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Molecular dynamics and structure function
analysis show that substrate binding and
specificity are major forces in the functional
diversification of Eqolisins
Nicolás Stocchi1†, María Victoria Revuelta1,3†, Priscila Ailín Lanza Castronuovo2†, D. Mariano A. Vera2
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Abstract

Background: Eqolisins are rare acid proteases found in archaea, bacteria and fungi. Certain fungi secrete acids as
part of their lifestyle and interestingly these also have many eqolisin paralogs, up to nine paralogs have been
recorded. This suggests a process of functional redundancy and diversification has occurred, which was the subject
of the research we performed and describe here.

Results: We identified eqolisin homologs by means of iterative HMMER analysis of the NR database. The identified
sequences were scrutinized for which new hallmarks were identified by molecular dynamics simulations of mutants
in highly conserved positions, using the structure of an eqolisin that was crystallized in the presence of a transition
state inhibitor. Four conserved glycines were shown to be important for functionality. A substitution of W67F is
shown to be accompanied by the L105W substitution. Molecular dynamics shows that the W67 binds to the
substrate via a π-π stacking and a salt bridge, the latter being stronger in a virtual W67F/L105W double mutant of
the resolved structure of Scytalido-carboxyl peptidase-B (PDB ID: 2IFW). Additional problematic mutations are
discussed. Upon sequence scrutiny we obtained a set of 233 sequences that was used to reconstruct a Bayesian
phylogenetic tree. We identified 14 putative specificity determining positions (SDPs) of which four are explained by
mere structural explanations and nine seem to correspond to functional diversification related with substrate
binding and specificity. A first sub-network of SDPs is related to substrate specificity whereas the second sub-
network seems to affect the dynamics of three loops that are involved in substrate binding.

Conclusion: The eqolisins form a small superfamily of acid proteases with nevertheless many paralogs in acidic
fungi. Functional redundancy has resulted in diversification related to substrate specificity and substrate binding.
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Background
Acid proteases
The three major families of acid or carboxyl peptidases
recognized by MEROPS [1] are the well studied,
pepstatin-sensitive, eukaryotic aspartic proteinases (A01,
APs, for review see [2]), part of the aspartic proteinase
clan A; the more recently identified sedolisins (S53) and
the also novel eqolisins or glutamic peptidases (G01),
both recently reviewed [3]. Both sedolisins and eqolisins
were first thought to be pepstatin-insensitive AP variants
but the structures that were resolved showed they are
unrelated. The rather recent discovery of these enzymes
means we have relatively little knowledge. Since both
sedolisins and eqolisins are typically active below pH 4,
they are of fundamental and industrial interest. Here we
study the eqolisins by means of molecular evolution and
dynamics, a study on sedolisins was recently reported
elsewhere [4].

Eqolisins are glutamic peptidases
Eqolisins have been described in archaea, bacteria [5] and
fungi but are not found in any non-fungal eukaryote [6].
Furthermore, eqolisins seem to have a rather unique and
simple fold, which makes them straightforward targets for
structure-function prediction. Eqolisins are endopepti-
dases synthesized as a preproprecursor proteins. The pre-
prosegments are approximately 55 amino acids in length
and the prosegments are rich in positively charged resi-
dues. Scytalido-carboxyl peptidase-B (SCP-B) from Scyta-
lidium lignicolum is the enzyme that first described the
eqolisin peptidase family and its structure has been re-
solved (PDB ID: 2IFW) [7]. Point mutation analyses re-
vealed its catalytic site is formed by a catalytic dyad (Q53,
E136), hence the name EQolisin. SCP-B has a narrow sub-
strate specificity, with preference for small, basic residues,
rather than the typical hydrophobic residues preferred by
APs [2]. D43 is a residue that is important for SCP-B
structure since the D43A mutant has approximately 20%
of the original activity [8, 9]. Other characterized eqolisins
are Aspergillus niger carboxyl peptidase (ANCP) [10],
which 3D structure has also been resolved (1Y43) [11],
Sclerotinia sclerotiorum carboxyl peptidase [12], Crypho-
nectria parasitica peptidases B and C [13], Talaromyces
emersonii carboxyl peptidase TGP1 [14] and bacterial Ali-
cyclobacillus sp. pepG1 [5].
Eqolisins are composed of two seven-stranded anti-

parallel β-sheets that fold in parallel and bend to form a
structure resembling a half-pipe that forms the binding
cleft (See Fig. 1). The catalytic Q53 and E136 (number-
ing according to SCP-B structure 2IFW) stick into the
binding cleft. Pillai and coworkers [15] described the
70’s loop (Tyr71-Gly80) and the β-loop (Cys141-Cys148)
that, upon interaction with a transition state inhibitor,
appear to move inwards and probably play a role in

substrate binding. They also indicated eqolisins show
structural similarity with the carbohydrate-binding con-
canavalin A-like lectins/glucanases superfamily. Further-
more, residues Y64 to Y71 were shown to be highly
conserved across all members of the G1 family [15].

Fungal Eqolisins have undergone a process of functional
redundancy and diversification
Since eqolisins have only been recently described their
functional characterization is incomplete. T. emersonii’s
eqolisin gene tgp1 was shown to be induced in the pres-
ence of an extracellular protein source, displays a broad
specificity, is the most abundant protease in its secre-
tome and essential for fungal growth [14]. Poussereau
and collaborators described the importance of an eqoli-
sin from plant pathogen S. sclerotiorum in the sunflower
cotyledon infection process, suggesting a role in patho-
genesis [12]. Closely related plant pathogenic fungus Bo-
trytis cinerea contains nine paralogues, which suggests a
process of functional redundancy and diversification has
occurred. This is supported by the fact that B. cinerea
and S. sclerotiorum, as well as for instance many Asper-
gilli, all secrete acids and have various eqolisin paralogs.
Interestingly, these acid secreting fungi also show rela-
tively many acid sedolisins but few basic subtilisins. Re-
cently we studied the sedolisins [4], here we explore the
eqolisin protein family in order to identify which

Fig. 1 Structure of SCP-B Eqolisin. Eqolisins consist of two pleated
β-sheets (Cyan and green for inner and outer sheet, respectively)
that fold into a double convex halfpipe. E136 and Q53 (red licorice)
stick into the binding cleft and form the catalytic site. The β-loop
(purple) and 70’s-loop (yellow) have been shown to migrate inwards
during substrate binding
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residues are likely required for function and which resi-
dues could be involved in functional diversification.

Methods
Identification of Eqolisin homologues
A HMMER profile was made by means of hmmbuild
using default settings and the MEROPS [1] G1 align-
ment of holozymes (HMMER Version 3.0 [16]). This
was used to seed an iterative HMMER screen of the 107
complete proteome dataset previously used to identify
Aspartic Proteases [17]. All sequences identified with an
E-value smaller than the HMMER exclusion threshold of
0.01 were considered as Eqolisin homologues. Upon data
acquisition, sequences were scrutinized for the presence
of catalytic residues Q53 and E136; and secondary struc-
ture elements according to available resolved struc-
tures 2IFW and 1Y43. The novel dataset was then
aligned by MAFFT [18] and used for iteration of
hmmbuild and hmmsearch at the HMMER [19] website
using the NR database. Iterations were performed until
data convergence. Finally, sequences with long (> 15 aa)
inserts that appeared to lack homologous counterparts
in any of the collected sequences or in a homologous se-
quence identified by BLAST in the non redundant data-
base of NCBI, were removed.

MSA and phylogenetic analysis
Multiple protein sequence alignments (MSAs) were per-
formed using MAFFT [18] with slow iteration mode.
Trimming for phylogeny was performed with Block
Mapping and Gathering with Entropy v1.0 (BMGE) [20]
using the command options -t AA -m BLOSUM30 -b 1
-h 0.9. This setting did not remove subsequences corre-
sponding to major secondary structure elements. A max-
imum likelihood (ML) phylogeny was built using
PhyML-a-bayes [21] with the WAG model, estimated
proportion of invariable sites, four rate categories, esti-
mated gamma distribution parameter and optimized
starting BIONJ tree, as determined by a prior estimation
using ProtTest [22], with 10,000 bootstraps branch sup-
port measure. The ML tree was used as starting tree for
Bayesian analysis using MrBayes [23]. Chains were initi-
ated with ten perturbed trees using default settings until
convergence was reached. Convergence was tested when
split frequency was below 0.01 using Awty [24]. The
resulting phylogenetic trees were viewed and edited with
iTol version 2.0 [25] or Dendroscope [26].

Molecular modeling and dynamics
Mutant models for static analysis were made by I-Tasser [27]
The right protonation state of the wild type (WT) struc-
tural model (PDB ID: 2IFW) was determined by evaluat-
ing which possible protonation states, determined by
pKa of sidechains and a pH of 4 and involvement in salt-

and H-bridges, result in stable conformations. Finally
40 ns simulations of 19 different protonation states were
performed (See Additional File 1). The mutants W67F,
W67F-L105W, L105W, P72K and G8A-G41A-
G44A-G55A (hereafter GAx4), as well as the four indi-
vidual GA mutants, were prepared by replacing the side
chain in the WT followed by local minimization using
the AMBERTools [28] LEAP facility. As an additional
check or positive control, the D43A mutant was also
prepared, since the importance of D43 for functionality
has already been shown [8].
The general setup for the molecular dynamics (MD)

simulations was as follows: I) 2500 steps steepest descent
minimization of the whole system, keeping the protein
positionally restrained and embedded into a box of
TIP3P water molecules with a minimum distance of
10 Å to each wall, and Cl- or Na + counter-ions to
neutralize as required. II) 2500–5000 conjugate gradient
minimization of the whole system. III) 150 ps slowly
heating in the NTV ensemble. IV) 40 ns of simulation in
the NTP ensemble, at 1 atm and 298.15 K. The proced-
ure III-IV was repeated in three independent trajectories
using the Langevin and twice the Andersen termostat/
barostats [29, 30]. Then, 40 ns of NTP simulation of the
WT under Andersen thermostat/barostat were used as
reference for cross-correlations analysis, lowest normal
modes visualization, and salt- and H-bridges inspection
and comparison with the results obtained for the nine
mutants discussed below. As an extra check, the WT
and the mutant that showed the largest structural
changes with respect to its initial structure (GAx4), were
both simulated over 60 additional ns completing a set of
trajectories of 100 ns; besides, the comparison with the
other mutants was done using the first 40 ns. In the
equilibrated system, the density slightly fluctuated
around 1.019 g/mL. Electrostatic interactions were com-
puted using the Particle Mesh Ewald (PME) method
with a cutoff of 10 Å [31, 32]. Bonds involving hydrogen
atoms were constrained using the SHAKE algorithm
[32], allowing for an integration time step of 0.0015 ps.
The integration was done using the pmemd.CUDA
module of the AMBER14 program, with the ff14SB force
field [33, 34]. For the inhibitor, since most residues were
of proteic nature, the same force field was applied, by
manually modifying the connectivity of its backbone, the
residues were labeled with three capital letter in order to
distinguishe them from the protein, starting from 207 to
213: ACE207, PHE208, LYS209, PHE210, PSA211,
LEU212 and AAR213. The trajectories were analyzed
using standard AMBER analysis tools. The criteria for
analyzing the persistence of H-bonds were set to a max-
imum length of 3.2 Å (between the heavy atoms) and a
maximum angle of 120° (donor-H-acceptor). Analysis of
the hydrogen bonds, contacts persistence, mobility
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factors and cross correlation functions were done using
ccptraj (AMBERTools 15 utilities) and VMD1.9.7 [35],
which was also used for graphics rendering. Essential
normal modes were calculated using the last 35 ns and
processing with principal components analysis as imple-
mented in ProDy [36].
The free energy calculations were done using the

MM-PBSA module of AMBER 14 and reported for the
two models applied, i. e. Poisson-Boltzman (PB) and
Generalized Born (GB) [37, 38]. The energetic analyses
were done from 5.0 to 40.0 ns of simulation as average
over at least two independent trajectories.

Additional biocomputational analyses
Sequence LOGOS were created with WebLogo [39], and
structures were aligned in VMD [35] using the STAMP
[40] extension. MSA quality was determined using TCS
[41]. Effect of virtual mutations on enzyme function was
predicted using SNAP [42].

Results and discussion
Sensitive identification of Eqolisin homologues likely
lacks specificity
The identification of eqolisin encoding sequences was
performed with HMMER [16] in order to obtain high
sensitivity. A profile made from the holotype sequences
of MEROPS [1] was used as a seed. Initially, a collection
previously used for a study of aspartic proteases [17], of
mostly fungal, but also other taxonomically well distrib-
uted eukaryotic complete proteomes were used. This re-
sulted in few sequences, hence, the NR database was
scanned and all identified sequences were combined and
searched iteratively until data convergence. A complete
preliminary MSA with all identified sequences can be
found in Additional file 2. Then we performed a se-
quence hallmark scrutiny with the objective of removing
problematic sequences. The sensitive HMMER search
resulted in a collection of homologous sequences that
may include sequences from non-functional homologs
(NFHs) or incorrectly predicted gene models. These will
negatively affect the construction of the MSA and there-
with the eventual identification of specificity determining
positions (SDPs) involved in functional diversification.
Since eqolisins have been described only recently and ap-
pear restricted to fungi, bacteria and a few archaea, there
is little knowledge on which residues other than the cata-
lytic Q53 and E136 are required. Given the broad taxo-
nomic distribution we reasoned that residues that appear
highly conserved in a preliminary MSA, defined as > 95%
using Genedoc’s default scheme of conserved groups,
must be important and might even be required. Fig. 2
shows an excerpt of a preliminary MSA that, besides 13
strictly conserved positions, had 10 highly conserved (>
95%) positions that were all studied as part of a rigid

sequence scrutiny. We performed structural analysis, in-
cluding MD simulations, of apparent rare substitutions
since this can corroborate if the highly conserved residues
are probably strictly conserved. Additional file 3 shows a
summary of additional TCS and SNAP analyses that were
performed in order to provide additional evidence for
problematic sequences. Note that we do not claim re-
moved sequences correspond with NFHs.

Wild type dynamics
We first determined the optimal protonation state. The
most likely protomer at pH = 4 was chosen in terms of
structure conservation of the X-ray structure (PDB-ID:
2IFW) after 40 ns of simulation. Additional file 4 A
shows the comparison of the six best protomers -out of
19 possible protomers - of the WT structural model.
The best state shows the lowest RMSD which remains
clearly below the RMSD of other protonation states
during the 40 ns of the simulations. The complete
100 ns simulation performed for the best protonation
state showed an average of 0.892 Å over the whole
extended simulation. In addition, the co-crystallized
inhibitor perfectly conserved its structure, main contacts
and conformation during the whole simulation, with an
RMSD average below 0.395 Å (Additional file 4 B.).
Hence, this protonation state was selected for all further
analyses in which the X-ray structure of the WT was
compared to the 3D models of a number of selected
virtual mutants.

Eqolisins have four highly conserved glycines that appear
strictly required
Three highly conserved glycine residues, G8, G41 and
G44 are found in the inner sheet together with strictly
conserved G55. Since glycine is small and flexible we en-
visaged these glycines might play a crucial role in en-
zyme dynamics. EFAo000001 has G41E and G44S
substitutions with surrounding subsequences that sub-
stantially differ from the otherwise highly conserved part
of the MSA (Fig. 2). Hence, this sequence unlikely en-
codes for a functional eqolisin and G41 as well as G44
might be considered as strictly conserved.
In order to analyze the roles of the four glycines we

performed 100 ns molecular dynamics with the GAx4
mutant as compared to WT. Fig. 3a shows that the
GAx4 substitution yielded a much higher backbone
RMSD, similar results were obtained for the overall
RMSD on the inhibitor. A view of the structure averaged
over intermediate 5 ps of the simulation (Fig. 3b1) shows
major changes in the 70’s and β-loops as well as a third
loop that is stabilized by a disulfide bridge, hence re-
ferred to as the C-loop. The change in the β-loop con-
formation causes a loss of hydrophobic contacts with
the transition state inhibitor. This can also be observed
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in Additional file 5, where snapshots at four different
simulation times (2.9, 4.8. 40 and 100 ns) illustrate the
early opening of the β-loop. In addition, the GAx4 mu-
tant shows both a repositioning of the catalytic dyad
(E136/Q53) (Fig. 3b2) and a depleted H-bond donor/ac-
ceptor capacity, as compared to the WT (Fig. 3c), the
net loss being between 3 and 4 H-bond contacts on the
average.
The above considerations reveal a change in structure

and possibly functionality. In order to confirm these ob-
servations, the standard free energy of binding of the
eqolisin/inhibitor complexes were calculated for the WT
and the GAx4 mutant using two different models (GB
and PB) on the last 35 ns of equilibrated trajectories
shown in Fig. 3 (Table 1). The substitution of these gly-
cines causes a depletion of about 33 and 34 kcal/mol
(GB and PB models, respectively). Even though the other
nine mutants will also be analyzed within 40 ns of total

simulation, for the particular case of the wt (reference)
and this mutant, additional 60 ns of simulation were
performed and the energetic analysis gave equivalent re-
sults (energies in parenthesis on Table 1). Besides the
analysis of the contacts lost and structural changes (Fig. 3
and Additional Files 6 and 7), an analysis of the essential
modes of motion of the complex and the individual con-
tacts was performed to rationalize such a high change in
the affinity for the substrate for the mutant as well as for
establishing the role of each of the four G to A mutation.
The overall cross-correlation function of G41, G55 in their
β-sheets and G44 (and the subsequent C-loop) shows they
are correlated with the inhibitor (res # 207–213), the
β-loop (res. #141–148), the 70’s loop as well as with Q53
and W67 (Data not shown), correlations that are dimin-
ished or lost in the GAx4 mutant. MD analysis of the four
independent Gly to Ala mutants (details on Additional
files 6 and 7) shows that the largest contribution to the

Fig. 2 Excerpt of Multiple Sequence Alignment Eqolisins. Indicated are the sequences for which a structure has been resolved (PDB IDs 2IFW,
1Y43) as well a number of sequences selected to show overall sequence variation. The lower block contains sequences that were removed upon
sequence scrutiny as described in the main text. The rulers indicate positions of hallmark residues and or positions described under the sequence
scrutiny. Encircled cysteines are involved in disulfide bridges, indicated by lines. Shading indicates conservation (100% black; 80% dark-gray, 60% light-gray)
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Fig. 3 (See legend on next page.)
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loss in binding energy is derived from G55A (See Table 1).
The correlations of their motions, some of which are ra-
ther long-ranged, can be rationalized by means of the con-
tribution given by the first three lowest essential normal
modes shown on Additional file 8. Two of the three first
modes are remarkably different for GAx4 with respect to
WT.
Two additional evident observations about the role of

these glycines are revealed in the dynamics of the WT.
G44 forms an H-bond to the AAR213@H residue of the
inhibitor through its backbone O. The G55 is tightly
H-bonded through their backbones with W67 and G44;
the latter is at the beginning of the turn lead by D45,
which is comprised in a tight salt bridge with the posi-
tively charged guanydonium group of the AAR213 resi-
due of the inhibitor, also persistent during the whole
simulation in the WT. On the other hand, G8 (which
has also a high cross-correlation value with AAR213 and
participates into the lowest essential mode of the WT) is
H-bonded with the backbone of T182, which is also
H-bonded to AAR213 through its alcohol oxygen during
the whole simulation of the WT. The change in the
flexibility of the backbone of G8 and G44 by the alanines
in the mutant affects both directly and indirectly these
three strong contacts: D45@Od – AAR213@Hh22 (be-
cause of A44), A44@O–AAR213@H (because of A44

itself ) and Q182@Og – AAR213@Hh12 (because of A8).
Fig. 3d and e illustrate the persistence of these contacts
along the whole simulation for the WT and their deple-
tion in the GAx4 mutant. Even though G55A substitu-
tion was found to maximally affect the energetics of
binding, all the above important contacts were also
found to be seriously depleted in the G8A, G41A and
G44A individual mutants (further details in Additional
files 6 and 7).
SNAP analysis using 2IFW as template shows that the

identified substitutions of G41 and G44 are expected to
have an effect on the enzyme’s functionality (Additional
File 3). As a result of these evaluations, we considered
G8, G41 and G44 might well be strictly conserved,
which we included in the sequence scrutiny in order to
obtain a specific dataset that lacks noise in the identifi-
cation of SDPs.

Co-evolution of W67F and L105W mutations resulted in
higher binding energy to inhibitor
Another highly conserved residue is W67. Fig. 4a shows
that the bulky and rigid side-chain of W67 is involved in
positioning Q53, assisted by the strictly conserved E69.
Furthermore, its indole aromatic ring forms a π–π stacking
with the PSA211 from the transition state inhibitor that
was crystallized with SCP-B (See Fig. 4b). This indicates a
role in substrate binding. A total of 12 sequences show
substitution W67F. Albeit smaller, a phenylalanine can still
be envisaged to fulfill both hypothesized functions. Inter-
estingly, five of 12 sequences, although from a single clade,
also show W105 which is an otherwise highly conserved
small hydrophobic residue (L, I, V or M) in the outer
pleated β-sheet directly below position 67. The more bulky
W105 can be envisaged to change the conformation of the
inner pleated β-sheet such that the aromatic ring of the
F67 occurs at the same position as the typical W67,
thereby sustaining for the π–π stacked stabilization of the
substrate. In order to test this hypothesis and isolate the
main structural factors which could rationalize it, models
of the W67F, L105W and the double mutant (W67F/
L105W) were simulated by means of molecular dynamics
and compared to the WT structure. Mutant W67F shows a
similar RMSD as the WT whereas L105W shows a slightly
higher RMSD. The double mutant W67F/L105W showed

(See figure on previous page.)
Fig. 3 Molecular Dynamics Analyses of G8A-G41A-G44A-G55A mutant. a Comparison of the backbone RMSD of the WT and the GAx4 mutant.
b1 Comparison of the initial (red) and intermediate (37.000 to 37.005 ns, in blue) structures of the GAx4 mutant. The inhibitor (Inh) represented in
licorice. The mutated residues G8A-G41A-G44A-G55A in green (on the cartoon). b2 Rotated view with the catalytic dyad indicated. c Number of
H-bonds (smoothed as running average over 5 ns or 500 frames) as donor and as acceptor between the WT and the GAx4 mutant with the
inhibitor along the dynamics. d1 Depletion of the contacts to the inhibitor in the GAx4 mutant (red) with respect to the WT (black) directly due
to the G44A substitution, the backbone O with the backbone H of the inhibitor residue AAR213 is weakened. d2 G44A substitution causes that
the salt bridge involving the contiguous D45 with AAR213 is weakened. d3 G8A substitution causes a weakened H-bond involving T182 alcohol
O with AAR213. e Cartoon of 2IFW showing interactions lost or weakened in the GAx4 mutant as shown in D1-D3

Table 1 Calculated free energies of binding

ΔG0 binding / kcal/mol

Protein/Inhibitor complex PB model GB model

wt −78.74 (79.69)a −93.27 (93.76)a

G8A-G41A-G44A-G55A −45.10 (44.87)a −60.24 (59.74)a

G8A −76.31 −87.97

G41A −70.50 −85.14

G44A −73.16 −87.87

G55A −57.50 −71.27

W67F −69.73 −86.64

W67F-L105W −83.39 −93.54

L105W − 75.03 −89.68

P72K −72.82 −86.89

D43A −78.39 −88.34
aValues obtained from the analysis of the extended 100 ns trajectories
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a slightly reduced RMSD. Similar results were obtained for
total inhibitor RMSD (Additional file 9). The π–π stack
distance of mutant W67F shows a persistence in time as
the WT, L105W shows a slightly higher distance whereas
double mutant W67F/L105W showed a slightly tighter
interaction (Fig. 4c and d). Additional noticeable differ-
ences arose, especially in the case of L105W, which was
unable to keep residue 209 of the inhibitor tightly bound

during the whole simulation. Subtle differences, with im-
pact in the overall energy balance, also appeared for W67F.
L105W and W67F show about 3 and 6 kcal/mol, respect-
ively (similar for PB and GB models See Table 1), less affin-
ity for the substrate analog than the WT. On the other
hand, the double mutant yielded a free energy of binding
more favored than the WT (4 and 0.3 kcal/mol more nega-
tive than the WT for PB and GB, respectively). This

Fig. 4 Structural and Molecular Dynamics of W67F and W67F-L105W mutants. a Cartoon of 2IFW showing I51 (purple) at the start of a β-sheet as
well as W67 (yellow) and E69 (cyan) relative to catalytic Q53. b Cartoon of 2IFW detailing the π–π stack between W67 (yellow) and PSA211 from
the transition state inhibitor. c Cartoon of 2IFW showing π–π stacking (green licorice) and salt bridge (orange licorice) between eqolisin and
transition state inhibitor. d Distance and its running average (over 5 ns, smoother solid line) for the π–π stacking of residue 67 with the inhibitor
PSA211 phenyl ring in the WT, the W67F and L105W mutants as well as the W67F-L105W double mutant as determined by molecular dynamics
simulation (e) Distance between D57@Og and LYS209@Hz in the WT, the W67F and L105W mutants as well as the W67F-L105W double mutant
as determined by molecular dynamics simulation
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suggests the bulkier W105 pushes F67 up to the aromatic
moiety of the inhibitor, thus leading to a better π–π inter-
action than found for W67/L105 in the WT.
Besides its direct interaction with PSA211, WT dynamics

demonstrates other important interactions. The squared
cross-correlation function of W67 shows an important
peak with PSA211, but it also shows W67 is correlated with
G55, D57, D65, D77, L105 and D136 (all of them > 0.55,
Additional file 10). In the double mutant, the bulkier W105
not only pushes F67 up to the inhibitor, it also repositions
D57, in the WT comprised in a salt bridge interaction with
the LYS209 of the inhibitor. A stable H-bond network be-
tween LYS209, D65 and D77 also depends on the right
position of D57 for a tight salt bridge. Fig. 4c and e show
the persistence and closeness of this contact during the
simulation. Indeed, the combined W67F and L105W sub-
stitutions were found to be a better combination for prop-
erly holding D57 tightly bridged to the inhibitor. This
would contribute to the favored binding energy for the
double mutant. Besides its small improvement in the bind-
ing energy, it is worth to mention that the analysis of all
the contacts (H-bonds, electrostatic and hydrophobic) from
the double mutant closely resembles the analysis for the
WT. Also the first essential modes are very similar to the
WT as shown on the Additional file 8. Thus whilst, either
W67F or L105W substitution have little effect or deplete
the binding modes and energy, the double mutant should
equal or even improve the WT ability for binding this sub-
strate/ transition state analogue. As a result of these evalua-
tions, we consider both the W67F and the L105W as
functional substitutions that seem to have co-evolved.

The P to K substitution at position 72 depletes inhibitor
affinity
P72 is part of the 70’s loop, described by Pillai and col-
laborators [15] and six sequences in the initial set of
sequences have a substitution in that position. First
the aforementioned EFBso00001 has a serine. Then,
EFPde00001 (Fig. 2), EFMac00003, EFMan00003, and
EFCm000003 have a lysine whereas EFCm000002 has
a glutamine. The P72K substitution was modeled and a
structural alignment (data not shown) shows a structural
change in the β-loop. These sequences occur at relatively
large distances in a preliminary tree, which suggests the
sequences might encode NFHs.
In order to test the hypothesis that P72K disrupts func-

tion, we performed molecular dynamics simulations with
the P72K mutant. The structure is, in general, well con-
served during the simulation (see Additional file 11 A,
showing the backbone RMSD compared to the WT). The
substitution has an overall effect less evident than in the
case of W67F and fairly smaller than GAx4 and D43A.
Most contacts and the overall mode of binding to the in-
hibitor is similar to either the WT and the W67F-L105W.

However the mobility of the 70’s loop is affected and add-
itional interactions involving the ammonium group of K62
and alternatively N144@O N144@Od appeared, thus alter-
ing the essential mode involving the 70’s- and β-loops (see
Additional file 11 B); all these interactions were absent in
the WT, having the hydrophobic and compact proline resi-
due. The substitution P72K thus depleted the affinity of
the mutant for the inhibitor by about 6 kcal/mol in both
models for computing the ΔG0 of binding. As a result of
these evaluations, we consider that the P72K mutation
possibly disrupts function and sequences were removed ac-
cordingly. Since the P72S mutant also contains Q51 (see
below) at a strict small hydrophobic site and there was no
indication for another co-evolution event this was also
considered a problematic sequence. Then if we consider
that these mutations likely disrupt function, the same can
be argued for the remaining P72Q. All the mentioned sub-
stitutions were predicted by SNAP (Additional file 3) as
non-neutral and corresponding sequences were removed.

An additional check about the importance of D43
The importance of D43 for the eqolisin function was
raised by other authors [8] and although it was not the
focus of the present study, we checked the behavior of the
D43A mutant in order to have an additional check on the
reliability of the MD analysis done for all the in silico mu-
tants discussed here. Indeed, the D43A substitution de-
pleted the ability of the protein for binding the TS analog
inhibitor. In Additional file 12 b it is shown how the
ß-loop opens and looses contacts with the inhibitor. This
resembles the problem observed in the case of the GAx4
mutant (Additional file. 5). Despite that the loss in binding
energy is less remarkable than in the case of the GAx4
mutant (Table 1), the overall RMSD is much higher, espe-
cially the RMSD of the inhibitor in the site, as shown
compared to the WT in Additional file 5a. In summary,
D43A was found to be disruptive, using the same criteria
applied to the other mutants analyzed here.

Additional low frequency substitutions
A number of sequences have substitutions at position
D43, which forms a minor turn in 2IFW (not shown)
and has been shown to be important for function [8].
Three sequences, one bacterial and two eukaryotic, have
S, which, when phosphorylated, is physicochemically
similar to aspartic acid [43], hence these are envisaged
non-fatal substitutions. Ten sequences have G43, a rela-
tively large number that, combined with its appearance
in fungi, bacteria and archaea, suggests this is another
acceptable substitution. Furthermore G is often found at
turns and can be envisaged to maintain functionality.
Position 51 has a highly conserved small hydrophobic

residue, L, I or V, where EFTa000006 has P instead. The
isoleucine in 2IFW occurs at the start of an inner sheet
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element and has its side-chain pointing inward the half-
pipe (Fig. 3a). It seems unlikely that substitution by the
rigid proline would not affect catalytic efficiency, hence
we consider EFTa000006 (Fig. 2) as an NFH. EFBso00001
has Q51 (not shown) as well as the aforementioned P72Q
mutation and since there are no indications for co-evolu-
tion this sequence also probably encodes an NFH. SNAP
analysis (Additional file 3) predicts both substitution have
an effect on function.
Three bacterial sequences have a phenylalanine at pos-

ition 89 that is otherwise characterized by VILM. Since

phenylalanine is hydrophobic, this appears as an allowed
substitution. Position 105 is another conserved hydro-
phobic site, typically constituted by VILM but shows,
besides the above discussed Ws, two instances of
phenylalanine, one of tyrosine and one of glutamate. The
glutamate substitution in BCa0000005 would result in a
buried but charged side-chain, which could be explained
by a co-evolved basic residue, which could not be identi-
fied. Hence, this is probably a substitution that disrupts
function. The tyrosine substitution in APf0000001 might
well be a problem of erroneous sequencing or gene

Fig. 5 Phylogenetic Analysis of Eqolisins. a Radial phylogram. Fungal sequences are in red or black (small clusters indicated with a and b),
Bacterial sequence in blue and Archaeal in cyan. The black and green arrows indicate two possible common ancestors discussed in the text.
Roman numerals refer to selected clades discussed in the main text. Dots indicate Bayesian support > 0.8, scale bar represents a distance of 0.1
accepted amino acid mutations per site. b Radial cladogram. c Taxonomic distribution of eqolisins on a tree representative for generally accepted
consensus species phylogenies. Roman numerals and a and b refer to the selected clades (Fig. 5a). Numbers indicate the number of sequences
per clade and subphylum/class. Abbreviations in Additional file 15
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modeling since it is surrounded by a stretch of about 20 to
40 amino acids that poorly align and the sequence was re-
moved. The two instances of phenylalanine substitutions in
bacterial (Bgt0000001) and eukaryotic EFCm000005 intro-
duce another hydrophobic but larger residue and given the
partial solvent exposure, it can be envisaged this substitu-
tion is not fatal. Finally, the highly conserved site 133 has
VILM and two, likely partial sequences (EFFo000002 and
EFNh000001) showing a gap in the MSA, these were also
removed.
Upon removal of the problematic sequences we rea-

ligned the remaining sequences and checked the effect of
adding the removed sequences to the alignment. TCS
confirmed the addition of the sequences resulted in a
score drop of 800 to 773, confirming the sequence scru-
tiny resulted in a more reliable MSA. Finally, an additional
23 scrutinized novel eqolisin sequences were added.

Phylogenetic clustering suggests fungal Eqolisins have
resulted from an ancient LGT event
A new MSA of a total of 314 sequences was made
(Additional file 13), subjected to trimming of poorly
aligned subsequences and used for phylogeny. First a
maximum-likelihood tree was constructed, which was
then used to initiate a Bayesian analysis. Fig. 5a shows
an annotated radial phylogram, a radial cladogram is
shown in Fig. 5b. Cluster assignation was made based on
monophyly and, more importantly, taxonomical consid-
erations. Apart from two orphan sequences, prokaryotic
(archaeal and bacterial) and fungal sequences cluster
separately which suggests a common ancestor, separat-
ing prokaryotic clades I and II from the fungal se-
quences. However, a taxonomical distribution analysis
(Fig. 5c) points towards an alternative common ancestor,
also indicated in Fig. 5a. The majority of the sequences are
found in the subphylum pezizomycotina, which is further
classified in the classes of dothideomycetes, eurotiomy-
cetes, leotiomycetes, sordariomycetes and pezizomycetes,
the last class not containing eqolisins. Clade III is a mono-
phyletic clade with sequences of all four classes and since it
is closest to the initially suggested common ancestor, this
indicates the common ancestor might correspond better
with the node between the clade containing subclades I, II
and III and the rest of the tree. This is substantiated by the
sequence logo analysis (Fig. 6a) presented in the descrip-
tion of the structure-function analysis. All other assigned
clades were selected based on monophyly and size (a re-
quirement of at least 10 members was set arbitrarily).
Lateral gene transfer (LGT) seems to have had an im-

portant role in the eqolisin phylogeny. The two orphan
sequences are examples of LGT. Furthermore, the lack
of eqolisin encoding sequences in eukaryotes other than
fungi points towards an ancestral LGT event. The taxo-
nomical distribution of sequences suggests this ancestral

LGT has taken place between a bacterium and the an-
cestor of the Dikarya. The absence of introns in many,
albeit not all fungal sequences corresponds with the pro-
posed ancestral LGT.

Functional diversification of substrate binding site
Since a number of fungi have various paralogs in well sep-
arated clades, fungal eqolisins might have been subject to
functional diversification. We performed analyses in order
to identify first Cluster Determining Positions (CDPs) and
then Specificity Determining Positions (SDPs). CDPs are
positions in the protein (or columns in the corresponding
MSA) that significantly contribute to clustering. These are
the result of either genetic drift (i.e. neutral substitutions)
or selection, which would mean they are somehow related
to functional or structural diversification. Functionally,
but also structurally, important residues are likely to show
moderate to high levels of interaction with other residues,
which can be determined with the measure of mutual in-
formation (MI). Hence, CDPs that show high MI with
other residues are likely important in either maintaining
the structure or functional diversification. Since MI re-
flects co-variation, groups of CDPs and other positions
that are directly connected via significant MI values are
expected to affect the same functional aspect.
CDPs were identified using SDPfox [44], using the clus-

tering indicated in Fig. 5. Out of 28 CDPs that were identi-
fied, 20 showed significant cumulative MI levels, as
determined by Mistic [45], of which a total of 14 could be
confirmed by H2Rs [46], all considered putative SDPs
(pSDPs). A resume of the SDP identification is shown in
Additional file 14 that also contains a description of the
binding cleft, based on the work of Pillai and co-workers
on SCP-B [15]. Sequence logos of the SDPs, according to
the clustering shown in the phylogeny of Fig. 5., are shown
in Fig. 6a alongside the MI network, defined as the subnet-
work of nodes that directly connect to at least one other
node with significant MI, obtained by Mistic (Fig. 6b). The
MI network consists of three fully connected subnetworks.
The large connected subnetwork contains an intricate
central module of nodes, mostly corresponding to highly
conserved sites, with some branches with lower levels of
connections. This central module conceptually corre-
sponds with the core eqolisin function and lacks SDPs.
Two instances of paired SDPs, (35 and 59; and 23 and 91
respectively) are found in one of the branches with low
connection levels and appear to be the result of
co-evolution driven by of structural compensation. The
sequence logo shows SDP35 and 59 have a preferred C in
both clade VI and VIII that, combined with their proximal
three dimensional location, points toward a possible disul-
fide bridge. SDPs 23 and 91 are likely involved in an
important hydrophobic interaction given the substitution
pattern shown in Fig. 6a and their 3 dimensional
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proximity in the protein (not shown). These pSDPs are as
such not considered real SDPs since we cannot foresee
any functional diversification. A first specificity determin-
ing network (SDN) with four directly connected SDPs (47,
52, 95 and 127) as well as SDP50 that connects via single
non-SDP to SDP52 and SDP95, is found in one of the
branches with lower levels of connections. A second SDN
with four directly connected SDPs 65, 77, 78 and 103 lo-
cates into one of the small (n = 11) subnetworks that also
includes pSDP34. The second small (n = 5) subnetwork
contains no SDPs.
The SDN in the small subnetwork is dominated by the

preferred D65, D77 and F78 in groups IV to IX (Fig. 6a).
Fig. 7 shows how D65 and D77, part of subsite S3, inter-
act with the substrate. This is further substantiated by
MD analysis. Squared cross correlation function of D65
shows high levels of interaction with for instance D77
and the Lys in the substrate (See Additional file 11).
Both acid side chains interact directly with the basic

sidechain of the Lys in the substrate analogue. F78 does
not form part of the binding cleft, but interacts directly
with its neighbor D77. A103 connects to F78, having an
MI value of 6.7 and Fig. 7b shows they interact physic-
ally. Hence, SDPs 65 and 77 are predicted to affect sub-
strate specificity, particularly concerning P3. Positions
78, 103 likely give some sort of structural support. The
information contents at positions 65 and 77 in the vari-
ous clades is likely indicative for substrate specificity.
The SDP group in the large subnetwork contains SDPs

dominated by the Cysteins at 47 and 127 that form a di-
sulfide bridge in SCP-B and which are present in most
sequences, except for those in clades I and IV (Fig. 6a).
In SCP-B the disulfide bridge stabilizes a hitherto
un-described loop from position 44 to 51 which we refer
to as the C-loop. Fig. 8a shows the C-loop, the disulfide
bridge as well as the 70s loop since the central position
in group 2 is taken by position 70, a Tyr in SCP-B. This
suggests the C-loop interacts with the 70s-loop, which

Fig. 6 Specificity Determining Positions of Eqolisins. a Sequence logos of SDPs per selected clade (Fig. 5). b Mutual Information Network. Connected
nodes have MI of at least 6.5. Note that a first SDN (SDPs 47, 52, 95, 127 and 50) is connected to the major network, whereas the other SDN (65, 77, 78
and 103) is not. Color of the nodes corresponds to Kullback Leibler conservation
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Fig. 7 The D65-D77 Mutual Information network is involved in
substrate specificity. a Cartoon of 2IFW with highlighted binding
cleft. Transition state inhibitor is indicated in purple licorice. Sites
are indicated in colored licorice (see legend) with surface indication.
b Interaction of D65 and D77 with substrate analog. The inset shows
that the acid groups of both aspartates (S3’ yellow surf) interact directly
with the basic group of the Lysine form the the analog (purple). Other
SDPs of the same SDN are indicated in blue (See also Additional file 16)

Fig. 8 The C-loop interacts with the previously described 70s-loop.
a Cartoon of 2IFW with highlighted the previously described 70s-loop
and the novel C-loop (Cyan). C47 and C127 (blue licorice) form a
disulfide bridge that holds the loop in place. The C-loop also includes
SDP50 (blue). b Cartoon of 2IFW with highlighted the 70s- and C-loop.
Y70 interacts physically with A50 and L52, both identified as SDPs
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has been shown to be important in binding dynamics.
Fig. 8b demonstrates that in SCP-B both SDPs A50 and
L52 interact physically with Y70, likely influencing the
mutual positioning of the 70s- and C-loops. Clade IV se-
quences have Y47, which appears to be compensated by
the substitution C127A. SDP127 is connected with
SDP95, which is encountered in the outer sheet just
below the inner sheet and the C-loop. This suggests a
secondary, structural compensation but the substitution
pattern (A95S) does not give any clue on how this might
be established. The C-loop contains four residues that
are part of the binding cleft (Additional file 11) of which,
interestingly 51 is another CDP that does not form part
of the network. All together this suggests that the
C-loop is involved in the dynamics that lead to substrate
binding.

Conclusions
Only few eqolisins exist but interestingly fungi that se-
crete acid as part of their lifestyle can have up to nine
paralogs, which implies a process of functional redun-
dancy and diversification has occurred. This was studied
using a stringently mined sequence set. A number of se-
quences we removed might be functional but we prefer
to prevent possible contamination with sequences of
NFHs. An interesting case of recent molecular evolution
was identified, that given a more favorable binding en-
ergy towards the transition-state inhibitor, most likely
resulted in a more active enzyme. Furthermore we de-
tected two groups of SDPs, one that very likely is in-
volved in substrate specificity given two of the SDPs
form part of the binding cleft. The other group seems to
affect loop dynamics. Some of the additionally identified
CDPs might also be SDPs but the lack of MI signal can-
not corroborate them.

Additional files

Additional file 1: List of the protomers tested (i.e. those with complete
40 ns simulations) showing the averaged RMSD. ASH and GLH are aspartic
and glutamic acid, respectively, in protonated form (RCOOH neutral form);
acidic residues not listed are anionic (RCOO-). All arginines and lysines
protonated; no histidines are present in the 2IFW sequence. (DOC 87 kb)

Additional file 2: Complete Preliminary Multiple Sequence Alignment.
(FAA 354 kb)

Additional file 3: Table resuming TCS and SNAP analyses. Each of the
removed sequences was tested by TCS. Consensus score was 79 and the
lowest scoring accepted score was 51. All dubious mutations were analyzed
by means of SNAP using 2IFW as a template. E indicates the prediction is
that the mutation has an effect on enzyme activity, N means the mutation
is predicted to be neutral. NA: Not applicable. (DOC 41 kb)

Additional file 4: Molecular Dynamics Simulation determining best
protomer state. (A) Backbone RMSD of the best protomer for the WT
compared to five of the other best. (B) Backbone RMSD of substrate
analog inhibitor for the best protomer for the WT compared to five of
the other best. (TIF 830 kb)

Additional file 5: (B) Cartoons of the GAx4 mutant at 2.9, 2.4, 40 and
100 ns of simulation showing displacement of the β-loop relative to the
inhibitor (solid golden surface). (TIF 3478 kb)

Additional file 6: Analyses of the changes in contacts for each individual
GxA mutant, as compared to the WT. (A) The salt bridge D45-AAR213 is
weakened for G41A and G55A and depleted for G8 and G55 (as in the case
of GAx4). (B) The H-bond to AAR213 from the backbone G41 (or A41)
oxygen is lost for G41A and weakened in the other three single mutants.
(C) The H-bond involving the T182@OG is weaker than in the WT for the
case of G41A and depleted or lost for G8, G44 and G55. Smooth thick lines
are 200 ps running averages. (TIF 4486 kb)

Additional file 7: Analyses of the changes in contacts for each individual
GxA mutant compared to either WT or W67F-L105 double mutant. (A) The
salt bridge between D57 and LYS209 of the inhibitor (which is tightest in
the case of W67F-L105W) is depleted in the four GxA substitutions,
especially for G8A and G55A. (B) Also the π-π stacking with PSA211 results
weaker in the individual mutants G8A and G41A and practically absent in
G55A. Smooth thick lines are 200 ps running averages. (TIF 3253 kb)

Additional file 8: (A1-A3) Ca vectors of the first essential normal mode
from PCA analysis for the GAx4, WT and W67F-L105W species. (A4) the
squared displacement of each residue in the first mode. B-C squared
displacement of each residue on the next two modes. (TIF 1669 kb)

Additional file 9: RMSD of the inhibitor residues for the WT, W67F, L105W
and the double mutant. (TIF 2432 kb)

Additional file 10: Squared cross correlation function of W67 against all
other residues (wt trajectory). (TIF 1550 kb)

Additional file 11: Backbone RMSD comparison for the WT and the
P72K mutant. (TIF 2162 kb)

Additional file 12: Molecular Dynamics Analyses of D43A mutant. (A)
Comparison of the backbone RMSD of the WT and the D43A mutant. (B)
Cartoons of WT and D43A mutant showing displacement of the ß-loop
relative to the inhibitor (solid golden surface). (TIF 397 kb)

Additional file 13: Complete Final Sequence Alignment. (FAA 379 kb)

Additional file 14: Resume of the SDP identification by crossing SDPfox
and Mistic analysis. (XLS 21 kb)

Additional file 15: Abbreviations of species and their taxonomical
distribution. (XLS 58 kb)

Additional file 16: Squared cross correlation function of D65 against all
other residues (WT trajectory), showing main peaks at D57 and D77 as
well as inhibitors LYS209, which are involved in a network of H-bond and
salt bridges network. (TIF 1361 kb)
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