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Abstract

Background: Drug resistance in HIV is the major problem limiting effective antiviral therapy. Computational
techniques for predicting drug resistance profiles from genomic data can accelerate the appropriate choice of
therapy. These techniques can also be used to select protease mutants for experimental studies of resistance and
thereby assist in the development of next-generation therapies.

Results: The machine learming produced highly accurate and robust classification of HIV protease resistance. Genotype
data were mapped to the enzyme structure and encoded using Delaunay triangulation. Generative machine learning
models trained on one inhibitor could classify resistance from other inhibitors with varying levels of accuracy. Generally,
the accuracy was best when the inhibitors were chemically similar.

Conclusions: Restricted Boltzmann Machines are an effective machine learning tool for classification of genomic and

structural data. They can also be used to compare resistance profiles of different protease inhibitors.
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Background

Human Immunodeficiency Virus (HIV) is a major pan-
demic disease [1]. More than 36 million people have
been infected and about half of these people receive
anti-retroviral therapy [2]. However, retroviruses like
HIV mutate rapidly since the conversion from the RNA
genome to DNA is error-prone [3]. They readily form
quasi-species and distinct viral strains. Therefore, retro-
viruses can respond effectively to selective pressures such
as drug treatment by mutating to evade the antiviral drug.
The development of drug resistance in HIV is an ongoing
threat to effective long-term therapy.

Machine learning can predict drug resistance from
sequence data with high accuracy as shown by tests on
genotype-resistance data for HIV protease and reverse
transcriptase [4—11]. The critical improvement in the
application of machine learning to drug resistance is the
inclusion of structural data in the features. We found that
using Delaunay triangulation to encode the protein struc-
ture [12] is highly effective. The encoding compresses a
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protein sequence and its corresponding structure into a
feature set consisting of 210 components. The set con-
tains the relative frequencies of each kind of amino acid
pair from the structure. Yu’s use of compressed encoding
in [4] suggested that even fewer features were necessary
to encapsulate drug resistance. Therefore, we used Princi-
ple Components Analysis (PCA) to explore the remaining
redundancy in the data. The availability of a large amount
of sequence and resistance data for HIV protease (PR) has
proved valuable for method development.

The validity of this approach was verified by experimen-
tal studies [13, 14]. Machine learning was used to rigor-
ously select representative highly resistant PR sequences
for biochemical and structural characterization. The com-
putationally selected mutant demonstrated several orders
of magnitude worse affinity for inhibitors compared to
wild type enzyme. The selected mutant had only one
mutation in the inhibitor binding site. Therefore, a high
level of resistance was achieved almost exclusively by
mutations distal from the active site.

Restricted Boltzmann Machines (RBMs) are a gener-
ative machine learning algorithm [15, 16]. RBMs only
require positive, or in-class, training data, and often gen-
eralize more accurately than other approaches. Training
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the standard algorithm on large datasets is often compu-
tationally infeasible. We have developed a highly efficient
version of this algorithm [17, 18]. Using a simplified rep-
resentation of the hidden and visible spins and replacing a
numerical estimate of the gradient with an analytic form
results in an algorithm that is at least 14 times faster
than the conventional algorithm without compromising
the accuracy.

Generative machine learning has not been applied to
drug resistance in HIV. Therefore, application of this
approach to the analysis of drug resistance is of interest.
This paper shows that RBMs are as accurate as other
machine learning approaches for these data. Additionally,
we studied how well RBMs trained on one drug were able
to predict resistance for a different drug.

Methods

Datasets and data preparation

Datasets used for the study

The genotype-phenotype datasets were downloaded from
the Stanford HIV drug resistance database [19]. Data
were used for the HIV protease inhibitors: atazanavir
(ATV), nelfinavir (NFV), ritonavir (RTV), indinavir (IDV),
lopinavir (LPV), tipranvir (TPV), saquinavir (SQV), fos-
amprenavir (FPV) and darunavir (DRV). All the datasets
were pre-processed using the methods and the cutoff
values described previously in [4]. The threshold for resis-
tance recommended by the database curators was used
in this work [19]. The results of the expansion of data
for each of the HIV-1 PR inhibitors and proportion of
resistant mutants are shown in Table 1.

Pre-processing/expansion of the datasets

Wild type HIV PR has a protein sequence of 99 amino
acids. Sequences with insertions, deletions, or stop codons
were removed. Genomic datasets often include multiple
mutations at the same site. In these cases, the data were
expanded to multiple sequences with single amino acids
at each location to represent a single amino acid sequence
for each mutant protein. For example, if one 99-amino
acid mutant sequence has two different types of amino
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acids at one position and another site has three, this one
sequence needs to be represented by six unique sequences
each differing in only one amino acid substitution. The
pre-processing method has been explained in detail in [4].
Each sequence was accompanied by its inhibitor resis-
tance fold values. The relative resistant fold values for
each of the inhibitors ranged from 0 to 800-fold resistance.
Finally, the expanded datasets with sequences were allot-
ted a unique identifier number to help recover the original
sequences and their respective resistance fold change after
analysis.

Encoding structure and sequence with Delaunay
triangulation

A graph-based encoding system was utilized to represent
the sequence and structural information of the protein [6].
The X-ray crystal structure for HIV-1 PR (30XC) [20] was
used as a template for creating the Delaunay triangulation.
The structurally adjacent pairs of amino acids were repre-
sented as a vector of the 210 unique pairs of 20 standard
amino acids. This graph-based encoding of sequence and
structure has been proven to be a promising technique for
fast and accurate predictions of resistance from sequence
in HIV infections [5].

Principal component analysis

Principal Component Analysis (PCA) using Singular
Value Decomposition (SVD) was run on all the HIV-1 PR
datasets using the Scikit-Learn machine learning library
[21]. The datasets for each inhibitor were analyzed using
the Pandas data analysis library [22]. The resistance fold
values were not included in the PCA calculations since
predicting these values is the goal of this work. The results
of this analysis are detailed in the “Results” section.

Training the RBM

The mutants with relative resistant fold less than 3.0 were
classified as non-resistant (susceptible) and denoted as 0;
while those with relative resistant fold of greater than 3.0
were classified as resistant and denoted as 1, as used in
[4] and consistent with other analyses of the Stanford HIV

Table 1 The results of the expansion for each of the HIV-1 PR inhibitors

Inhibitor No. isolates No. sequences No. resistant No. sensitive Fraction resistant
sQv 1722 10258 4206 6052 410
DRV 607 5973 1889 4084 31.6
LPV 1444 10239 5095 5144 49.8
NFV 1771 10911 6170 4741 56.5
DV 1730 10537 5122 5415 48.6
ATV 1141 8430 4237 4193 50.3
FPV 1681 10521 4405 6116 419
TPV 847 7363 2062 5301 280
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resistance database [19]. RBMs work best with bit pat-
terns. These bit patterns were generated by scaling and
dividing the range of individual features into equal inter-
vals. Each feature of the data was scaled to the range 0
to 1 based on the maximum and minimum values of that
feature. The scaled data were divided into eight inter-
vals encoded with three bits per feature. The testing and
training sets were scaled independently.

The RBM was trained using gradient descent with the
derivative as shown in Eq. 1. The analytic expression for
the expected value of the derivative, shown in Eq. 2 and
derived in [17], was used.
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In these equations, H and V are hidden and visible (or
input) layers respectively, 8 is the inverse temperature, U
is the potential energy, and W are the weights used to
define the potential.

During training, the layer that gave the best fit for each
new data point was updated with a descent step and the
other layers were “anti-trained” with a small ascent step.
“Anti-training” improves the convergence and training
efficiency of the RBM. Anti-training is only feasible when
using an analytic expression for the training gradient. An
RBM with 150 units in the hidden layer was trained for
each category with a constant step-size of 0.1. A step-size
0f 0.01 was used for anti-training. An RBM was trained for
both resistant and non-resistant classes. Class member-
ship was assigned by the fractional reconstruction error,

shown in Eq. 3 as defined in [17].
HS . WV
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Five-fold cross validation was used to ensure that the
results reflect the error in the models. The models for each
fold were trained to convergence with ten iterations and
the values for accuracy, positive predictive value, recall,
and F from the last iteration were reported.

Results

Classification with an RBM

The classification results are detailed in Table 2 and show
a high degree of accuracy. The nearly uniform values of
close to 1.0 for accuracy, PPV, recall, and F-score, show
that the models reliably predict both resistant and non-
resistant classes. These results compare favorably with
our earlier results using non-generative machine learning
algorithms [4-6, 8].
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Table 2 The accuracy of the machine learning model is shown

here

Inhibitor Accuracy PPV Recall F

Idv 0.979 0974 0.985 0.979
Lpv 0.984 0.977 0.992 0.984
Sqv 0.969 0.963 0.986 0.974
Tpv 0.987 0.984 0.998 0.991
Drv 0.988 0.985 0.998 0.992
Aty 0.983 0.976 0.989 0.983
Nfv 0.978 0974 0.975 0.975
Fpv 0.988 0.984 0.998 0.991

The estimated standard deviation amongst the five folds is <0.013 for all values

Cross-classification with an RBM

RBMs differ from non-generative machine learning meth-
ods in an interesting way. It is trivial to train an RBM
against one dataset and use it to predict the behavior
of another. Table 3 shows the results of a cross-training
analysis of resistance data. Each row was trained on one
inhibitor and the columns show the accuracy with which
that model predicts the resistance for the other inhibitors.
The inhibitors generally, but not completely, cross-classify
with high accuracy. TPV and DRV seem to have more
differences from the other inhibitors.

The ability of an RBM trained on resistance to one
inhibitor to predict the behavior of resistance to another
inhibitor shows that the drug resistance of HIV protease
does not fully depend on the type of drug. The existence of
cross-resistance is well known and our lab has used simi-
lar approaches to identify interesting multi-drug resistant
mutants for structural study [6, 13, 14].

Principal component analysis

Figure 1 shows the explained variance for each of the
datasets as a function of the number of reduced dimen-
sions. As shown in the figure, there is overlap between
some of the datasets (some of the plots depict the
same data). This suggests that redundancy exists between
datasets and not just within a single dataset. The hori-
zontal line in the figure depicts where at least 95% of the
explained variance of the datasets is captured. In most
cases, the first principal component explained at least 90%
of the observed variance. This was true for the ATV, LPV,
NFV, and SQV inhibitors. The remaining four inhibitors
had an explained variance ratio between 51% and 87%
for the first principal component. For all inhibitors except
for DRV, 95% of the explained variance for each dataset
was captured within 60 dimensions, suggesting that the
data could be further compressed while still minimizing
the reconstruction error. For DRV, the explained vari-
ance could be reduced to 50 dimensions. These results
indicate that a more compact encoding for the resistance
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Table 3 Cross training reveals similarity between the inhibitors

Compound Atv Drv Fpv Idv Lpv Nfv Sqv Tpv
Atv 0.990 0.868 0.880 0.955 0.946 0914 0.893 0.819
Drv 0.767 0.996 0.818 0.786 0.785 0.718 0.792 0.925
Fpv 0.929 0.873 0.981 0.889 0.886 0.822 0.822 0.828
Idv 0.945 0.863 0.880 0.989 0.960 0.905 0.878 0.809
Lpv 0.939 0.892 0.877 0.963 0.988 0.891 0.865 0.837
Nfv 0.923 0.853 0.824 0918 0.901 0.987 0.837 0.758
Sqv 0.898 0.837 0.825 0.890 0.871 0.840 0.983 0.807
Tpv 0.723 0.929 0.765 0.729 0.728 0.655 0.732 0.993

These numbers show the accuracy when a model trained on the compound at the start of the row is used to classify the data from the other inhibitors

data exists, consistent with Yu'’s results on effectiveness of
compressed encoding for machine learning [4].

Discussion

Classification of resistant mutations of HIV PR

The combination of structure-based encoding and RBMs
is an effective technique for the prediction of drug resis-
tance in HIV PR. The five-fold cross validated results in
Table 2 clearly demonstrate their success and accuracy.
The high values for PPV indicate that the models could be
clinically valuable. The use of an RBM is especially inter-
esting because there are essentially no adjustable parame-
ters in the process. Efficient training algorithms allow the
RBM to handle large datasets in reasonable times. While
these datasets are not quite big data, they are too big for
other machine learning programs [7, 23].

Comparison with other methods

We pioneered the approach of using a unified repre-
sentation of sequence with 3D structural data expressed
as a 210-long feature vector for machine learning [4].
This approach gave improved accuracy for predicting
drug resistance for HIV protease and reverse transcriptase
compared to using sequence data alone.

Another group reported mean R2 values of >0.95 for
regression with ANN using a subset of HIVsequences
restricted to subtype B with the data filtered to remove
rare variants [10]. Their classification accuracy was
less impressive. Structural data can also be represented
by molecular mechanics calculations on protein-drug
complexes. Molecular interaction components calculated
between a drug and 36 single mutants of HIV pro-
tease were used for SVM classification of resistance and

Explained Variance as a Function of the Number of Dimensions
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showed improved accuracy over using sequence alone [9].
These results were comparable to our earlier results, but
for a much smaller number of sequences. Feature vec-
tors derived from a four-body statistical potential and
n-grams were applied in [11]. This approach also used
explicit atomic models for the protease and therefore
only a few hundred mutants were included for classifica-
tion and regression. Their reported accuracy was worse
than ours.

Our approach preserves structural information using
Delauney Triangulation derived from a single protein
structure, and is applicable to any mutant, while eliminat-
ing the expensive step of calculating molecular properties
for models of every mutant structure.

Redundancy in the data.

One of the original motivations for exploring graph-
based encoding of protein structures was to remove
unnecessary data while retaining the critical features
for machine-learning based analysis of structure and
function [12]. Earlier work [4], which used compressed
encoding, hinted that the redundancy was not com-
pletely removed from the data. Our use of PCA on the
data demonstrated that further compression is possible
because the majority of the variance in the data could
be captured with 50—-60 dimensions instead of the 210
used in the original representation. This strongly sug-
gests that we may be able to extract patterns of mutations
associated with drug resistance from the structural data
itself.

Inhibitor specific patterns of drug resistance

Another important difference between generative
machine learning and more conventional algorithms is
that it is logically consistent to apply generative machine
learning across categories. Since the RBM is essentially
measuring how well it can reconstruct a given data
point, it makes sense to ask whether an RBM trained
on one inhibitor such as ATV could reconstruct data
for a different inhibitor such as DRV. Examples of two
inhibitors, Darunavir and Atazanavir are shown in Fig. 2
which demonstrates the diversity of drug chemistry used
to inhibit HIV PR.

The inhibitors segregate into two main classes in the
cross-training analysis. Cross-training results in high
accuracy for most inhibitors, with the exception of DRV
and TPV, which both incorporate sulphonamides. DRV
and TPV, predict each other with reasonable accu-
racy (92.5%), however they show worse prediction for
other inhibitors. While this could be due to chemi-
cal similarity, it could also be due to these being sec-
ond generation or salvage inhibitors where the full
spectrum of resistance mutations has not had time to
evolve.
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Darunavir(DRV)

Atazanavir (ATV)

Fig. 2 The chemical structures for a sulfonamide-containing (DRV)
and non-sulfonamide-containing (ATV) inhibitor are shown here.
These demonstrate the variety of chemistry used in inhibitors

Accurate cross-prediction is not completely surprising.
The inhibitors bind to an active site that is under selective
pressure to still recognize its biological substrate. Many of
the most highly resistant strains demonstrate multi-drug
resistance [6, 13, 14, 24]. Therefore, we expect some level
cross-prediction and this work quantifies it.

Conclusion

Generative machine learning algorithms such as the RBM
are well-suited to the prediction of drug resistance in HIV
PR, and likely will work on other systems as well. The
graph-based structure/sequence encoding used in this
and related work removes much of the redundancy in the
data, but does not remove it all. This result suggests that
even more efficient encoding schemes are possible. The
RBM was used to analyze similarities in resistance pro-
files for different clinical inhibitors. The analysis suggests
that there are at least two main classes of inhibitors for
HIV PR.
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