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Abstract

Background: Reproducibility of hits from independent CRISPR or siRNA screens is poor. This is partly due to data
normalization primarily addressing technical variability within independent screens, and not the technical differences
between them.

Results: We present “rscreenorm”, a method that standardizes the functional data ranges between screens using
assay controls, and subsequently performs a piecewise-linear normalization to make data distributions across all
screens comparable. In simulation studies, rscreenorm reduces false positives. Using two multiple-cell lines siRNA
screens, rscreenorm increased reproducibility between 27 and 62% for hits, and up to 5-fold for non-hits. Using
publicly available CRISPR-Cas screen data, application of commonly used median centering yields merely 34% of
overlapping hits, in contrast with rscreenorm yielding 84% of overlapping hits. Furthermore, rscreenorm yielded at
most 8% discordant results, whilst median-centering yielded as much as 55%.

Conclusions: Rscreenorm yields more consistent results and keeps false positive rates under control, improving
reproducibility of genetic screens data analysis from multiple cell lines.
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Background
Genetic screens for genome-wide perturbation of genes
are widely used in cell biology studies and drug target
discovery [1]. Unfortunately, independent study results
show limited reproducibility, often thought to arise from
extensive off-target effects and variable knock-down or
knock-out efficiencies [2]. However, studies also differ
intrinsically with respect to experimental design, read-
outs, assay lengths, transfection efficiencies, and data
processing. For example, effects of individual gene pertur-
bations, represented by different small-interference RNAs
(siRNAs) or guide RNAs (gRNAs), may be studied by
assessing cell depletion from a mixture of library features
(pooled screening format) or in separate wells of a micro-
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titer plate (arrayed screening format). All these aspects
can introduce technical noise in the data, which must
be corrected in order to yield reliable results. Here we
focus on screens using RNA interference (RNAi) [3] or
genome editing techniques [4] such as the CRISPR-Cas
system [5–7].
Correcting technical noise is particularly difficult in

studies that involve both technical replicates as well as
biological ones, for example involving multiple cell lines
and/or treatment effects. Statistical methods that cor-
rect for undesired variation within individual screens are
available [8, 9]. However, technical variability between
datasets remains, yielding for example cell line-dependent
functional ranges. Consequently, similar data values may
represent different phenotypes in different data sets,
hampering reproducibility of genetic screening results
[10–12]. Most currently available methods merely center
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each replicate regardless of assay controls, which fails to
guarantee that centered values represent similar pheno-
types. In particular, differences between biological repli-
cates, that may be observed as shifts between the data
distributions of two cell lines of the same tumor type, are
removed by replicate centering.
We propose a non-parametric normalization called

“rscreenorm”, a smart analysis pipeline that prepares data
of multiple and independently collected genetic screens
for statistical analysis by making their functional ranges
and distributions comparable. Rscreenorm reduces false
positive rates in hit lists, as we show in a simulation study,
in our siRNA screen data example involving genome-wide
as well as validation screens, and in publicly available
CRISPR-Cas screen data.

Methods
Motivation
Genetic screens yield functional data, in that theymeasure
a phenotype yielded by gene perturbations introduced by
RNA interference (RNAi) or genome editing. As such, an
essential part of these data are negative and positive assay
controls, which yield reference measurements for normal
and altered phenotypes, respectively.
A typical study design may involve both biological as

well as technical replicates. We call biological replicates
those corresponding to different cell lines of the same
tumor type. In contrast, technical replicates typically cor-
respond to the same individual cell lines and condition. In
what follows, “replicates” will refer to technical replicates,
whilst “screens” will refer to biological replicates involving
different cell lines.
Assay controls typically display variation across repli-

cates and, in case of arrayed screens, across the multiple
plates of screen replicates. This means that reference val-
ues for normal and lethal phenotypes, which define the
functional range of measurements, may be influenced
by experimental design and, specifically, may vary across
replicates, as illustrated in Fig. 1a. We will take into
account assay controls’ viabilities during preprocessing to
make data from multiple screens comparable, facilitating
interpretation and analysis.
The method involves the following steps:

i) compute lethality scores;
ii) compute core sets of values per replicate;
iii) compute and normalize quantiles for the core sets;
iv) extrapolate normalization to the core sets;
v) extend normalization to scores outside the core set.

Step i) makes functional ranges comparable across
replicates, and steps ii)-v) normalize viability values by
using a comparable part of the measurements’ distribu-
tions, while allowing for some screens to have higher

proportions of extreme data values. An overview of the
method is given in Fig. 1 and, in the following subsections,
we will explain each step in detail.
In what follows, we focus on cell viability as the phe-

notype of interest and we will refer to it as “phenotype”
and “cell viability” interchangeably, but we point out that
our method can be used for any given read-out of interest.
For any replicate k we will represent by Zik the cell via-
bility measured for an interference (siRNA) or a genome
modification i as part of a larger library of perturbations
(i = 1, . . . , n). In such cases, per-replicate cell viability
values {Zik}i must be interpreted in the context of cell
viability measured for replicate-specific assay controls,
negative

{
ZN
k

}
representing normal viability, and positive{

ZP
k
}
representing loss of viability, the latter indicating a

lethal phenotype.

i) Compute lethality scores
Per replicate of a screen, we compute a lethality score for
each data point, expressing differences between library
features and the median of negative controls per replicate,
relative to the difference between the medians of negative
and positive controls. In general, for a given library feature
i and replicate k, this can be written as:

Zik = observation for featurei, k−median negative controls
median positive controls−median negative controls

(1)

Resulting scores represent the phenotype (cell viability)
on the same scale, for all replicates of all screens. Features
with phenotypes similar to that of negative controls yield
scores around zero, whilst those with phenotype as lethal
as positive controls get scores around 1 (Fig. 1a-b). Thus,
lethality scores are standardized measurements that rep-
resent the phenotype on similar functional range across
replicates and cell lines (Additional file 1: Figure S1 and
S2). In case of arrayed screens, this range may be com-
puted per plate, thus using medians of controls per plate,
naturally correcting for plate effects (Fig. 2).
While lethality scores make functional ranges compara-

ble, considerable variability between screen replicates still
remains (Fig. 1b, purple lines). To reduce this, we first
choose per replicate a core of lethality scores representing
a range of phenotypes observed for all screens in similar
proportions, as detailed in the next subsection.

ii) Compute core sets of values per replicate
Lethality scores represent standardized cell viabilities,
produced by a mixture of biological signal (true viabil-
ity measurement) and technical noise. It is reasonable to
expect that each screen yields a range of lethality scores
that represent largely overlapping phenotypes with other
screens, except for extreme scores. Screens with more
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Fig. 1 Overview of methods steps. Schematic overview of rscreenorm steps. Illustrations use the arrayed whole-genome lethality siRNA screen on
cell line 786-O (3 replicates). a Raw (log2-transformed) viability empirical distributions, separately for library features, negative and positive controls,
with between-replicates differences in functional range and data distributions illustrated by pink-dashed and green-solid lines, respectively.
b Densities of lethality scores, representing the phenotype relative to the assay controls. These make data values and functional ranges more
comparable, but differences between data distributions (in purple lines) remain. c a core set of lethality scores (dark-gray dashed lines) is chosen per
replicate. d Distributions of rscreenorm scores, where most differences between replicates have been corrected for

a higher proportion of extreme lethality scores, display
data distributions with heavier upper tails. As such, one
would expect that lethality scores distributions for differ-
ent screens would be similar in their core, except possibly
for their tails, after technical noise is corrected away.
Thus, per replicate we will define the core set of lethality
scores as the values representing the range of phenotypes
likely to be observed in similar proportions across screens,
and thus excluding the upper tails. Note that some genetic
screens can yield extreme phenotypes corresponding to
both more lethality as well as increased proliferation, in
which case a core set excluding both tails is preferable –
we indicate how such a core set can be build in the
Additional file 1.
Per replicate, the distribution core is defined as the set

of scores representing the part of their distribution likely
to be similar, excluding the upper tail (see Fig. 1c and

Additional file 1). This makes sure that normalization
does not correct away possibly different proportions of
hits on the upper tail.
Specifically, per replicate k the core set

{
Zc
ik
}
of lethality

scores is formed by the scores satisfying Zik ≤ Zαk
k , where

Zαk
k represents the percentile of the lethality scores that is

smaller than αk% of the scores of replicate k, for some αk
such that 0 < α ≤ 1. In particular, if αk = 1, all lethality
scores are included in the core set. Note that the core set
is a set of values, not of features.
In order to construct such a core set, αk needs to be

fixed for each replicate. In a context where whole-genome
screens are produced for cell lines under the same condi-
tion, it is reasonable to expect that between 90 and 95%
of the entire phenotype range will be represented in all
screens in roughly the same proportions, so that a good
option is to choose αk = 0.95 for all replicates k =
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Fig. 2 Plate effects before and after rscreenorm. Removal of plate effects per replicate of an arrayed screen by rscreenorm. Boxplots of log2-raw
viability values (top) and rscreenorm scores (bottom) for replicate 1 of cell line SW1573. Plates 1-272 (from left to right) are displayed with the same
colours for negative controls (left boxes), sample siRNAs (middle boxes) and positive controls (right boxes). Plate 1 is coloured orange (left-most box
for each well type), and plate 272 is coloured pink (right-most box). The top graph displays -log2-raw data, to make boxes in both plots easily
comparable – so in all cases, values indicating more lethality are displayed higher than those corresponding to more viability. Vertical axis: top graph
has -log2-viability; bottom graph has rscreenorm scores (computed using the log2-intensity read-outs)

1, . . . ,K . However, if cell lines are screened under different
conditions, say before and after treatment, then αk may
be chosen according to the expected treatment effect. A
treatment effect expected to yield increased susceptibility
to genetic interference, for example leading to 20% lethal
hits, would require αk = 0.95 for the untreated cell lines,
and αk = 0.80 for the treated ones.
In some cases, there is no natural way of choosing αk .

Then we suggest constructing the core set using the dis-
tances between lethality scores and the assay controls.
This takes the phenotype into account, yielding inter-
pretable core sets. See the Additional file 1 for details.
Note that core sets may vary in size, in particular when

different proportions of scores on the tails are expected.
Therefore, the method must be able to consider different
set sizes.
After choosing core sets, we normalize the distributions

of lethality scores across screens and replicates to make
them comparable.

iii) Compute and normalize quantiles for the core sets
We apply quantile normalization to the core set distribu-
tions only, so as to preserve differences in the tails of each
replicate. However, this requires same size sets, whilst
core sets may vary in size. To overcome this, we represent
the range of values in the core set by a fixed set of quan-
tiles. Specifically, this involves replacing the core lethality
scores of each replicate by their {j/1000, j = 1, . . . , 1000}
quantiles, represented by

{
Zq
jk

}1000

j=1
, where Zq

j−1,k <

Zq
jk and k, j represent the replicate and the quantile,

respectively.
We subsequently apply quantile normalization by

replacing each core set quantile by the average of core set
quantiles across all samples:

Z̃q
j = 1

K

K∑

k=1
Zq
jk , j = 1, . . . , 1000, (2)



Bachas et al. BMC Bioinformatics  (2018) 19:301 Page 5 of 12

for each given j, where K represents the total number of
replicates from all data sets together. After normalizing
the

{
Zq
jk

}1000

j=1
, the normalization needs to be extended to

all values in the core sets.

iv) Extrapolate normalization to the core sets
A linear regression between original and normalized
quantiles is used to compute normalizing factors for the
scores in the core set. Specifically, we first compute:

Z̃q
jk = αk + βkZ

q
jk + εi, j = 1, . . . , 1000, (3)

for each k = 1, . . . ,K , yielding α̂k , β̂k , for each repli-
cate k. This essentially re-expresses the data rescaling
that resulted from the quantile normalization as a linear
regression, enabling us to apply it to the entire core set of
values.
Subsequently, for each score Zik within the core set{
Zc
ik
}
, the normalized value Znorm

ik can be computed
using:

Znorm
ik = α̂k + β̂kZik , k = 1, . . . ,K . (4)

v) Extrapolate normalization to scores outside the core sets
Scores outside the core set are shifted by the same amount
as the nearest score in the core. Let us represent by
Zmin
k ,Zmax

k the minimum andmaximum scores in the core
set

{
Zc
ik
}
, for each given replicate k. Then, for any Zik >

Zmax
k , the normalized score becomes:

Znorm
ik = α̂k+

(
β̂k − 1

)
Zmax
k +Zik , k = 1, . . . ,K . (5)

Similarly, for scores satisfying Zik < Zmin
k , the normalized

score becomes:

Znorm
ik = α̂k+

(
β̂k + 1

)
Zmin
k −Zik , k = 1, . . . ,K . (6)

This normalization results in a piecewise-linear trans-
formation of the lethality scores, since it consists of apply-
ing separate linear transformations to values within and
outside the core set range. With noise as much as possible
eliminated and phenotypic effects preserved, rscreenorm
yields scores that are comparable in terms of the core of
their empirical distributions across replicates (Fig. 1d).

Results
Simulation study
We ran a simulation study involving 6 cell lines, each being
screened in triplicate. Independently per replicate, we
generate 1000 lethality scores for library features, as well
as 200 for each of negative and positive controls. Interest
lies in finding library features that yield different pheno-
types between cell lines. All entries in the data matrix
are drawn from independent normal distributions: nega-
tive and positive controls with means 0 and 1, and both
with standard deviation 0.1. Library features are drawn

from a normal distribution with standard deviation 0.2,
each with a different mean μi(i = 1, . . . , 1000) such that
μi ∼ B(2, 6), per replicate. This beta distribution is asym-
metric to the left, with expected value 2/8 = 0.25, so
that most library features yield little lethality. The above
describes the setup used where library features display no
differential phenotype between cell lines in general, and
will be referred as the “no effect” setup.
We also simulated data with 20% of library features dis-

playing differential phenotype between cell lines. Specif-
ically, in this setup 200 features had observations for cell
lines 4, 5 and 6 generated with amean of 0.5, which we will
call the “group” effect. This will be referred as the “with
effect” setup.
To make the data more realistic, in both setups we also

introduced a stretch/contraction effect, which consisted
in multiplying the means of all lethality scores (library fea-
tures as well as positive controls) by a fixed value, per
replicate. Constants used here are: 0.7 (cell lines 1, 4)
and 1.4 (cell lines 3, 6). Data for cell lines 2, 5 was nei-
ther stretched nor contracted after simulation. The result
is visible on the lethality scores distributions (Additional
file 1: Figure S1: top-left and bottom-left graphs for no-
effect and with-effect setups, respectively). Note that this
effect is orthogonal to the group effect.
Rscreenorm corrects the stretch/contraction effect both

in the no-effect setup (Additional file 1: Figure S1,
top-middle graph), as well as in the with-effect setup
(Additional file 1: Figure S1, bottom-middle graph). In
the latter setup, the group effect is preserved, since the
warm-coloured empirical data distributions (representing
replicates of cell lines 4, 5 and 6) display a clear enrichment
of lethal phenotypes in their upper tail, compared with
the blue-green empirical data distributions(representing
replicates of cell lines 1, 2 and 3).
Subsequently, we simulated 1000 datasets for each of

the two setups above. Per dataset, a regression model was
used to find features with a group effect, i.e. that dis-
played differential phenotype between cell lines {1, 2, 3}
and {4, 5, 6}. This involved applying a Student’s t-test
to the regression coefficient representing the group per
library feature, and subsequently correcting the resulting
p-values for multiple testing using the false discovery rate
(FDR, [13]).
Rscreenorm yields results at or under the FDR-control

level, whilst the lethality scores yield false positives well
above that level. Indeed, in the no-effect setup, any feature
found by the model is a false positive and, as such, their
proportion should be around the FDR control level. This
is indeed the case with all rscreenorm data results (green
boxplots in top-right graph of Additional file 1: Figure S1).
In the with-effect setup, rscreenorm yields conservative
results, with false positive proportions below the FDR-
control levels (green boxplots in bottom-right graph of



Bachas et al. BMC Bioinformatics  (2018) 19:301 Page 6 of 12

Additional file 1: Figure S1). In both setups, results using
non-normalized lethality scores yield many more false
positives than the FDR-control level (blue boxplots in top-
and bottom-right graphs of Additional file 1: Figure S1).
Had we used classic quantile normalization instead of

rscreenorm, the group effect would have been corrected
away, and we would have reduced the power to find true
positives (Additional file 1: Figure S2).
The above simulation setup assumes that negative and

positive controls behave as expected, yielding responses
in accordance to their phenotypes. However, it is also of
interest to understand how the method works when con-
trols yield biased responses, which sometimes happens
due to technical reasons. We evaluated this by including
a bias on the positive controls’ means, which is orthogo-
nal to the group effect as is the stretch effect (Additional
file 1: Figure S3). Results showed that, when the bias leads
to a larger overlap between positive controls and library
features for at least some cell lines, using rscreenorm
yields more true positives than when controls are ignored
(Additional file 1: Figure S4). On the other hand, when the
bias leads to a smaller overlap between positive controls
and library features, ignoring the controls yields more
true discoveries than when using rscreenorm, similarly
to the case without bias. Note, however, that in all cases
only rscreenorm yields the false discovery proportions
within the expected range, whilst non-normalized lethal-
ity scores yield many more false discoveries than expected
(Additional file 1: Figure S4).
More details about the setup and the analysis results can

be found in Section 1 of the Additional file 1.

Example: siRNA screen data
We applied rscreenorm to genome-wide siRNA screens
[14–16] data of 7 human cell lines (see Additional file 1).
After centering each replicate around the negative con-
trols’ median, we could see that (log2-) measured viabil-
ities displayed considerable variability between cell lines:
the viability range width represented by the difference
between negative and positive controls’ medians varies
between 0.7 for one replicate of cell line VU-SCC-120 and
5.1 for replicate 3 of cell line 786-O (Additional file 1:
Figure S5). In addition, library siRNAs siUBB, siUBC
and siPLK1 consistently displayed lethal phenotype across
all cell lines and replicates, but yielded different log2-
viabilities depending on the cell line: for example, for
cell lines 786-O and VU1131 these values were below
-4 for all replicates, whilst for SW1573 and VU-SCC-
120 they were between -4 and -2 (Additional file 1:
Figure S5). Furthermore, arrayed siRNA screens typi-
cally display a plate effect (top graph in Fig. 2). Here we
point out that, if controls were ignored, the data would
display much variability between 3 replicates and cell
lines (Fig. 3a).

Remarkably, the plate effect influences measurements
of a plate’s wells in a similar way, so that library siRNAs,
negative and positive controls all display roughly the same
effect per plate (top graph in Fig. 2). Since negative and
positive controls yield the same phenotype on all plates,
these can be used to make functional ranges compara-
ble across plates. Indeed, if we consider plates 94–136, we
notice that viabilities of all well types are shifted upwards
by roughly similar amounts, and that this shift is corrected
by rscreenorm (bottom graph in Fig. 2). A similar associa-
tion between trends in viabilities of different well types is
seen for plates 190–203.
Rscreenorm’s lethality scores already represent simi-

lar phenotypes with comparable values, but differences
between replicates remain. Indeed, plate-specific func-
tional ranges for lethality scores are comparable across
plates and, thus, also between screens (Fig. 3b and
Additional file 1: Figure S6). In particular, lethality scores
for library siRNAs siUBB, siUBC and siPLK1 became
much more comparable, being all between 0.5 and 1.5
(Additional file 1: Figure S6). While this makes func-
tional ranges of different cell lines comparable, differences
between empirical distributions of lethality scores for
library siRNAs remain (Fig. 3b). We want to correct for
those, while allowing for some cell lines to display a larger
proportion of lethal hits, by means of heavier tails for the
library siRNAs empirical distributions.
We first chose the core set scores for normalization by

taking those lethality scores that were closer to negative
than to positive controls, using γ = 1 (see subsection
1.1 of the Additional file 1). This yielded varying inclusion
proportions of lethality scores (Additional file 1: Figure
S7) and, in some cases, the proportion achieved seemed
too low. For this reason, instead we constructed core
sets by taking 95% of the smallest lethality scores, which
resulted in considerably less variation between replicates
(Additional file 1: Figure S8), while preserving differ-
ences in lethal siRNA values across cell lines (Fig. 3a-c).
In particular, plate-specific effects are corrected for, and
functional ranges comparable (bottom graph in Fig. 2).
In contrast, the often used robust z-scores, which center
and standardize values per screen yielding per replicate
mean and variance 0 and 1 respectively, leave plate effects
unchanged (Additional file 1: Figure S9).
Subsequent validation screens showed that rscreenorm

yields better reproducibility of results than if robust z-
scores had been used. Specifically, two of these cell
lines (VU-SCC-120 and SW1573) were used in a sec-
ondary validation screen, based on 305 siRNAs then
selected using their primary screen z-scores. Normal-
ization using rscreenorm made again functional ranges
more comparable, and yielded more similar values for
lethal phenotypes (Fig. 4), which helps with later anal-
yses that include both cell lines data in a single model.



Bachas et al. BMC Bioinformatics  (2018) 19:301 Page 7 of 12

Fig. 3 Data distributions before and after rscreenorm. Lethality scores’ and rscreenorm scores’ empirical distributions of data corresponding to
multiple independent genetic screens. Upper panels show data of genome-wide siRNA screens, lower panels data of CRISPR-Cas screens data by
Hart et al. [17]. Lines in all panels represent density values for library features, per replicate. a Log2-transformed viabilities corrected for plate effects,
multiplied by -1 to facilitate visual comparison with lethality and rscreenorm scores. b Lethality scores prior to rscreenorm. c Rscreenorm scores.
d Hyperbolic-arc sine transformed cell counts per guide RNA, multiplied by -1 to facilitate visual comparison with lethality and rscreenorm scores.
e Lethality scores prior to rscreenorm. f Rscreenorm scores

In particular, log2-raw data for cell line SW1573 shows
compression compared with values for VU-SCC-120, and
this is corrected by rscreenorm, also making values for
lethal siRNAs comparable. Indeed, after using a regres-
sion model to compare the two cell lines based upon
either robust z-scores or rscreenorm data, rscreenorm
yielded a hit confirmation of 47% (91/194) of the primary
screen hits, 27% more than with commonly used robust
z-scores which only confirmed 37% (99/267) (Table 1).
The agreement between results of the genome-wide (pri-
mary) and validation (secondary) screens, represented
by the proportion of siRNAs with the same conclusion
in both screens, also improved with rscreenorm: using
robust z-scores only 34% (104/305) of the results were
in agreement, whilst using rscreenorm this was 55%
(169/305), representing a 62% increase (Table 1). For
not-significant results, only 14% (5/38) of the robust z-
scores’ primary screen not-significant siRNAs were also
found to be not significant in the secondary screen, whilst
this proportion is 5 times larger (70%, or 78/111) with
rscreenorm.

We conclude that rscreenorm yields better agreement
between hits/non-hits lists, obtained with our whole-
genome and validation siRNA screens.

Example: CRISPR-Cas screen data
To illustrate the broader applicability of our method, we
used publicly available CRISPR-Cas screen data of [17]
(see Additional file 1). Re-scaled but unnormalized data
displays considerable variability, both between cell lines,
as well as between replicates of the same cell line (Fig. 3d).
In addition, some of the guide RNAs suggested as positive
controls by the original authors do not yield a lethal phe-
notype at any time point (Additional file 1: Figure S10).
We selected for normalization only guide RNAs that yield
a lethal phenotype in at least 50 out of the 57 replicates
(see Additional file 1).
As with the siRNA screen data, lethality scores already

display empirical distributions more similar across cell
lines than raw (scaled) data (Additional file 1: Figure
S11 and S12), although considerable variability remains
between some of the replicates, notably of colon cancer
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Fig. 4 Validation siRNA screen data before and after rscreenorm. Boxplots for -log2-raw (left, where -log2 is used for better visual comparison with
rscreenorm scores) and rscreenorm (right) data per replicate of cell lines VU-SCC-120 (library siRNAs in red) and SW1573 (library siRNAs in blue), and
per well type (negative controls in light blue, positive controls in pink). Values for lethal library siRNAs siUBB, siUBC and siPLK1 are displayed as green
triangles

cell line HCT116_1. In addition, values for replicates of
retina epithelial cell line RPE1-TERT (RPE1) have con-
sistently higher counts than for other cell lines (Fig. 3d).
Since counts of both library guide RNAs as negative con-
trols are affected, it is clear that this is a technical artefact,
rather than a biological difference.

Table 1 Numbers of significant and not-significant siRNAs from
the primary whole genome siRNA screen (columns) and a
secondary validation screen (rows) on two cell lines using an
empirical Bayes model (FDR≤0.05) on either robust z-scores or
rscreenorm data

Primary screen

Robust z-scores Not significant Significant Total

Secondary screen
Not significant 5 168 173

Significant 33 99 132

Total 38 267 305

Rscreenorm

Secondary screen
Not significant 78 103 181

Significant 33 91 124

Total 111 194 305

The screens involved 21121 and 305 siRNAs each, respectively

Rscreenorm corrects for artefacts such as increased
variability as well as for artificially higher counts. After
applying rscreenorm using 95% of the lethality scores as
core set (Additional file 1: Figure S13), rscreenorm scores
displayed comparable data ranges and spread, while tail
differences that represent phenotypic effects (depletion)
are preserved (Fig. 3f and Additional file 1: Figure S14).
In contrast, median-centering of the data, as for example
done by MAGeCK for pre-processing [18], would neither
correct the larger variability of HCT116_1 replicates, nor
would it correctly center RPE1 replicates (Fig. 3d), sug-
gesting instead that guide RNAs yield more depletion in
other cell lines compared with RPE1.
Reproducibility is hampered if artefacts such as the

ones identified above are not adequately corrected. We
assessed this by comparing test conclusions involving
pairs of cell lines with one common cell line per pre-
processing method (see Additional file 1). Rscreenorm
produced higher agreement fractions between tests that
were not significant in both cell line pairs, as well as
lower disagreement fractions, when compared to median-
centering. In particular, when testing for a cell line effect,
lists of guide RNAs that were not significant yielded much
higher and less variable overlaps (at least 89%) when using
rscreenorm, compared to using median-centering (as low
as 33%; Fig. 5, left graph). In addition, the proportion
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Fig. 5 Agreement between hit lists using median-centering or rscreenorm. CRISPR-Cas screen data example, cell line effect: scatterplots of
concordance (left) and discordance (right) between lists of selected guide RNAs, with rscreenorm on the x-axis and median-centering on the y-axis

of discordant hits in lists (i.e. those leading to a signif-
icant result in one list and a not-significant in another)
was much lower (at most 8%) when using rscreenorm,
compared with median-centering (as large as 55%; Fig. 5,
right graph). Conclusions were similar when examining
the time effect, as well as the interaction between time
and cel line (Additional file 1: Figure S15). While we found
that the use of median-centering yielded a larger number
of selected hits, and often those also had larger overlaps
than when using rscreenorm, this was achieved at the cost
of greatly inflated false positive rates and reduced repro-
ducibility. As the most time- and labour-consuming task
in such studies is extensive hit validation, it seems more
important to yield a shorter hit list with a truly low pro-
portion of false positives, rather than a longer hit list that
likely involves many more false positives.

Discussion
Assay controls should be used for normalization
Here we propose rscreenorm, a preprocessing method
for independent genetic screens. Rscreenorm makes data
from multiple genetic screens comparable by computing
a lethality score, representing the phenotype relative to
the assay controls, and normalizing their distributions.
Importantly, the method preserves different proportions
of extreme phenotypes, such as lethal hits, observed
between screens.
Just as library features, assay controls typically are

affected by technical effects. Since they yield the same
phenotype across replicates, they make for ideal pre-
processing references. Failure to take assay controls into
account during pre-processing may leave uncorrected
large parts of data variability (Fig. 2a, d), limiting power to
find cell viability effects between screens.
Rscreenorm makes use of the assay controls, in contrast

with most methods that ignore technical controls [19].
For example, researchers working with RNAi screen data

often simply compute (robust) z-scores, whilst CRISPR-
Cas screen data is typically pre-processed as sequencing
data [20–22]. In both cases the data functional range, rep-
resented by negative and positive controls, is ignored. By
using the assay controls, rscreenorm can even reliably cor-
rect for plate-specific effects per replicate (Fig. 2). Indeed,
having been optimized per experiment, assay controls
provide the best references for reliable functional range
corrections.
Arguments previously raised against using assay con-

trols for normalization are the lack of universal pos-
itive/negative controls that yield consistent phenotypic
effects with low variability across cell lines [19] and their
frequent location in outer rows/columns of micro-titer
plates in arrayed screens that affects performance of con-
trols [23]. Our observations are that assay controls, opti-
mized during screen preparation, represent the extremes
of the functional data and are affected by technical effects
to the same extent as library features (Fig. 2 andAdditional
file 1: Figures S5 and S12). As such, assay controls are
very useful in making comparable functional ranges.
Nevertheless, proper experimental design to ensure con-
trols performance is still important, as also suggested by
others [24].
The ideal number of assay controls to be used depends

on the type of screen used. For pooled screens, enough
controls are needed to estimate median and (possibly)
variability per replicate, so a total of about 20 negative and
20 positive controls may be enough. For arrayed screens,
plate effect estimation and correction can be reliably done
with 4 of each control type per plate, with an absolutemin-
imum of 2. Researchers should also be aware of the fact
that, when studying cell depletion via the number of reads
per guide RNA, many positive controls yield zero reads.
This means in particular that it is possible that all positive
controls yield 0 reads for at least one replicate, which cor-
responds to zero variability. In such cases, core sets can
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be better constructed by choosing a proportion of library
lethality scores, rather than using the distance between
controls.

Comparison with classic quantile normalization and
z-scores
Classic quantile normalization centers replicates around
the same value, as do z-scores, without taking assay con-
trols into account. Such centering can thus not guarantee
that resulting values represent similar phenotypes across
screens. In particular, in cases where biological repli-
cates under study display widely different susceptibilities
to gene perturbations, screen data for different biologi-
cal replicates typically display shifts associated with the
effects under study. This is often the case when different
cell lines and treatment conditions are studied. Contrary
to what is desired, simple centering would correct this
effect away.
Then why not applying classic quantile normalization to

the lethality scores? Firstly, computing the lethality scores
is essential, as this makes functional ranges across repli-
cates comparable. In particular, similar values observed
for different screens will then represent similar pheno-
types, as was shown in the “Results” section. Secondly,
classic quantile normalization would make lethality scores
distributions the same across replicates, over the entire
range of measurements. In particular, it would make the
tail empirical probabilities P{Zik > z} equal to p(z) across
all replicates k = 1, . . . ,K . In other words, the pro-
portion of extreme lethality scores, representing lethal
phenotypes, becomes the same across replicates.
This is undesirable, since even untreated cell lines may

display different sensitivity to genetic interference, yield-
ing different proportions of lethality-yielding features (see
“Results” section). In studies involving different condi-
tions, such as the effect of genetic interference with and
without treatment, proportions of lethal features may dif-
fer even more than between cell lines under the same con-
ditions. Thus, classic quantile normalization applied to
the entire range of phenotypes would be likely to remove
effects one wishes to find, as we showed in the simulation
study.
In the siRNA screen literature, many works made use

of (robust) z-scores to make data from different screens
comparable. This may intuitively seem an adequate step,
since z-scores have mean 0 and variance 1 for each repli-
cate. However, in addition to yielding values that may not
correspond to similar phenotypes, empirical data distri-
butions may still differ even if variances are the same.
Finally, this ignores important technical effects such as
those caused by different plates (see siRNA screen data
example below). We conclude that z-scores leave much of
undesirable noise intact in data and is, thus, not a good
method to make data from multiple screens comparable.

Reference sets
Some authors have suggested to use an empirical set of
features [17] as a reference. This has at least two draw-
backs; firstly, such a set of features is constructed in
independent studies and therefore are not specifically
designed to capture technical variation arising in a new
study. Secondly, genetic screens are also applied to differ-
ent cell lines under different experimental conditions, and
it is unclear if such empirical sets of features would remain
relevant.
The use of a reference set of features for normalization

was previously proposed by others [25, 26] in the con-
text of microarray data normalization, where the reference
set represented the entire range of intensities. In con-
trast, genetic screens may involve different cell lines under
different experimental conditions, yielding different pro-
portions of phenotypic effects across samples. Therefore
we not only avoid using a core set of features by using
a core set of values instead, but also only make the dis-
tributions within the core sets the same, thus avoiding
over-correction of lethal effects. Indeed, rscreenorm lets
the fraction of features with extreme phenotypic effects
vary between screens. Our results show that this approach
works well to make both data distributions more similar
(Fig. 3) and data values between genetic screens compara-
ble (right graph in Additional file 1: Figure S8), as well as
to improve reproducibility of results.

Reducing false positives
In our simulation studies, rscreenorm data yielded false
positive rates within the expected ranges, even when posi-
tive controls were biased. In contrast, not-normalized data
yielded much larger false positive rates than expected.
This may be seen by some researchers as a relatively
small drawback, given that not-normalized data also
yielded more true positives than rscreenorm in most sit-
uations. However, it is not difficult to find a method
that gives more true positives than another, if false pos-
itives can be disregarded. Indeed, a selection yielding all
features under study will always yield 100% true pos-
itives, and requires no statistics at all. On the other
hand, methods that simply yield a false positive propor-
tion below a required level are not necessarily desired:
if no features at all are selected, there are zero false
positives, but the result is useless. The difficult task is
to find true positives, whilst at the same time keeping
false positive rates under control. This is precisely what
rscreenorm does.
Yielding acceptable true positive rates with expected

false positive rates is also important for follow-up experi-
ments. Subsequent validation experiments are often time
consuming and labour intensive and, as such, benefit from
short enough hit lists with known false positive propor-
tions. Rscreenorm was shown to preserve false positive
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rates across a range of control levels, so if longer hit lists
are desired, researchers need only change the FDR cut-off.

Applicability
Rscreenorm is non-parametric and may make use of
robust statistics. It can thus be applied to studies with a
wide range of designs, as long as assay controls that define
the extreme phenotypes are present, and a representa-
tive proportion of data from each replicate can be used to
define core set values. In particular, smaller screens com-
posed of hits found in previous studies should also include
features that were found not to change between the exper-
imental conditions under study. Such features should reli-
ably represent the range of values representing common
phenotypes, to enable adequate normalization of values
and reliable downstream analyses. While researchers may
feel the inclusion of non-hits in a screen is a waste of
resources, in light of our analyses a much bigger waste
would ensue if adequate normalization cannot be done,
producing too many false positives.

Reproducibility
One of the biggest problems currently with analysis of
genetic screens data is the low reproducibility of hits in
validation screens and the limited overlap between inde-
pendent studies [2, 10–12]. Using both simulations and
experimental data, we showed that rscreenorm can not
only increase the proportion of true positives and improve
correlations between screens of different studies, but also
increase results’ reproducibility.

Conclusions
Rscreenorm successfully normalizes data from multiple
genetic screens by taking the functional nature of the
data into account. This corrects for undesired variability
while making phenotypes be represented by similar val-
ues across replicates of all screens. It keeps the proportion
of false positives in hit lists under control, and improves
reproducibility between different studies.

Additional file

Additional file 1: Supplementary materials. (PDF 3186 kb)
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