CNV-driven biases by de-
sign, allowing for the detection of chromatin interaction
differences within CNV regions. However, CNVs intro-
duce large changes in chromatin interactions [17], which
may be of interest to consider separately. Therefore, un-
less cells/tissues with normal karyotypes are compared,
we provide optional functionality for the detection and
removal of genomic regions containing CNVs from the
joint normalization. The QDNAseq [26] R package is
used to detect and exclude CNVs from the HiCcompare
analysis. Alternatively, CNV regions can be detected sep-
arately and provided to HiCcompare as a BED file. Add-
itionally, the HiCcompare package includes the
ENCODE blacklisted regions for hgl9 and hg38 genome
assemblies, which can be excluded from further analysis.

Detecting differential chromatin interactions

After joint normalization, the chromatin interaction
matrices are ready to be compared for differences.
Again, the MD plot is used to represent the differences
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M between two normalized datasets at a distance D. The
jointly normalized M values are centered around 0 and
are approximately normally distributed across all dis-
tances (Supplemental Methods, Additional file 1). M
values can be converted to Z-scores using the standard
approach:

where M is the mean value of all M’s on the chromo-
some and o, is the standard deviation of all M values
on the chromosome and i is the ith interacting pair on
the chromosome.

During Z-score conversion, the average expression of
each interacting pair is considered. Due to the nature of
M, a difference represented by an interacting pair with
IFs 1 and 10 is equivalent to an interacting pair of IFs 10
and 100 with both differences producing an M value of
3.32. However, the average expression of these two dif-
ferences is 5.5 and 55, respectively. Differences with
higher average expression are supported by the larger
number of sequencing reads and are therefore more
trustworthy than the low average expression differences.
Thus, we filter out differences with low average expres-
sion by setting the Z-scores to 0 when average expres-
sion (A) is less than a user set value of A (Supplemental
Methods, Additional file 1). Filtering takes place such
that the M and oy, are calculated using only the M
values remaining after filtering. The Z-scores can then
be converted to p-values using the standard normal
distribution.

Analyzing Hi-C data for differences necessarily in-
volves testing of multiple hypotheses. Multiple testing
correction (False Discovery Rate (FDR)) is applied on a
per-distance basis by default, with an option to apply it
on a chromosomal basis. If a method other than FDR is
desired, all other standard multiple testing corrections
are available for the user to choose from.

As there is no “gold standard” for differential chroma-
tin interactions, we created such a priori known differ-
ences by introducing controlled changes to replicate
Hi-C datasets [27]. To introduce these a priori known
differences, we start with two replicates of Hi-C data
from the same cell type. It is assumed that any differ-
ences in these replicates are due to noise or technical
biases. Next, we randomly sample a specified number of
entries in the contact matrix. These sampled entries are
where the changes will be introduced. The IFs for each
of these entries in the two matrices are set to their aver-
age value between the replicates, and then one of them
is multiplied by a specified fold change. This introduces
a true difference at an exact fold change between the
two replicates. The benefit of using joint normalization
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vs. individually normalized datasets was quantified by
the improvement in power of detecting the pre-defined
chromatin interaction differences. Standard classifier
performance measures (Section “Availability and re-
quirements”, Additional file 1), summarized in the Mat-
thews Correlation Coefficient (MCC) metric, were
assessed. HiCcompare is able to detect most of the
added differences with a relatively low number of false
positives across the range of fold changes (Table 1, Sec-
tion “Availability and requirements”, Additional file 1).

Differential regions overlap with CTCF sites

We hypothesized that regions, detected as differentially
interacting, most likely represent biologically relevant
boundaries of topologically associated domains changing
between two conditions. As such, we investigated
whether differentially interacting regions are enriched in
CTCF binding sites, an insulator protein known to bind
at TAD boundaries [28]. To test that, we compared
Hi-C data from GM12878 and K562 cell lines at 100 MB
resolution using HiCcompare. A total of 2365 interac-
tions were identified as interacting differentially (FDR <
0.05) which represented 2783 distinct 100 KB genomic
regions. We found that a total of 130,675 CTCF binding
sites overlapped with these regions. The amount of over-
laps observed was significant (permutation p-value =
0.002), confirming our hypothesis that the differentially
interacting regions detected by HiCcompare play an im-
port biological role in chromatin structural organization.

Example HiCcompare analysis using mouse neuronal
differentiation

As an example case for the usage of HiCcompare, we
performed an analysis to compare the 3D structure of
the chromatin between mouse embryonic stem cells
(ESC), neural progenitor cells (NPC), and neurons. The
data was obtained from a study by Fraser et al. [29] de-
posited on GEO [GSE59027]. The Hi-C matrices for
each cell type were downloaded at 100 KB resolution
and read into HiCcompare. We performed three com-
parisons between the cell types, ESC vs. NPC, NPC vs.
neuron, and ESC vs. neuron. In each comparison, the
data were normalized, low average expression

Table 1 Evaluation of the effect of normalization on differential
chromatin interaction detection

Fold change HiCcompare MA ICE SCN KR ChromoR
2 0.847 0823 0835 0768 0748 0.149
3 0.973 0934 0802 0721 0764 0380
4 0.995 098 0953 0881 0868 0532

Matthews Correlation Coefficient of detecting 200 controlled differences in
jointly (HiCcompare) vs. individually normalized Gm12878 datasets,
chromosome 1, 1 MB resolution. Matrices were normalized with methods
corresponding to column labels; differences were detected using HiCcompare
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interactions were filtered out, and the differences be-
tween the cell types were detected. We also performed a
functional enrichment analysis of genes located in differ-
entially interacting regions.

As expected, the ESC vs. neuron had the largest num-
ber of differentially interacting regions at 951 (FDR<
0.05). The ESC and NPC had 279 differentially interact-
ing regions, and the NPC and neuron had only 127 dif-
ferentially interacting regions. These differences
expectedly suggest that the undifferentiated ESCs and
fully differentiates neuronal cells have many chromatin
interaction differences, while the intermediate neural
progenitor cells have less differences when compared
with either ESCs or neuron cells. These observations
suggest that the chromatin structure plays a key role in
the process of cell differentiation.

The enrichment analysis for the ESC vs. the neuron
found genes enriched in protein binding function, ion
channel regulator activity, and “Axon guidance” pathway
among others (Additional file 2). The enrichment of
these pathways outlines the ESC-to-neuron differenti-
ation processes that are governed by changes in the 3D
structure of the genome. When comparing the ESC and
NPC cells, genes were found to be enriched in
voltage-gated calcium channel activity, ion transporters,
and serotonin metabolic processes (Additional file 3).
The enrichment results between the NPC and neuron
had fewer results but included IgG receptor activity and
binding and cytoskeletal protein binding (Additional file
4). These results indicate that the changes in the chro-
matin structure contain functionally relevant genes for
the cell differentiation process.

The results of this HiCcompare analysis show that our
methods are capable of detecting biologically meaningful
differences in chromatin conformation when comparing
different cell types. Together with the results of Fraser
et al. [29], the HiCcompare results indicate that the cel-
lular differentiation process involves structural changes
of the chromatin, likely leading to the changes in gene
expression and the associated biological pathways.

Comparison with diffHiC

The diffHiC pipeline was designed to process raw Hi-C
sequencing datasets and detect chromatin interaction
differences using the generalized linear model frame-
work developed in the edgeR package [25]. We com-
pared the results of Hi-C data analyzed in the diffHiC
paper (human prostate epithelial cells RWPE1
over-expressing the EGR protein or GFP [18]) with the
results obtained by HiCcompare. Because diffHic takes
unaligned Hi-C data as input it was not possible to dir-
ectly compare our method to diffHic using introduced
known changes. An additional point to consider for the
use of diffHic is that since it is based on the negative
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binomial GLM methods of edgeR, it requires replicates
(or multiple samples per condition) in order to more ac-
curately estimate the negative binomial dispersion par-
ameter. Due to the high costs and relative newness of
Hi-C technology, many public datasets do not have any
(or very few) replicates thus hampering the estimation of
the dispersion factor.

To compare HiCcompare with diffHic we performed a
HiCcompare analysis on the RWPE1 Hi-C data [18]. This
was compared to the analysis performed in the diffHic
paper [25]. We performed the analysis at a 1 MB reso-
lution as described in the diffHic paper. diffHic detected a
total of 5737 significant differences (FDR <0.05), while
HiCcompare tended to be more conservative, detecting
680 differences (FDR < 0.05) and 5215 differences when
multiple testing correction was not applied (p-value <
0.05). Of the 680 differences, 208 overlapped with the re-
gions detected by diffHic. Surprisingly, although diffHiC
used CNV correction in their analysis, 2567 (44.7%) of the
detected differentially interacting regions overlapped with
CNV regions detected in our analysis, and/or blacklisted
regions. diffHic tended to detect differentially interacting
regions with smaller fold changes as compared to HiC-
compare, and at shorter distances between interacting re-
gions, while HiCcompare can detect differences across the
full range of distances (Section 6, Additional file 1). These
results suggest that detecting chromatin interaction differ-
ences represented in the MD coordinates, as implemented
in HiCcompare, may be useful in detecting large chroma-
tin interaction differences across the full range of dis-
tances, potentially having a more significant biological
effect.

Comparison with FIND

The recently published FIND tool uses a spatial Poisson
process to detect differences between two Hi-C experi-
mental conditions [30]. FIND is presented as a tool for
high-resolution Hi-C data and treats interactions as
spatially dependent on surrounding interactions. In
order to compare HiCcompare with FIND, we per-
formed a comparative analysis between Hi-C data from
K562 and GM12878 cells lines (Section 7, Additional file
1) as done in the FIND paper [30]. The maximum reso-
lution of each Hi-C matrix was calculated using the cal-
culate_map_resolution.sh function from Juicer [31].
Briefly, two replicates for each cell line were obtained
(see Methods), and the replicate contact matrices were
combined for the HiCcompare analysis. HiCcompare
was used to jointly normalize the data between the cell
lines and then detect differences. HiCcompare analyses
were performed at 1 MB, 100 KB, 50 KB, 10 KB, and
5 KB resolutions. Additionally, the analyses of GM12878
and K562 were used to compare the run times of HiC-
compare and FIND (Section 7, Additional file 1).
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The number of differences detected by HiCcompare at
5 KB resolution was much lower than the number FIND
detected (~ 150,000) [30]. The drop off of the number of
differential interactions detected at high resolution by
HiCcompare can be explained by the sparsity and the
limited dynamic range of interaction frequencies at 5 KB
resolution. Additionally, the large number of differences
detected by FIND at 5 KB resolution are questionable
given that the maximum resolution of the K562 and
GM12878 data was found to be ~ 39 KB and ~ 9 KB, re-
spectively (Section 7, Additional File 1).

The differentially interacting regions detect by HiC-
compare at different resolutions were intersected with
gene locations, and a KEGG pathway enrichment ana-
lysis was performed. The enrichment analysis showed
that many of the differential regions contained genes in-
volved in the immune system (Table 2). We also found
that the enrichment analyses of HiCcompare-detected
differences at each resolution were relatively consistent
further indicating the strength of HiCcompare at detect-
ing biologically relevant differences across data resolu-
tions. Despite the differences in resolution of data used
for differential analysis (5 kb for FIND and 50 kb - 1 Mb
for HiCcompare) the enrichment analysis of
HiCcompare-detected differences identified pathways re-
lated to the immune system, similar to the results of the
FIND analysis. These observations suggest that both
methods can detect biologically significant differences.

To compare the performance of FIND and HiCcom-
pare when a priori known differences were introduced
we used replicated data for GM12878 cells. The
GM12878 replicates are expected to contain minimal
differences, thus suitable for introducing a priori con-
trolled changes and applying both tools in order to de-
tect them. For the data to be entered into FIND, we
used the VC squared normalization method from Juicer
as described in the FIND paper and the raw data was en-
tered into HiCcompare. We performed this analysis at a
resolution of 1 MB (we encountered issues due to

Table 2 Gene enrichment results for HiCcompare analyses

Pathway 1 MB 100 KB 50 KB

Systemic lupus erythematosus 3.807e-06 6.302e-17 1.025e-02
Antigen processing and presentation 3.807e-06 6.808e-01 9.974e-01
Staphylococcus aureus infection 8.170e-03  2.354e-01 7.604e-01
Viral myocarditis 8.170e-03  1.038e-01 9.657e-01
Allograft rejection 8.170e-03 1.518e-01 9.974e-01
Viral carcinogenesis 3327e-02 3.65%9e-08 3.273e-01
Pathways in cancer 9.162e-01  2.236e-02 9.409e-01

KEGG pathways and their corresponding FDR-corrected p-values for the
enrichment analyses of HiCcompare-detected differences at 1 MB, 100 KB, and
50 KB resolutions. Differentially interacting regions detected by HiCcompare
were intersected with gene locations, and the overlapping genes were tested
for enrichment using EnrichR [37]
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extremely long run times of FIND when attempting
comparisons at higher resolutions) with fold changes of
2, 3, and 5 for the true changes. HiCcompare success-
fully detected the majority of the controlled changes
while FIND detected smaller differences and was missing
most of the introduced controlled changes (Section 7,
Additional File 1). Additionally, we found that the run
time of FIND on Hi-C matrices at resolutions between
100 KB and 10 KB was extremely long (>72 h) even
when run in parallel on 16 cores, while HiCcompare was
able to complete an analysis within minutes (Additional
file 1: Figure 3.1). These results further strengthen the
notion that HiCcompare detects large chromatin inter-
action differences potentially having a larger biological
impact on genome structure, and does it across the full
range of distances.

Preservation of A/B compartments

A/B compartments are the best known genomic struc-
tures that can be detected from Hi-C data [6]. To under-
stand the consequences of the joint vs. individual
normalization methods on the detection of A/B com-
partments we compared principal components defining
compartments in raw vs. normalized data. The concord-
ance of compartment detection was evaluated using
three metrics: 1) the Pearson correlation coefficient be-
tween the vectors of principal components (PCs) de-
tected from raw and normalized data, 2) the overlap of
signs of PCs defining A (positive) and B (negative) com-
partments, and 3) the Jaccard overlap statistics. A/B
compartments detected following joint normalization
were the most similar to those detected in the raw data
(Table 3). These results suggest that the joint HiCcom-
pare normalization preserves properties of Hi-C data
needed for the accurate detection of A/B compartments.

Summary and future directions

HiCcompare can be used to compare processed Hi-C li-
braries between two biological conditions. HiCcompare
represents a user-friendly method for the scientific com-
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genome while making use of publicly available datasets.
HiCcompare can also easily be integrated into the exist-
ing juicer [31], HiC-Pro [17], and other Hi-C
pre-processing pipelines for those generating and analyz-
ing new Hi-C experiments. A future extension of HiC-
compare is planned to make use of Hi-C experiments
where multiple replicates or samples are available for
each group.

Conclusions

This work introduces three novel concepts for the joint
normalization and differential analysis of Hi-C data, im-
plemented in the HiCcompare R package. First, we
introduce the representation of the differences between
two Hi-C datasets on an MD plot, a modification of the
MA plot [22]. Importantly, we consider the data on a
per-distance  basis,  allowing the  data-driven
normalization of global biases without distorting the
relative distribution of interaction frequencies of the
interacting regions. Second, we implement a
non-parametric loess normalization method that mini-
mizes bias-driven differences between the datasets.
There is compelling evidence that non-parametric
normalization methods, such as quantile- and loess
normalization, are particularly suitable for removing
between-dataset biases [32, 33], confirmed by our appli-
cation of loess to the joint normalization of Hi-C data.
Third, we develop and benchmark a simple but rigorous
statistical method for the differential analysis of Hi-C
datasets.

The importance of joint normalization when compar-
ing Hi-C datasets has been demonstrated using MA
normalization introduced in the diffHiC R package [25].
MA normalization uses a similar concept of representing
measures from two datasets on a single plot [25], except
it uses the Average chromatin interaction frequency as
the X-axis instead of the Distance. MA normalization
performed second to HiCcompare (Table 1 and Section
5, Additional File 1). This may be due to the power-law
decay of interaction measures leading to the limited dy-

munity to begin analyzing the differences in the 3D namic range of average chromatin interaction
Table 3 Similarity between A/B compartments detected following various normalization methods

Comparison Mean Absolute Correlation Mean Percentage Jaccard A Jaccard B
Loess vs. Raw 0.9954 0.8537 0.7971 0.7823
MA vs. Raw 0.9950 0.8539 0.7881 0.7706
ICE vs. Raw 0.9795 0.7850 06731 06277
KR vs. Raw 0.9489 0.7771 0.5945 0.5000
SCN vs. Raw 0.9309 0.8083 0.6134 0.5495
ChromoR vs. Raw 0.8093 0.6810 05210 0.4803

“Correlation” - Pearson correlation coefficient between principal components defining A/B compartments in raw vs. normalized Hi-C data; “Prop. Match Sign” - the
proportion of regions with matching signs defining A/B compartments; “Jaccard A/B” - Jaccard overlap statistics between A/B compartments, respectively. All

values represent averages over all chromosomes
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frequencies and making fitting a loess curve difficult. In-
stead, the more balanced representation of chromatin
interaction differences M (Y-axis) as a function of dis-
tance D (X-axis) improves the performance of the loess
fit for the joint normalization and the subsequent detec-
tion of chromatin interaction differences.

The discrepancy of differential chromatin interaction de-
tection between diffHiC and HiCcompare (Section 6, Add-
itional File 1) could arise from multiple factors. diffHiC’s
implementation of MA normalization favors differences at
shorter distances and small fold changes while HiCcom-
pare’s loess fitting through the MD plot allows for the de-
tection of large chromatin interaction differences across the
full range of interaction frequencies (Section 6, Additional
File 1). diffHiC operates on log counts per million
(logCPM) while HiCcompare uses log interaction frequency
counts. diffHiC uses enzyme cut sites to define bins when
partitioning the genome while HiCcompare uses fixed bin
sizes. diffHiC uses median inter-chromosomal interaction
frequency to filter low-abundance bin pairs while HiCcom-
pare filters based on average IFs of the chromosome being
considered. Finally, the RWPE1 data analyzed by diffHiC is
relatively sparse even at 1 MB resolution, potentially inter-
fering with HiCcompare’s statistical analyses. In summary,
diffHiC and HiCcompare may provide complementary
views on chromatin interaction differences, with HiCcom-
pare being better suited for removing the between-datasets
biases and the detection of biology-driven chromatin inter-
action differences.

In our comparison with FIND (Section 7, Additional
file 1), we found that HiCcompare performed better than
FIND on data at resolutions between 1 MB and 10 KB.
As most publicly available Hi-C data is too sparse to
make meaningful inferences at resolutions greater than
this, HiCcompare looks to be the better choice for de-
tecting differences on most currently available data. In
the case of extremely high-resolution Hi-C data, FIND
may be able to pull out more significant differences be-
tween two experimental conditions albeit at the expense
of significantly longer run times. Comparing our gene
enrichment results for GM12878 vs. K562 with those
presented in [30], both methods were able to detect dif-
ferences in regions involved in the immune system as
would be expected to occur for these cell types.

Despite the ability of Hi-C technology to simultan-
eously capture all genomic interactions, current reso-
lution of Hi-C data (1 MB - 1 KB) remains insufficient
to resolve individual cis-regulatory  elements
(~100b-1 KB). Alternative techniques, such as
ChiA-PET [34], Capture Hi-C [1] have been designed
to identify targeted 3D interactions, e.g., between pro-
moters and distant regions. These data require special-
ized normalization [35] and differential analysis [36]
methods. Our future goals include extending the loess
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joint normalization method for chromosome conform-
ation capture data other than Hi-C.

Availability and requirements

HiCcompare is available as an open-source R package
on Bioconductor and can be installed using the standard
Bioconductor installation procedures as described at
https://bioconductor.org/packages/HiCcompare/.  The
development of HiCcompare can be followed on GitHub
at https://github.com/dozmorovlab/HiCcompare. HiC-
compare is freely available under the MIT open-source
software license. HiCcompare is platform independent,
and the only requirements are the R and Bioconductor
computing environments.

Additional files

Additional file 1: Supplementary materials for the paper. This PDF file
contains supplemental methods (Section 1), a computation performance
evaluation of HiCcompare (Section 3), additional validation of methods
used in HiCcompare, and extended comparisons with diffHic and FIND
(Section 6 & 7). (PDF 5878 kb)

Additional file 2: Table of gene enrichmend results for ESC vs neuron.
This excel file contains a worksheet for the GO MF, GO BP, and KEGG
pathway analysis results for the gene enrichment analysis between the
ESC and neuron discussed in the results section. (XLSX 46 kb)

Additional file 3: Table of gene enrichment results for ESC vs NPC.
This excecl file contains a worksheet for the GO MF, GO BP, and KEGG
pathway analysis results for the gene enrichment analysis between the
ESC and NPC discussed the in the results section. (XLSX 15 kb)

Additional file 4: Table of gene enrichment results for NPC vs Neuron.
This excecl file contains a worksheet for the GO MF results for the gene
enrichment analysis between the NPC and Neuron. The GO BP and KEGG
pathway analysis did not return any significant results and thus are not
included here. (XLSX 11 kb)
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