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Abstract

Background: Metagenomic approaches have revealed the complexity of environmental microbiomes with the
advancement in whole genome sequencing displaying a significant level of genetic heterogeneity on the species
level. It has become apparent that patterns of superior bioactivity of bacteria applicable in biotechnology as well as
the enhanced virulence of pathogens often requires distinguishing between closely related species or sub-species.
Current methods for binning of metagenomic reads usually do not allow for identification below the genus level
and generally stops at the family level.

Results: In this work, an attempt was made to improve metagenomic binning resolution by creating genome
specific barcodes based on the core and accessory genomes. This protocol was implemented in novel software
tools available for use and download from http:.//bargene.bi.up.acza/. The most abundant barcode genes from the
core genomes were found to encode for ribosomal proteins, certain central metabolic genes and ABC transporters.
Performance of metabarcode sequences created by this package was evaluated using artificially generated and
publically available metagenomic datasets. Furthermore, a program (Barcoding 2.0) was developed to align reads
against barcode sequences and thereafter calculate various parameters to score the alignments and the individual
barcodes. Taxonomic units were identified in metagenomic samples by comparison of the calculated barcode
scores to set cut-off values. In this study, it was found that varying sample sizes, i.e. number of reads in a metagenome
and metabarcode lengths, had no significant effect on the sensitivity and specificity of the algorithm. Receiver
operating characteristics (ROC) curves were calculated for different taxonomic groups based on the results of
identification of the corresponding genomes in artificial metagenomic datasets. The reliability of distinguishing
between species of the same genus or family by the program was nearly perfect.

Conclusions: The results showed that the novel online tool BarcodeGenerator (http://bargene.bi.up.ac.za/) is
an efficient approach for generating barcode sequences from a set of complete genomes provided by users.
Another program, Barcoder 2.0 is available from the same resource to enable an efficient and practical use of
metabarcodes for visualization of the distribution of organisms of interest in environmental and clinical samples.
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Background

Metagenomics can be defined as a collection of techniques
used for the direct investigation of genomes which con-
tribute to an environmental or composite sample [1, 2].
Over the years, the field of metagenomics has transformed
from sequencing of cloned DNA fragments using Sanger
technology to direct sequencing (shotgun sequencing) of
DNA without heterologous cloning [3—-5]. Metagenomics
offers: (i) access to the functional gene composition of mi-
crobial communities which enables a wider depiction than
phylogenetic surveys and (ii) a strong tool for creating
new hypotheses of microbial functions, e.g. the discovery
of proteorhodopsin [4, 6].

Advances in sequencing technologies have provided
researchers with the ability to promptly describe the mi-
crobial composition of an environmental or clinical sam-
ple with exceptional resolution. A wealth of genetic data
has become available due to these approaches providing
new understanding into environmental and human mi-
crobial ecology [7]. The reduction in the cost of sequen-
cing has also rapidly enhanced the development of
sequencing-based metagenomics. The number of meta-
genome shotgun sequence datasets has dramatically in-
creased in the past few years [2]. Hence, metagenomic
researchers have to analyse huge short-read datasets
using tools designed for long-reads and more specifically
for clonal datasets [5]. Binning is generally referred to as
a method used for grouping reads or contigs and assign-
ing them to operational taxonomic unit (OTUs). Various
algorithms have been developed which make use of in-
formation contained within the given sequences. How-
ever, most of the methods used for binning of
metagenomic reads do not allow for identification below
the genus level and generally stop on the level of bacter-
ial families [2].

Kress and Erickson (2008) defined DNA barcoding as
a fast technique used for species identification based on
nucleotide sequences [8]. However, since the single gene
technique of DNA barcoding does not differentiate be-
tween closely related species and subspecies, it is of lim-
ited importance to develop markers in biotechnological
and medical microbiology [9-11]. Hence, it was hypoth-
esized that the comparison of bacterial strains by using
multiple gene sequences would give a better resolution
of their core relationship than a single gene [12]. The
multilocus sequence typing (MLST) technique was in-
troduced, which made use of DNA sequences of internal
fragments of multiple housekeeping genes for a defini-
tive identification of microorganisms [10, 13]. Various
researchers have developed different techniques for
MLST, some of which include ribosomal multilocus se-
quence typing (rMLST), multilocus sequence analysis
(MLSA) and whole genome multilocus sequence typing
(wgMLST) [14, 15]. The rMLST technique indexes
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variations seen in 53 genes encoding bacterial ribosome
protein subunits (rps genes) as a way of incorporating
microbial genealogy and typing. Groupings provided by
rMLST were consistent with the present nomenclature
systems independently of the clustering algorithm been
used [14]. The MLSA technique is used to obtain a more
advanced and better resolution of phylogenetic relation-
ships of species within a genus. Partial sequences of
genes coding for housekeeping genes are used to create
phylogenetic trees and later to infer phylogenies in
MLSA research. The MLSA technique has also been
suggested as a replacement for DNA-DNA hybridization
(DDH) in species delineation [15]. The two basic tech-
niques used to create phylogenies for whole genome se-
quencing of enhanced outbreak surveys are: whole
genome multilocus typing (wgMLST) and single nucleo-
tide polymorphisms (SNPs). As with the traditional
MLST, alleles in wgMLST are either the same or differ-
ent, which implies that any nucleotide substitution, in-
sertion or deletion is equivalent to one allele change. In
wgMLST, several thousand loci can be matched. The es-
timated distances between them are then used to infer
phylogenetic relationships by the clustering algorithms.
For the SNP technique, changes seen in single nucleo-
tide substitutions are used to deduce phylogenetic re-
latedness or genetic typing. The SNP protocol has been
implemented in various software packages [16].

MLST approaches were promoted by the advances in
next-generation sequencing (NGS). Different software
applications have been developed using various tech-
niques to calculate the sequence types (STs) from the
NGS data. However, not all MLST calling applications
are reliable. Challenges encountered with these pro-
grams include (i) computationally inefficient methods;
(ii) false positive results; (iii) obsolescence of databases;
(iv) inability to call alleles with low coverages; and (v)
variable performances of mixed samples. Hence, there is
room for improvement [16].

The aim of this study was to create an interactive
computational service for the identification of the most
suitable marker sequences for DNA-based multilocus
barcoding. The basic idea was that the suitability of dif-
ferent marker genes would depend on the level of
taxonomic relatedness between organisms to be distin-
guished or identified in environmental samples. In other
words, marker genes selected to barcode organisms on
the family or genus level most likely will not be suited to
distinguish between species or subspecies. The program
BarcoderGenerator, which is available online at http://
bargene.bi.up.ac.za, creates genome specific barcodes
based on the core and accessory genes from genome se-
quences provided by users. The proportion of accessory
genes required can be selected alongside the desired
length needed for the barcode sequences to be created.
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Another command-line application (Barcoder 2.0), avail-
able for download from the same web-interface, performs
binning of metagenomics reads against generated bar-
codes and visualizes the results. It should be noted that
these software tools were developed exclusively for meta-
barcoding, i.e. for identification of strains and species of
interest in environmental samples by binning of metage-
nomics reads, and not for phylogenetic inferences. How-
ever, Barcoder 2.0 allows aligning of identified organisms
along phylogenetic trees generated by other programs and
saved in PHYLIP/Newick format.

Implementation

For this study, different microorganisms were used in
case studies: the Escherichia and Shigella group (40
strains), Latobacillus (30 strains), Mycobacteria (16
strains) and Shewanella (21 strains). Phylogenetic rela-
tionships between organisms of these groups were in-
ferred by the alignment-free program SWPhylo available
at http://swphylo.bi.up.ac.za/ [17]. The strains used rep-
resent different species and subspecies including
pathogenic and biotechnological strains. Metagenomic
datasets representing different eco-niches were obtained
from the NCBI and MG-RAST databases [18]. Informa-
tion about all bacterial genomes and metagenomic data-
sets used in this study, including resulting barcode
sequences, are available from the help page (http://seq-
word.bi.up.ac.za/barcoder_help_download/).

The basic principles for selection of barcode se-
quences were detailed in a previous publication [11]
and further developed in this work. The main idea
was to identify clusters of orthologous genes (COGs)
followed by codon alignment of COG sequences with
the aim of identifying genes sufficiently conserved for
proper identification and under positive selection of
mutations to allow for distinguishing between organ-
isms of interest. Statistical parameters used for scor-
ing of marker sequences and the program outputs
will be discussed in detail below.

For evaluation of the designed algorithm, Metasim
[19] was used to generate collections of artificial reads
simulating metagenome data sets. Sequence alignment
was performed by MUSCLE [21]. Orthology prediction
was done by reciprocal BLASTP implemented in an
in-house Python script. For data visualization, matplotlib
1.5.1 (https://matplotlib.org/1.5.1/index.html) was used.
All programs originating from this work were made ac-
cessible at http://bargene.bi.up.ac.za/ for download to be
used with Python 2.7 (also compatible with Python 2.5).

Results and discussion

Selection of core genes for multilocus barcoding

Variable DNA sequences and protein molecules can be
useful phylogenetic and taxonomic markers. While
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phylogenetics aims at inferring relationships of com-
mon ancestry, the objective of molecular barcoding is
the identification of presence or absence of taxonomic
units of interest in selected environmental samples or
habitats. One classical example of bacterial barcode
sequences is 16S rRNA - a sufficiently conserved
gene, which can easily be identified in DNA reads
and properly aligned. The barcode sequences should
be variable enough to allow for a reliable identifica-
tion of taxonomic units, but also have to be suffi-
ciently conserved to avoid misalignments. Depending
on the diversity of bacterial species to be distin-
guished, different genes may be better suited for the
barcoding of organisms. Indeed, more versatile se-
quences will work for distinguishing between closely
related species, while more conserved genes will be
applicable for identification on higher taxonomic
levels.

The principle aim of this project was the creation of
a program, which for a given set of genomes would
compare all pairs of genomes and select barcodes from
the core genome. The workflow of the program is
shown in Fig. 1. First the program identifies clusters of
orthologous genes (COG) by means of reciprocal
BLASP alignments with a cut-off e-value 0.0001. Then
COGs are classified to the core genome and accessory
parts of genomes. Core genes are constituent in all
sampled genomes (core genome) and accessory genes
are specific for one or several genomes (accessory gen-
ome). In the next step, MUSCLE codon alignment of
the core COGs is performed [20]. Figure 2 shows a
graphical output of the program BarcodeGenerator. COGs
are depicted by dots projected into 3D space, where the
X-axis is the percentage of sense mutations over the total
number of nucleotide substitutions; the Y-axis is the
difference between protein sequences (1 — percentage
of identities); and the Z-axis (vertical axis) is the ratio
(positives-identities)/identities. The COGs from the
analysis can be grouped into several categories: conserved;
positively selected; and highly variable genes. The
conserved genes under moderate positive selection
(highlighted in brown) proved to be suitable for barcoding
[11]. Appropriateness of COGs for barcoding was scored
as X x (1—X)x(1—Y)/(Z+1), where X, Y and Z are
values of the respective axes in Fig. 2. COGs are ordered
by these scores from large to small and then nucleotide se-
quences of the genes from high scoring COGs are
concatenated into barcode sequences until the requested
length for barcodes is achieved. The order and locations
of individual genes in barcode sequences are reported in
text output files. Examples of output files for generated
barcodes are accessible at http://seqword.bi.up.ac.za/
barcoder_help_download/barcodes/ through the corre-
sponding info hyperlinks.
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Fig. 1 Workflow diagram of selection of diagnostic barcode sequences

The program furthermore allows the addition of genes
from the accessory genome to the barcodes. An example
of accessory genes selected for 9 genomes of Shewanella
is shown in Fig. 3.

To test the program, several sets of bacterial genomes
representing different species of the genera Lactobacil-
lus, Mycobacterium and Shewanella, and different
strains of the group Escherichia/Shigella were used to
create diagnostic barcodes. Analysis of functions of
genes selected by the program BarcodeGenerator for
diagnostic barcodes revealed that the most abundant
group were comprised of genes encoding for ribosomal

proteins. This finding is in agreement with many publi-
cations reporting ribosomal proteins as the most suit-
able taxonomic and phylogenetic markers used in
rMLST [13, 14]. Ribosomal proteins comprised up to
15% of the sequences selected for barcodes by the pro-
gram BarcodeGenerator. Other genes belonged to pur-
ine and pyrimidine biosynthetic pathways, ABC
transporters, tRNA synthetases and amido-transferases,
various oxidoreductases, acyl carrier proteins and sev-
eral other functional categories. Among accessory
genes, the most frequent were IS1 and IS2 transposases
and orf2/orfB genes, ynhF-type membrane proteins,

R

0
4]
=
=
c
9]
o
<
m
4
=
=
c
9]
o
N
14
>
=
2
o
£

Escherichia / Shigella group

Highly variable genes

Genes under positive
selection
)

Percentage of sense mutations

Fig. 2 Graphical output of the Program BarcodeGenerator presents a distribution of COGs depicted by dots in the 3D plot. X-axis: percentage of
sense mutations; Y-axis: 1 — percentage of identities; Z (vertical) axis: (positives-identities)/identities. Conserved, positively selected and highly
variable groups of COGs are labelled. COGs suitable for barcoding are in brown colour

0.9




Rotimi et al. BMC Bioinformatics (2018) 19:309

Page 5 of 11

gbk
gbk
gbk

.gbk

1: NC_004347.,
2: NC_008345.
3: NC_008700.
4: NC_009052

Shewanella genomes and accessory genes

gbk
gbk
.gbk
gbk
gbk

5: NC_009438.
6: NC_009997.
7: NC_010506
8: NC_011663.
9: NC_010334.

als

of Shewanella

Fig. 3 Distribution of 15 accessory genes (depicted by black and grey bars) selected to represent genetic variability of 9 sampled genomes

phage related transcriptional regulators and capsular
polysaccharide biosynthesis proteins.

Analysis and visualization of metagenomes by using
barcode sequences

Of all the NGS technologies, Roche 454, Illumina and
Ion Torrent systems are the mostly used for metage-
nomic samples [21, 22]. Recently, Roche 454 became ob-
solete and gave way to new technologies: PacBio,
MinIlON and Oxford Nanopore. However, public data-
bases still contain many metagenomic datasets generated
by older technologies. Barcode sequences designed by
BarcodeGenerator can be used for data mining in

metagenomic sets of relatively short-reads generated
by Roche 45, Illumina and Ion Torrent. This ap-
proach may not be applicable for the analysis of
metagenomes generated by PacBio and Oxford Nano-
pore technologies due to high rate of sequencing
errors and computational inefficacy of BLAST align-
ment of long-reads. Barcoding 2.0 is an application
written in Python 2.7 (also compatible with Python
2.5) with a command-line user interface, available
from the BarcodeGenerator website (http://bargen-
e.biup.ac.za/). Workflow of the program is shown in
Fig. 4. The program uses BLASTN to align reads
against the generated barcode sequences and then
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calculates several parameters for scoring the results of
the BLASTN alignment and individual barcodes. First,
read alignments with BLASTN scores below an esti-
mated S’ score cut-off value are filtered out. The
cut-off S” is calculated by the Eq. 1:

L-S 25 + 100
W—le( In (”Li) -1) (1)
e L+ 100

S'=5+

where S — an average BLASTN score of all aligned reads;
L — an average length of reads; and N — number of
aligned reads.

The program then calculates the alignment specificity
(@specificity) of read alignments (Eq. 2) by estimating the
number of metagenomics reads (Ngigned reads)> Which
were successfully aligned against the given number of
barcodes sequences (Npgrcoqes); and the total number of
BLASTN matches (N,,.sches):

N matches -N aligned _reads (2)

Aspecificity — 1-
N aligned _reads X (N barcodes ™ 1)

Values of specificity are in an interval from 0 to 1.
The value of 0 indicates no specificity, i.e. every read
in a given metagenome has found a match in every
barcode sequence in the set. The value 1 means that
every read matches specifically to one barcode se-
quence — maximal specificity.

Thereafter the program calculates the specificity of
every read (Fspecificity):

BLASTN _score

ReadScorel =
eadocore read _length

« Lspecificity + EXP (rspecpﬁcity X rvicinity) +1
Fspecificity + EXP (V vicinity) +1

(3)

It can be seen from eq. 3 that if one read is aligned
against all barcodes, its specificity is 0; and if the read
is aligned only against 1 barcode, its specificity is 1.

Then the program calculates two scores, ReadScorel
and ReadScore2 for every aligned read per barcode by
Eqgs. 4 and 5, respectively:

BLASTN _score

ReadScorel =
eadocore read _length

% Tspecificity + EXP (r specpficity X T vicz’nity) +1
Fspecificity + EXP (rvicinity) +1

(4)
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N reads|barcode ( 5)
N reads

BLASTN _score
read length

ReadScore2 = agpecificity

" rspec ficity + 1'5(Vspcct_'ﬂcity><rvicinit_y) + 1

Tspecificity + 1-5(rmm”y ) +1

It should be emphasized, that ReadScore2 is barcode
specific, i.e. reads aligned to several barcodes will have
different ReadScore2 values but the same value of Read-
Scorel. In Egs. 4 and 5, the coefficient 7,;c;,;;, was calcu-
lated for every read to avoid downgrading of those reads,
which were aligned to several barcodes of closely related
organisms. First, a matrix of Jaccard distances is calcu-
lated for the set of barcodes, where the distance between
two barcodes is 1 — number_of common_reads / total_-
number_of reads. 1f one read is aligned to several
barcodes, the parameter 7,;c;,;, for this read is calculated
as 10 x max_barcode_subset_distance / max_matrix_dis-
tance. Values of ¢, are in the interval from 0 to 10.
If the read is specifically aligned against only one bar-
code, its 7ycinizy is 0. If the read is aligned against several
barcodes of closely related organisms, the parameters r,,.
cinity Will be small and the read will be scored high. How-
ever, if the read is promiscuously aligned against many
unrelated barcodes, the parameters 7., Will be high
and the read will be scored low.

After scoring all the aligned reads, the program
calculates scores for every barcode to identify the corre-
sponding species in the metagenome sample. Scores Bar-
codeScorel and BarcodeScore2 (Eq. 6) are calculated from
ReadScorel (Eq. 4) and ReadScore2 (Egs. 5) respectively.
These scores are independent of the lengths of barcode
sequences.

1+ > ,ReadScore 1
n 3 x BarcodeLength; x > BLASTN _score

4 x SN BarcodeLength

BarcodeScore; =

(6)

Validation of the barcoding programs on artificial
metagenomes

MetaSim is a sequencing simulator [19]. This program
was used to generate collections of DNA reads from
chosen bacterial genomes to design artificial metage-
nomic datasets with known species composition and
species abundance. Metagenomes of different sample
sizes (of 10,000, 50,000, 100,000, 300,000 and 500,000
reads) were generated by random selection of DNA frag-
ments from the following genomes: Shigella dysenteriae
Sd197 [NC_007606] — 15% of reads; Escherichia coli
BL21 [NC_012947] - 10%; E. coli C ATCC 8739
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[NC_010468] — 5%; Lactobacillus fermentum IFO 3956
[NC_010610] — 15%; L. plantarum [NC_004567] — 10%;
L. sanfranciscensis TMW1 [NC_015978] — 5%; Shewa-
nella sp. MR-4 [NC_008321] — 15%; S. frigidimarina
NCIMB 400 [NC_008345] — 10%; S. amazonensis SB2B
[NC_008700] 5%; Mycobacterium avium 104
[NC_008595] — 5% and M. abscessus ATCC 19977
[NC_010397] — 5%. Artificial metagenomes generated
for this work are available from http://seqword.bi.u-
p.ac.za/barcoder_help_download/. Barcode sequences
with lengths of 10, 25, 50, 75, 100, 150, 200 and 250 kbp
were generated by the program BarcodeGenerator for
the groups of genomes Escherichia/Shigella, Lactobacil-
lus, Mycobacteria and Shewanella. Generated barcode
sequences are available for download from the project
website. In all these barcodes, sequences of core and
accessory genes composed 70% and 30% of the total bar-
code sequence length, respectively. Lengths of the reads
were normally distributed in a range from 200 to 350 bp.

Artificial metagenomes were used for validation of the
program when applied to metagenomes of different sizes
using barcodes of different lengths, and for calculation
of appropriate cut-off values for species identification in
metagenomic samples. The program returns two bar-
code scores, which are calculated by Eq. 6, based on dif-
ferent read alignment statistics (Egs. 4 and 5).

Values for BarcodeScorel and BarcodeScore2, which
are dependent on the percentage of reads in a metagen-
ome, are shown in Fig. 5a and b, respectively. Barcode-
Scorel is more sensitive to the presence of specific reads
in metagenomes and is appropriate for a quantitative
identification of taxa, while BarcodeScore2 reflects better
the abundance of specific reads in metagenomes.

Taxonomic units are identified in metagenomic sam-
ples by comparison of the calculated barcode scores to
the precomputed cut-off values. True positives (TP)
would be the genomes which were used for preparation
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of the artificial metagenomes and correctly identified by
the program. Numbers of these genomes not identified
by the program are false negatives (FN). False identifica-
tion of other genomes represented in a set of barcodes
leads to false positives (FP); but those excluded from the
program output are true negatives (ITN). To evaluate the
barcoding performance with different cut-off values, the
parameters of sensitivity, specificity and the ratio of true
positives over false predictions TP / (FP +EN) were
calculated.

Distribution of values for TP / (FP + FN) calculated for
combinations of BarcodeScorel and BarcodeScore2
cut-offs is shown in Fig. 6.

The highest proportion of true positives over false pre-
dictions was achieved for the pair of cut-offs: Barcode-
Scorel =2.5 and BarcodeScore2 = 1.0. However, cut-off
values BarcodeScorel = 2.3 and BarcodeScore2 = 0.5 were
set as the default to allow for higher sensitivity.

The barcoding program with default cut-off values was
used for processing of artificial metagenomes of different
sample sizes using generated diagnostic barcodes of dif-
ferent lengths and different number of selected genes
(all available from http://seqword.bi.up.ac.za/barcoder_-
help_download/barcodes/). It was found that the sample
size (number of reads in a metagenome) had no effect
on the sensitivity and specificity of the algorithm in the
interval from 10,000 to 500,000 (Fig. 7a). In this range of
values, the percentage of true positives increased with
the sample size proportionally with the number of false
positives. The ratio TP / (FP + EN) was higher in smaller
metagenomes. In these experiments the metagenomic
datasets of different sizes were aligned against barcodes
of the same sequence length (50,000 bp).

Specificity and sensitivity was constant when using dif-
ferent lengths of barcode sequences (Fig. 7b). However,
the ratio TP / (FP + FN) was optimal when the barcode
sequences were in a range from 100 to 200 kbp. Shorter

~
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Fig. 5 Distribution of values of a BarcodeScore1 and b BarcodeScore2 calculated based on the percentage of genome specific reads in artificial
metagenomes. Whisker lines depict the minimal, maximal and median values; grey bars show middle quartiles and the open cycles indicate the
average values
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barcodes reduced the number of true positives as many
reads remained unidentified and longer barcodes in-
creased the number of false positive predictions. The in-
fluence of the barcode sequence length on the program
performance was tested on artificial metagenomic data-
sets with 500,000 randomly generated reads.

Program performance was affected by the level of
taxonomic relatedness between barcoded organisms.

4 1.6
314
$12
g1 — 0
® 0.8
804
0.2
0
10,000 50,000 100,000 300,000 500,000
a Numbers of reads in metagenome samples
—A=Sensitivity -m-Specificity =e=TP / (FP + FN)
wld
()
21.2
@
> 1
©
% 0.8
S 0.6
(%]
< 0.4
o
0.2
0
10 25 75 100 150 200 250
Lengths of barcode sequences in kbp
b —A=Sensitivity -m=Specificity =o=TP / (FP + FN)
Fig. 7 Influence of the a metagenome sample size and b length of
barcode sequence on the program performance

Page 8 of 11

Receiver operating characteristics (ROC) curves were
calculated for different taxonomic groups based on the
results of identification of corresponding genomes in
artificial metagenomic datasets (Fig. 8a). In addition to
sensitivity and specificity parameters, the area under
curve (AUC) was calculated, which is considered as a
performance measure of diagnostic tools. Distinguishing
between species of the same genus or family by the pro-
gram was close to optimal. However, it was problematic
for the program to differentiate between representatives
of different clades of Escherichia and Shigella. It was as-
sumed that including accessory genes in barcodes may
improve the diagnostic performance. Comparison of
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identification results when the barcodes of the Escheri-
chia / Shigella group of the same length (150,000 bp)
with different proportions of core and accessory genes
were used is shown in Fig. 8b. It was found that an in-
crease in accessory genes in barcodes hampered distin-
guishing between closely related organisms compared
with when the barcodes were based solely on core genes.
This may be explained by the fact that related organisms
frequently exchange mobile elements in a random fash-
ion which impedes the proper differentiation between
them. However, inclusion of species-specific accessory
genes may improve the identification on higher taxo-
nomic levels.

BarcodeGenerator website and a case study of barcode
guided species detection

The program BarcoderGenerator is available at http://
bargene.bi.up.ac.za/. This web application allows users to
generate diagnostic barcodes based on genome se-
quences of species of interest submitted by users. An-
other program, Barcoding 2.0, with a command-line user
interface is available for download from the Barcoder
website. More details on the usage of these programs
may be found on the help page http://seqword.bi.u-
p.ac.za/barcoder_help_download/. Shortly, to generate a
set of diagnostic barcodes, corresponding genome
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sequences in GenBank format should be uploaded to the
server in a single archived file. Users can specify the
length of barcode sequences and the required proportion
of accessory genes in barcodes. The program will return
a link to the output file with the generated barcode se-
quences in FASTA format, information on the genes se-
lected for the barcodes and a graphical file in SVG
format. An example of input and output files to test the
program is available at http://seqword.bi.up.ac.za/barco-
der_help_download/example/example.html. ~ Generated
barcodes may be used for binning metagenomics reads
by using the command-line program Barcoding 2.0. The
program performs a BLASTN alignment of reads against
the barcode sequences and scores every barcode in the
set as explained above (Fig. 4). The program returns the
identification results in a text file and in a graphical
SVG file. Results may be better visualized if the user
provides the program with a phylogenetic tree file in
Newick or Phylip format. An example of identification
of Lactobacillus species by generated barcode sequences
in the phyllosphere 9673 metagenome, publically avail-
able from MG-RAST database, is shown in Fig. 9. The
program identified phylogenetically related strains L. fer-
mentum (NC_010610) and L. delbrueckii (NC_008054,
NC_008529 and NC_014727) depicted by green col-
umns. The vertical axis shows estimated BarcodeScore2
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Fig. 9 An example of identification of Lactobacillus species in phyllosphere metagenome
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values, which reflects the relative abundance of identi-
fied organisms (see Fig. 5). The phylogenetic tree for the
selected strains was created by a comparison of genome
specific patterns of tetranucleotides with the program
SWPhylo at http://swphylo.bi.up.ac.za/ [17]. The re-
sulted tree file in PHYLIP format was provided through
the command-line interface to the program Barcoding
2.0 as explained on the help Web-page http://seqword.-
bi.up.ac.za/barcoder_help_download/barcoding.html.

Conclusions

In this paper a novel application, BarcodeGenerator
(http://bargene.bi.up.ac.za), for the automatic generation
of diagnostic barcode sequences was presented. Barcode-
Generator is an online tool for the selection of barcode
sequences from a set of complete genomes provided by
the users. It is easy to use and relatively fast. The pro-
gram builds barcode sequences based on core genes of
submitted complete genomes, but also allows addition of
accessory genes to the barcodes. The output includes
barcode sequences generated in FASTA format, informa-
tion regarding the genes selected for the barcodes and a
graphical file in SVG format.

In this study, barcode sequences were created for differ-
ent groups of microorganisms (Escherichia coli/Shigella,
Lactobacillus, Mycobacteria and Shewanella) to perform
case studies. Ribosomal proteins, which have been re-
ported by many publications as the most suitable genetic
makers for taxonomic and phylogenetic studies, were the
most abundant genes among selected marker genes.

Thereafter, another program was developed for bin-
ning of metagenomic reads against generated barcodes.
The program uses BLASTN to align reads to the bar-
code sequences and then calculates scores for the
BLASTN alignment and individual barcodes. After scor-
ing all the aligned reads, the program calculates scores
for every barcode to identify organisms present in meta-
genome samples. Taxonomic units are identified by
comparison of calculated barcode scores to standard
cut-off values set by default.

We also performed two experiments using varying
metagenomes of different sample sizes and barcode se-
quences of different lengths. In the first experiment,
metagenomic datasets of varying sizes (10,000 to
500,000 reads) were aligned against barcodes of the same
length (50 kbp). We found that the sample size (the
number of reads in a metagenome) had no effect on the
sensitivity or specificity of the algorithm. In this range of
values, the percentage of true positives increased with
the sample size, proportionally to the number of false
positives. The ratio of true positives over false predic-
tions was higher in smaller metagenomes. Also, when
varying lengths of barcode sequences (10 to 250 kbp)
were aligned to a metagenomic dataset of 500,000 reads

Page 10 of 11

generated from randomly selected reads, the sensitivity
and specificity also remained the same. However, the ra-
tio TP / (FP + FN) was optimal when the barcode se-
quences were in the range from 100 to 200 kbp.

Receiver operating characteristic (ROC) curves of the
algorithm performance were calculated for different mi-
croorganisms used in the artificial metagenomics data-
sets. Distinguishing between species of the same genus
or family by the program was close to perfect but the
program performed sub-optimally when distinguishing
between strains of Escherichia coli and Shigella. Closely
related organisms could be better identified when bar-
codes were based solely on core genes.

Availability and requirements
Project name: Barcoder.

Project home page: http://bargene.bi.up.ac.za/.

Operating system(s): programs for download were
tested on Linux and Windows.

Programming language: Python 2.7.

Other requirements: To run stand-alone program
available for download from the project website, Python
2.7 has to be installed on PC.

License: no license;

Any restrictions to use by non-academics: no
restrictions.
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