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Abstract

Background: Using next-generation sequencing technology to measure gene expression, an empirically intriguing
question concerns the identification of differentially expressed genes across treatment groups. Existing methods aim
to identify genes whose mean expressions differ among treatment groups by assuming equal dispersion across all
groups. For syndromes, however, various combinations of gene expression alterations can result in the same disease,
leading to greater heteroscedasticity in the biological replicates in the disease group compared to the normal group.
Traditional methods that only consider changes in the mean will fail to fully analyze gene expression in such a scenario.
In addition, sequencing technology is relatively expensive; most labs can only afford a few replicates per treatment
group, which poses further challenges to reliably estimating the mean and dispersion under each treatment condition.

Results: We designed an empirical Bayes method and a pooled permutation test to simultaneously consider the
change in mean and dispersion across treatment groups. We further computed confidence intervals based on Bayes
estimates to identify differentially expressed genes that are unique to each disease sample as well as those that are
common across all disease samples. We illustrated our method by applying it to gene expression data from a large
offspring syndrome experiment, which motivated this study. We compared our method to competing approaches
through simulation studies that mimicked the real datasets to demonstrate the effectiveness of our proposed method.

Conclusions: We will show that, compared to popular methods that only aim to find the difference in the mean, our
method can capture greater variation in the disease group to effectively identify differentially expressed genes for
syndromes.
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Background
Differentially expressed (DE) genes often refer to genes
whose mean expressions differ across treatment groups,
such as normal versus disease groups. Significant DE
genes in the genome are considered to be related with the
disease of interest. Thus, reliable detection of DE genes
is helpful for understanding the underlying mechanism of
disease occurrence.
High-throughput technologies, such as microarray and

next-genration sequencing (NGS) technology measure
gene expression levels simultaneously for tens of thou-
sands of genes in the whole genome. Compared to
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microarrays, NGS technology enjoys several advantages.
NGS experiments measure the number of reads from
a gene, which is closer to the natural measurement of
RNA abundance than the fluorescencemeasurement from
microarrays. Moreover, NGS provides expression mea-
surements of similar transcripts that would be difficult
to separately measure with microarrays due to cross-
hybridization. NGS experiments also provide information
of sequence variation, such as alternative splicing, allele
specific expression, single nucleotide polymorphisms and
so on [1, 2]. However, NGS is relatively expensive; hence,
most biology labs can only afford three or four replicates
per treatment group.With so few replicates, it is extremely
challenging to accurately estimate expression means and
error variances that are crucial to DE gene identification.
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Auer and Doerge [3] proposed a two-stage Poisson model
(TSPM) that assumed NGS read counts for each gene
following either a Poisson distribution or Poisson with
overdispersion. Robinson and Smyth [4] proposed mod-
eling NGS read count data as random variables following
a negative binomial (NB) distribution. To improve esti-
mation of the mean and dispersion parameters in the
negative binomial distribution for each gene, [4] also
assumed that gene dispersions, although they may vary
across genes, were a sample from a common prior dis-
tribution. Thus, observations from tens of thousands of
genes could be pooled to accurately estimate the common
hyper priors and improve estimates of each individual
gene dispersion. This method has been implemented in
the edgeR package and is regarded as one of the most
popular and effective methods for detecting DE genes.
Similar to the idea in [4], [5] also used an NB model to
borrow information across genes. They made an addi-
tional assumption of a locally linear relationship between
variance and the mean expression levels. Their method
has been implemented in the DESeq package. Hardcastle
and Kelly [6] also adopted the NB model, but unlike the
other two methods, they used the Bayes factor approach
in hypothesis testing and ranked genes based on pos-
terior probabilities. Their method was implemented in
the baySeq package. Several simulation studies and real
data analyses have found the edgeR, DESeq, and baySeq
methods, which borrow information across genes, can

greatly improve the power of DE gene detection over the
naive generalized linear model without sharing informa-
tion. Other developments include the Cuffdiff method [7],
the NOISeq method [8], the BBSeq method [9], the BAGE
method [10], the QuasiSeq method [11], the ShrinkBayes
method [12], and the DESeq2 method [13]. These new
developments share similar ideas with edgeR, DESeq, and
baySeq but are expanded to include more specific situ-
ations. For example, the Cuffdiff method can detect DE
genes with alternative splicings, the BAGE method can
analyze data from multiple experiments simultaneously,
and the QuasiSeq method uses a quasi-likelihood for sim-
pler computation and better estimates of false discovery
rate (FDR) control.
Although previous studies have realized great advances,

they all assume that mean expressions within one treat-
ment group are the same among biological replicates. Yet
this statistical assumption does not hold for certain dis-
ease groups. For example, syndromes include a group of
various symptoms that co-occur to characterize a dis-
ease. Afflicted individuals exhibit different combinations
of symptoms that manifest from the same disease. Thus,
for DE genes related to the syndrome of interest, only
some of the replicates in the disease group show differen-
tial expression. For instance, [14] studied large offspring
syndrome (LOS). Figure 1 shows four genes – gene NNAT,
PEG3, PLAGL1, and SNRPN – related to the occurrence
of LOS [14, 15]. For each gene, the first four observations
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Fig. 1 Four example genes. Normalized counts for example genes. The first 4 counts for each genes are from normal group, and the last 4 are from
LOS group
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are from the control group, and the last four observations
are from the LOS group. Specifically, for gene NNAT,
replicate 3 in the LOS group expressed substantially dif-
ferently, whereas LOS replicates 1, 2, and 4 expressed
similarly to the normal group. For the other three exam-
ple genes, it also happened that only some of the disease
replicates showed differential expression. Using Sanger
sequencing, genotyping results confirmed loss or gain
of imprinting at these four gene loci for one or more
but not all disease replicates [14]. However, when apply-
ing existing methods (e.g., edgeR, DESeq and baySeq)
and controlling FDR at 0.05, few true DE genes could
be detected; furthermore, none of these four genes were
reported to be DE genes. This is because the aforemen-
tioned methods assume equal dispersion across groups
and only detect group mean difference. There is little
power in testing the mean when only some disease repli-
cates express differently from the normal group.
For special groups of diseases such as syndromes, which

are characterized by significant various combinations of
gene expression aberrations, some DE genes are shared
by all disease replicates; others may be unique in one
or more disease replicates, but not all. In the literature,
no statistical methods have been developed to handle
such cases where each disease replicate has a consider-
ably different combination of DE genes. Existing meth-
ods were built for simple cases in which DE genes are
shared by all disease replicates. When there is greater
heteroscedasticity among disease replicates as shown in
Fig. 1, one simple approach to improve power for DE
detection is to test the mean and dispersion change simul-
taneously. The Voommethod [16, 17], incorporated in the
LIMMA package [18], attempted to model heteroscedas-
ticity at the observation- and sample-specific levels by
modeling the variance to be dependent on the mean and
adding sample-specific weights based on sample quality.
However, this approach would not achieve our objective
because the Voom method adjusted all genes in a sam-
ple with one sample weight. For syndromes, each sample
has a different combination of genes regardless of sam-
ple quality. In addition, the Voom method models the
variance as a linear function of the mean, which is also
not feasible in our scenario. Depending on the disease
samples collected in an experiment, a varying group of
DE genes can show differential expression in any number
of disease samples. Thus, the mean-variance relation-
ship cannot be established across DE genes and/or across
experiments.
Throughout this paper, we use “DE genes” to refer to

those genes whose mean expression levels change signif-
icantly in one or more (or all) replicates in the disease
group compared to the normal group. Hence, equally
expressed (EE) genes in our case refer to those whose
mean expression levels are the same across all replicates

in two comparison groups. We developed a statistical
method, DESyn, which is short for differential expression
analysis for syndromes, to test the mean and dispersion
simultaneously. Due to the low number of replicates often
used in NGS experiments, we adopted an empirical Bayes
method to borrow information across genes to improve
dispersion estimation for each gene and treatment group
combination.We then designed a pooled permutation test
to identify significant DE genes. In addition, confidence
intervals based on NB distributions were used to further
detect, for each DE gene, which replicate(s) in the dis-
ease group differed from the normal group. Next, for each
afflicted replicate, we could find the unique combination
of genes underlying disease along with commonly shared
DE genes among all afflicted replicates. We illustrated our
algorithm through its application to kidney tissue in the
LOS study along with simulation studies that mimicked
the real datasets. The R function used to conduct the study
is available to download on github at https://github.com/
cmrf7/DESyn.

Method
The objective of our analysis is to develop a statistical
method for syndromes that is more powerful than exist-
ing methods of DE gene detection between normal and
disease groups. We assume normalized read counts fol-
low NB distributions, thereby relaxing the restriction in
the Poisson distribution requiring the mean and variance
to be equal. Let i index treatment groups where i = 1
denotes the normal group and i = 2 denotes the dis-
ease group. Let ni denote the number of replicates in
group i. Let Ygij denote the normalized read count for
gene g (g = 1, . . . ,G) of treatment i (i = 1, 2) and repli-
cate j (j = 1, . . . , ni). Then, we have Ygij

iid∼ NB(μgi,φgi).
Because NGS is a relatively expensive technology, ni’s
are often small (e.g., three or four); thus, estimation of
the dispersion parameter φgi is unreliable. edgeR, DESeq,
and baySeq methods have attempted to improve these
estimates by assuming equal dispersion across treatment
groups; that is, φg1 = φg2 = φg for each gene g. They
hoped that by assuming a common dispersion, data from
two treatment groups could be pooled to better estimate
dispersion. This assumption may be appropriate for sim-
ple cases, but for syndromes, ignoring extra dispersion in
the disease group will limit the power in finding DE genes
(see Fig. 1). An NB likelihood ratio test (LRT) shown in (1)
can simultaneously examine the change in mean and dis-
persion. Specifically, for gene g, to test H0: μg1 = μg2 =
μg and φg1 = φg2 = φg , an LRT statistic is

LRg = −2 log
sup

{
L

(
μ̂g , φ̂g ; yg

)}

sup
{
L

(
μ̂g1, φ̂g1, μ̂g2, φ̂g2; yg

)} , (1)

https://github.com/cmrf7/DESyn
https://github.com/cmrf7/DESyn
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where yg is the vector of observations for gene g. μ̂g
and φ̂g are maximum likelihood estimates (MLEs) when
assuming the same mean and dispersion across two treat-
ment groups. μ̂g1, φ̂g1, μ̂g2, and φ̂g2 are MLEs, respec-
tively, for the normal and disease groups. When sample
size is large, LRg approximately follows a χ2 distribution
with two degrees of freedom. When LRg is large, such
that sup

{
L

(
μ̂g1, φ̂g1, μ̂g2, φ̂g2; yg

)}
is significantly larger

than sup
{
L

(
μ̂g , φ̂g ; yg

)}
, we can reject H0 and claim that

either the mean or dispersion differ between the two
comparison groups for gene g.
Due to the low number of replicates in each treatment

group, MLEs are not robust, especially for dispersion
parameters. To obtain stable dispersion estimates, we
adopt the idea in edgeR of assigning a common hyper
prior on the dispersion parameters of all genes to share
information across genes. Specifically, in (1), we assume
φ̂g |φg ∼ N

(
φg , τ 2g

)
and φg ∼ N

(
φ0, τ 20

)
. Similarly, we

also assume φ̂g1|φg1 ∼ N(φg1, τ 2g1), φg1 ∼ N
(
φ1, τ 21

)

and φ̂g2|φg2 ∼ N
(
φg2, τ 2g2

)
, φg2 ∼ N

(
φ2, τ 22

)
. By using

the same inference procedure in edgeR [4], the Bayes
posterior mean estimators are φ̂B

g = E
(
φg |φ̂g

)
=(

φ̂g/τ 2g + φ0/τ
2
0

)
/
(
1/τ 2g + 1/τ 20

)
, φ̂B

g1 = E
(
φg1|φ̂g1

)
=(

φ̂g1/τ
2
g1 + φ1/τ

2
1

)
/
(
1/τ 2g1 + 1/τ 21

)
and φ̂B

g2 =
E

(
φg2|φ̂g2

)
=

(
φ̂g2/τ

2
g2 + φ2/τ

2
2

)
/
(
1/τ 2g2 + 1/τ 22

)
. φ̂B

g ,
φ̂B
g1, and φ̂B

g2 are considered improved estimates of φ̂g , φ̂g1,
and φ̂g2. The hyper priors φ0, τ 20 , φ1, τ 21 , and φ2, τ 22 are
estimated using observations from all genes via the same
inference procedure described in edgeR. Because there
are tens of thousands of genes in a whole genome, the
estimates of hyper prior parameters are accurate, and the
dispersion parameter estimates from sharing information
across genes are robust.
By replacing φ̂g , φ̂g1, and φ̂g2 in (1) by φ̂B

g , φ̂B
g1, and φ̂B

g2,
we obtain an updated test statistic in (2).

LRB
g = −2 log

sup
{
L

(
μ̂g , φ̂B

g ; yg
)}

sup
{
L

(
μ̂g1, φ̂B

g1, μ̂g2, φ̂B
g2; yg

)} . (2)

Notice that LRB
g no longer follows a χ2 distribution, and

it is difficult to analytically derive its null distribution. We
adopt the idea from [19] and designed a pooled permuta-
tion method to estimate its null distribution. Specifically,
we follow these steps:

1 For each gene g, calculate the p-value, pg , based on
the NB LRT in (1).

2 Collect all genes whose pg ≥ 0.1 and call them the set
of null-like genes.

3 For the set of null-like genes only, permute the
treatment group among the n = n1 + n2 replicates.
Suppose the total number of possible permutations is
M. For each permutation m (m = 1, . . . ,M),
compute LRB(m)

g in (2). The empirical Bayes
estimates of the parameters and hyper parameters
are estimated in each permutation using all genes
(i.e., null-like and non-null-like genes). Then, the
empirical distribution of the set{
LRB(m)

g : m = 1, . . . ,M, and g is a null-like gene.
}

estimates the null distribution of LRB
g .

4 Compute the estimated p-value for each gene g, pBg ,
using LRB

g and the estimated null distribution of LRB
g

in Step 3.

The choice of using 0.1 as the cutoff in step 2 follows the
recommendation from [19], which presents studies on the
choice of a proper default cutoff. Finally, we use Storey’s
method [20] to control FDR at the desired level.
For microarray data analysis, [21, 22] argued that bor-

rowing information across all genes might lead to over-
correction. A better approach is to apply gene-specific or
group-specific prior based on historic data to share infor-
mation only across genes with similar variances. These
ideas can be adapted for sequencing data analysis as alter-
native approaches to overcome the problem of having low
number of replicates.

Results and discussion
In this section, we demonstrate the performance of
our proposed method using real biological experiment
data and simulated datasets. In addition, we compare
our method DESyn to the popular LIMMA and edgeR
approaches. Notice that these methods are designed for
experiments where all disease samples share the same set
of DE genes, whereas our approach is intended for syn-
dromes where each disease sample has a different set of
DE genes.

Large offspring syndrome gene expression data
To illustrate our method’s performance, we used kidney
tissue data from the LOS study in [14, 15]. The raw
FASTQ files are publicly available at Gene Expression
Omnibus with accession no. GSE63509. LOS is an over-
growth phenotype observed in ruminant fetuses, which
mimics the human fetal overgrowth condition Beckwith-
Wiedemann syndrome (BWS). BWS is the most common
congenital overgrowth disorder and has an estimated
worldwide frequency of 1 in 13,700 live births [23, 24].
Some commonly observed features in BWS patients
are macroglossia, neonatal and postnatal macrosomia,
hemihypertrophy, ear malformations, and abdominal wall
defects [25–27]. In [14, 15]’s study, they used cows as
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study animals to identify genes related to LOS syndrome.
The sequencing experiment contained four control sam-
ples and four LOS female samples, respectively. After
discarding genes with sum counts no greater than 10
across two treatment groups, 19,946 genes remained to
be tested. We then used the trimmed mean of M-values
(TMM) method [28] to normalize the raw data. To detect
DE genes in this LOS study, we used three approaches:
the LIMMA method, edgeR method, and our proposed
methodDESyn. All threemethods assume anNB distribu-
tion. The LIMMA and edgeR methods only test the mean
difference, whereas our proposed DESyn method can
test change in both mean and dispersion while improv-
ing power by estimating dispersion parameters more
accurately.
By controlling FDR at 0.05, the LIMMA method

reported 13 DE genes; the edgeR method reported 55 DE
genes; and the DESyn method reported 2716 DE genes
across all four LOS samples. Among the 13 declared DE
genes by LIMMA, 11 were declared by DESyn; among 55
declared DE genes by edgeR, 38 were declared by DESyn.
In addition, 9 genes were detected by both LIMMA and
edgeR, all of which were detected by DESyn. The four
example genes in Fig. 1 were all identified as DE genes
by the DESyn method, but none were reported to be DE
genes by LIMMA or edgeR methods. Genotyping results
confirmed that the four example genes were all monoal-
lelically expressed in controls, whereas one or more repli-
cates were biallelically expressed in LOS fetuses. For
instance, gene NNAT exhibited monoallelic expression
from the paternal allele for the control group and the
first two replicates in the LOS group. For the third and
fourth replicates in the LOS group, NNAT showed loss
of imprinting and exhibited biallelic expression from the
paternal and maternal alleles. Per the GeneCard database
(www.genecards.org), NNAT is associated with tumor
growth (p-value= 1.0 × 10−14), and PEG3, PLAGL1,
and SNRPN are all associated with body size growth
(p-value= 1.0 × 10−16) [14].
Among the DE genes detected by our method, the fol-

lowing warranted further consideration: which DE genes
were commonly shared by all LOS samples, which were
shared by some LOS samples, and which were unique
to one LOS sample. To identify DE genes accordingly,
for each detected DE gene by DESyn, we computed the
confidence interval for the normal group with the esti-
mated mean μ̂g1 and dispersion parameter φ̂B

g1. We then
compared each of the four LOS observations with the esti-
mated confidence interval of the normal group mean. We
applied a Bonferroni adjustment to control the family-
wise error rate (FWER) at level 0.05. By this method, we
are able to identify which combination of these DE genes
led to LOS occurrence in each of the four LOS samples.
Results for the four LOS replicates are summarized in

Fig. 2. In particular, 22 detected DE genes were shared by
all four LOS samples.
Previous research study [14] pointed out a presumably

positive correlation between the number of DE genes due
to loss of imprinting in each LOS fetus and fetuses’ body
weights. The four LOS sample body weights were 514 g,
518 g, 620 g, and 714 g, respectively. Using the DESyn
method, we found 157 DE genes for LOS sample No. 1,
114 DE genes for sample No. 2, 2595 DE genes for sample
No. 3, and 505 DE genes for sample No. 4. The numbers of
DE genes detected for these four LOS samples exhibited
a weak positive linear relationship with the sample body
weights (correlation coefficient ρ = 0.34).

Simulation studies
In our simulation studies, we compared our proposed
DESyn method with the LIMMA and edgeR methods.
We simulated different settings and compared these
approaches accordingly. In each simulation study, we sim-
ulated data for 5000 genes in the control and disease
groups.

Simulation design
Simulation studies based on real datasets best demon-
strate a method’s practical utility. We generated data for
the normal group from NB distributions, where means
and dispersions were estimated from 5000 randomly
selected genes from the normal group in the LOS study.
For the data in the disease group, EE genes were sampled
from theNB distributions with the same parameters as the
normal group in the real dataset. To generate data for DE
genes in the disease group, we considered the following
three scenarios:

• Scenario 1: No mean difference, but the disease
group has a different dispersion compared to the
normal group;
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• Scenario 2: No mean difference, but some replicate(s)
in the disease group have a different dispersion and
other replicate(s) have the same dispersion compared
to the normal group;

• Scenario 3: Both mean and dispersion differences
exist between the normal and disease groups.

In simulation study 1, for the disease group, we sim-
ulated 4000 EE genes and 1000 DE genes from Sce-
nario 1. Specifically, we defined scale parameter δφ ∼
Beta(α =2,β = 2) and size parameter Xφ = 0.4. For each
of the 1000 DE genes in the disease group, we randomly
simulated δφ and let φg2 = φg1 + (Xφ × δφ). The size
parameter was set at a value to ensure the simulated DE
genes would be neither too easy nor too difficult to detect.
We chose α and β parameter values for δφ to generate an
equal number of DE genes with small and large dispersion,
with most demonstrating a median dispersion difference
between the two groups. We also set μg1 = μg2 for all
replicates.
In simulation study 2, for the disease group, we simu-

lated 4000 EE genes and 1000 DE genes from Scenario 2.
For the gth gene of the DE genes in the disease group,
we first simulated kg from discrete uniform distribution
U{1,2,3,4}. Then, for the last kg replicates of the gth DE
gene in the disease group, we let φg2 = φg1 + (Xφ × δφ).
Parameters Xφ and δφ were simulated similarly to simula-
tion study 1. For other replicates of the gth gene of the DE
genes in the disease group (i.e., replicates 1 to (kg −1)), we
kept φg2 = φg1. We set μg1 = μg2 for all replicates.
In simulation study 3, for the disease group, we simu-

lated 4000 EE genes and 1000 DE genes from Scenario 3.
We defined scale parameter δμ ∼ Beta(α = 2,β = 4)

and size parameter Xμ = 2. For each of the 1000 DE
genes in the disease group, we let φg2 = φg1 + (Xφ × δφ)

where δφ ∼ Beta(α = 2,β = 2) and Xφ = 0.3, and
μg2 = μg1 + (Xμ × δμ × σg1) where σg1 is the standard
deviation of the NB distribution for the normal group. The
α and β parameters in the distribution of δμ were cho-
sen so that most gene expression mean differences were
small and a few were large, as is often the case for real gene
expression datasets.
Finally, in simulation study 4, we simulated 3950 EE

genes, 350 DE genes from Scenario 1, 350 DE genes from
Scenario 2, and 350 DE genes from Scenario 3, where the
simulation methods for each scenario were identical to
those in simulation studies 1, 2, and 3.
For each of these four simulation studies, we consid-

ered four, five, and six replicates in the normal and disease
groups, respectively.

Simulation results
We repeated each of the four simulation settings 50 times.
The following results are based on the repetitions’ aver-
age. We also reported standard deviation (SD) for the
summary statistics based on the 50 repeated simulations.
Figure 3 shows the comparison results for sim-

ulation study 1. Specifically, the three figures in
the first row demonstrate a true positive rate (TPr)
when controlling FDR at a fixed level for repli-
cates n1 = n2 = 4, 5, and 6, respectively. Our
DESyn method, compared to the LIMMA and
edgeR approaches, exhibited substantially greater
power in detecting DE genes. In simulation study 1,
DE genes had the same means between normal and dis-
ease groups and differed only in dispersion parameters.
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Thus, the LIMMA and edgeR methods, which only tested
the mean difference, did not have any power. When
there were more replicates in each treatment group, the
power of the DESyn method improved with a fixed FDR
level. However, the power of the LIMMA and edgeR
approaches did not improve as the number of replicates
increased, likely because these methods cannot detect
dispersion differences regardless of how many replicates
are available. The second row of Fig. 3 shows ROC
curves with three different numbers of replicates. Our
proposed method had the best performance among the
selected methods. With more replicates, the ROC curves
improved for our approach. We also summarized results
in Table 1. Specifically, by controlling FDR at 0.05, we
reported the number of true positives and the number
of total positives averaged across 50 simulations. Our
proposed method reported a significantly higher number

of DE genes and true DE genes compared to the other two
methods. In addition, we also calculated the actual FDR
and its SD across 50 simulations. Statistics indicate that
the actual FDR of our proposed method decreases as the
number of replicates increases. The last three columns
in the Table 1 display the area under the ROC curves
(AUCs), demonstrating that the DESyn method has the
largest AUCs of the three methods and thus ranks genes
better than the other two competing methods. Although
we directly adopted the recommendation from [19] to
use 0.1 as the cutoff to select null-like genes in the pooled
permutation test, we also compared using 0.1 versus 0.2
as the cutoff. We found that across simulations, using 0.1
as the cutoff has a slightly higher average TPr than using
0.2 when FDR is controlled at 0.05.
Similarly, Fig. 4 shows the results from simulation study 2,

in which only part of the disease samples had different dis-

Table 1 Simulation results for simulation studies 1, 2, 3, and 4 with number of replicates 4, 5, and 6, respectively

Study Rep True positives Actual FDR AUC

(Total positives) (SD) (SD)

Limma edgeR Proposed Limma edgeR Proposed Limma edgeR Proposed

1 4 1.34 10.32 194.92 0.0000 0.0518 0.0484 0.6141 0.6038 0.8332

(1.34) (10.92) (207.26) (0.0000) (0.0619) (0.0287) (0.0117) (0.0102) (0.0093)

5 1.04 6.32 294.38 0.0100 0.0291 0.0409 0.6105 0.5946 0.8541

(1.06) (6.60) (307.54) (0.0707) (0.0591) (0.0155) (0.0122) (0.0117) (0.0083)

6 0.96 4.62 361.04 0.0000 0.0445 0.0420 0.6053 0.5839 0.8676

(0.96) (4.80) (377.26) (0.0000) (0.1230) (0.0138) (0.0107) (0.0097) (0.0075)

2 4 0.60 2.82 26.44 0.0000 0.0632 0.0192 0.5771 0.5925 0.7554

(0.60) (3.08) (27.46) (0.0000) (0.1295) (0.0310) (0.0122) (0.0094) (0.0112)

5 0.50 1.76 86.90 0.0200 0.0857 0.0313 0.5675 0.5804 0.7698

(0.52) (2.04) (89.88) (0.1414) (0.2062) (0.0220) (0.0109) (0.0100) (0.0076)

6 0.16 1.08 136.00 0.0000 0.0367 0.0265 0.5617 0.5721 0.7792

(0.16) (1.14) (139.78) (0.0000) (0.1625) (0.0155) (0.0105) (0.0105) (0.0093)

3 4 1.10 8.94 129.22 0.0067 0.0421 0.0373 0.6277 0.6474 0.8359

(1.12) (9.32) (137.30) (0.0471) (0.0743) (0.0322) (0.0107) (0.0122) (0.0072)

5 0.68 9.02 239.14 0.0000 0.0346 0.0393 0.6176 0.6413 0.8551

(0.68) (9.32) (249.58) (0.0000) (0.0817) (0.0161) (0.0110) (0.0122) (0.0098)

6 0.66 6.94 331.44 0.0000 0.0381 0.0408 0.6158 0.6446 0.8731

(0.66) (7.14) (345.90) (0.0000) (0.1041) (0.0136) (0.0096) (0.0095) (0.0061)

4 4 0.72 7.68 121.68 0.0000 0.0554 0.0378 0.6083 0.6101 0.8069

(0.72) (8.12) (128.50) (0.0000) (0.0913) (0.0293) (0.0106) (0.0122) (0.0105)

5 0.94 5.86 211.54 0.0000 0.0326 0.0346 0.6035 0.6036 0.8257

(0.94) (6.12) (219.70) (0.0000) (0.0711) (0.0166) (0.0094) (0.0107) (0.0080)

6 0.66 4.06 296.70 0.0200 0.0290 0.0356 0.5966 0.5976 0.8410

(0.68) (4.20) (307.96) (0.1414) (0.1022) (0.0132) (0.0104) (0.0101) (0.0074)

Summary statistics including number of true positives with total number of positives in parentheses, the actual FDR by controlling FDR at 0.05 level and its standard error in
parentheses, and the area under ROC curve with standard error in parentheses
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Fig. 4 Simulation Study 2. Dotted curves stand for LIMMA method; Dashed curves stand for edgeR method; Solid curves stand for our proposed
method; Dot-dashed line shows the diagonal line. Top row shows TPr comparison at fixed levels of FDR. Bottom row shows comparison of ROC
curves

persions than the normal samples. In simulation study 1,
however, all disease samples had different dispersions
than the normal group; thus, simulation study 2 pre-
sented a more challenging scenario. Results are depicted
in Fig. 4 and Table 1: with a fixed level of FDR at 0.05, all
three methods had reduced power compared to simula-
tion study 1. However, the DESyn method still exhibited
greater power than the other two methods for DE gene
detection. Like simulation study 1, neither the LIMMA
nor the edgeR method showed improved power as the
number of replicates increased, whereas our proposed

method improved its power significantly. Our approach
also outperformed the LIMMA and edgeR methods with
respect to the ranking of genes reflected in the ROC
curves. These results were expected because the LIMMA
and edgeR methods only detected the mean difference
while assuming equal dispersion across treatment groups.
Figure 5 shows the results of simulation study 3, where

DE genes differed in both mean and dispersion. Similar
to the results of simulation study 1, the DESyn method
had a substantially greater power than the LIMMA and
edgeR methods in DE gene detection, as evidenced by the
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Fig. 5 Simulation Study 3. Dotted curves stand for LIMMA method; dashed curves stand for edgeR method; solid curves stand for our proposed
method; Dot-dashed line shows the diagonal line. Top row shows TPr comparison at fixed levels of FDR. Bottom row shows comparison of ROC
curves
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Fig. 6 Simulation Study 4. Dotted curves stand for LIMMA method; dashed curves stand for edgeR method; solid curves stand for our proposed
method; Dot-dashed line shows the diagonal line. Top row shows TPr comparison at fixed levels of FDR. Bottom row shows comparison of ROC
curves

number of true positives. Our method was also superior
to the competing methods in gene ranking, demonstrated
by the ROC curves and AUCs in Fig. 5 and Table 1.
In simulation study 4, the DE genes combined the three

scenarios in simulation studies 1, 2, and 3. Results appear
in Fig. 6 and Table 1. The DESynmethod performed better
than the LIMMA and edgeR approaches with respect to
the power in DE gene detection and DE gene ranking.
It is possible that one outlier replicate in the disease

group can be detected as a signal of a DE gene when
testing the change in mean and dispersion simultane-
ously using our proposed method. The same is true when
testing the mean only. Outliers with a large deviation
will result in false positives whether we test the mean
alone or mean and dispersion simultaneously. In our DE
gene detection scenario, we considered syndromes where
extant literature has shown that the syndrome is char-
acterized by each afflicted individual having a different
combination of DE genes. In this case, traditional gene
expression analysis methods have no power of DE gene
detection when a DE gene is only shared by some disease
replicates.

Conclusions
In this study, we proposed an empirical Bayes statistic
to identify DE genes by accounting for change in the
mean and dispersion when comparing normal and dis-
ease groups. Our motivation came from real data analysis
regarding LOS syndrome, where different combinations of
DE genes lead to the same disease. Based on the empirical
Bayes statistic, we further developed a pooled permuta-
tion method for statistical inferences. We analyzed the
real dataset of kidney tissue in the LOS study. Of the

detected DE genes, several were biologically verified in
the literature. We further utilized a parametric method
based on NB distributions and Bayes estimates to find
commonly shared DE genes in all LOS fetus samples and
DE genes only shared by some LOS samples. These results
could not be obtained by existing methods. Moreover, we
conducted simulation studies based on the real dataset
from the LOS study. Under different settings, we proved
the benefits and advantages of our proposed method.
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