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root of one order of magnitude.

GitHub (Glassen, Mean Partition, 2018).

Background: Bayesian clustering algorithms, in particular those utilizing Dirichlet Processes (DP), return a sample of
the posterior distribution of partitions of a set. However, in many applied cases a single clustering solution is desired,
requiring a 'best’ partition to be created from the posterior sample. It is an open research question which solution
should be recommended in which situation. However, one such candidate is the sample mean, defined as the
clustering with minimal squared distance to all partitions in the posterior sample, weighted by their probability. In this
article, we review an algorithm that approximates this sample mean by using the Hungarian Method to compute the
distance between partitions. This algorithm leaves room for further processing acceleration.

Results: We highlight a faster variant of the partition distance reduction that leads to a runtime complexity that is up
to two orders of magnitude lower than the standard variant. We suggest two further improvements: The first is
deterministic and based on an adapted dynamical version of the Hungarian Algorithm, which achieves another
runtime decrease of at least one order of magnitude. The second improvement is theoretical and uses Monte Carlo
techniques and the dynamic matrix inverse. Thereby we further reduce the runtime complexity by nearly the square

Conclusions: Overall this results in a new mean partition algorithm with an acceleration factor reaching beyond that
of the present algorithm by the size of the partitions. The new algorithm is implemented in Java and available on

Keywords: Mean partition, Partition distance, Bayesian clustering, Dirichlet Process

Background

Introduction

Structurama [1, 2] is a frequently used software package
for inferring the population structure of individuals by
genetic information. Despite the popularity of the proce-
dure [3], high computational costs are frequently men-
tioned as practical limitations [4, 5]. The tool uses a DP
mixture model (DPMM) and an approximation method to
determine the mean of the generated samples. This mean
can be viewed as the expected clustering of the DPMM if
the number of considered samples approaches infinity.
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Because the approximation method can significantly
contribute to the required computation time of Struc-
turama, we develop two optimized variants in this article.
In doing this, we intentionally refrain from reducing the
calculation effort by taking a competely different, but
more light-weight approach. For example, one could use
Variational Bayes instead of Markov chain Monte Carlo
(MCMC) Sampling or replace the mean partition approx-
imation by an alternative consensus clustering algorithm
(e.g., CC-Pivot [6]). Both strategies lead to faster proce-
dures relatively easily, but in many cases the accuracy
of the calculated means can be severely impaired. This
applies to both MCMC versus Variational Bayes [7] and
mean partition approximation versus other consensus
clustering approaches [8, 9]. In contrast, our resulting
algorithm offers the same accuracy as the original method
at a significantly lower runtime complexity.
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Furthermore, our achieved runtime complexity also
represents a significant advance with respect to other
consensus clustering methods based on the mean par-
tition approach. To the best of our knowledge, no
other method with this approach has been published
to date with only a linear factor N in its runtime
complexity. Previous variants, also known as local-
search procedures, could not undercut a factor of N2
and are therefore considered impracticable for real-
istic datasets [8—11]. Our resulting method achieves
such a linear factor N and thus enables accurate and
fast calculations of a consensus for multiple clustering
results.

Below we first describe the original algorithm. We then
present our improvements, followed by a detailed bench-
mark of the resulting method.

Mean partition approximation algorithm

The considered algorithm for approximating the mean
partition begins by choosing any initial clustering. After-
wards it iterates through all N individuals p; and all
C existing clusters ¢;, including one empty cluster, and
checks whether the movement of p; to ¢; improves the
solution. If that is the case, p; is re-assigned to cluster
cj, else it stays in its old cluster. The process is repeated
until no changes occur in a full cycle through all individ-
uals and clusters [1, 12]. To check whether the solution
improves, the algorithm computes the distance between
the candidate solution and all partitions K in the poste-
rior sample. The number of distance measures therefore
equals the number of individuals N times the number of
clusters C in the candidate solution times the number K
of partitions. In summary, this results in O(NCK) distance
measures.

A naive method for computing the distance is very
time intensive. For example, the first (recursive) algo-
rithm suggested by [13] has an exponential runtime [14].
Therefore, a common solution (e.g. [12]) is to compute
the distance between two partitions by executing the
following two steps. First, the problem is reduced to
a linear sum assignment problem (LSAP) via the pro-
cedure of [15] in O(NC?). Afterwards, the Hungarian
Algorithm is applied [16, 17], which requires O(C?)
steps. In total, this approach results in O(N2C3K) steps
per cycle by the current mean partition approximation
algorithm.

Next we briefly desribe the reduction of [15], introduce
a faster alternative, and give an overview of the Hungarian
Method.

Reduction of the partition distance problem to the LSAP
Konovalov et al. [15] discovered that the partition distance
matches the minimum costs of the solution of a LSAP and
established the reduction
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D(4,B) = min y_ xla; N by (1)
i

Here |a; N 1_9j| corresponds to the entry c(i,j) of the cost
matrix for the LSAP. a; and b; denote strings of bits
that represent the N elements of the partitions A and
B and are set to 1 if their associated elements belong
to cluster i and j, respectively. x; describes additional
assignment-limiting variables, so that each cluster i is
assigned to exactly one cluster j and vice versa. The
selection of these x;;, with the goal of minimizing the
sum, is essentially the aim of the Hungarian Method. To
build up a cost matrix for the latter, a direct algorith-
mic transfer of (1) would obviously lead to a runtime
complexity of O(NC?). This is because the bit strings
have the length N. The reduction complexity of this
approach is therefore nearly always higher than that of
the optimal Hungarian Algorithm, which has a runtime
of O(C?).

Indeed the direct algorithmic transfer seems to be the
typical implementation, as has been observed in source
codes reviewed so far by the first author, e. g. in [15] or
[12]. We would therefore like to draw attention to a faster
variant, which only needs O(C? 4 N) for the same reduc-
tion and thus reduces the partition distance calculation
from O(NC?) to O(C® + N). It is the procedure of [18],
which is shown in Algorithm 1. The runtime reduction
is achieved by ignoring the stated calculation in (1) and
accounting for its meaning instead. Thus, (1) says that
the cells c(i, /) of the C x C cost matrix for the Hungar-
ian Algorithm have to keep the number of those elements

Algorithm 1 Calculation of the partition distance

Require: partitions Py, Py of items I3, ..., Iy
Ensure: distance between the partitions P, Py
if |P1| < |P;| then
Switch partition meanings of P; and P,
end if
M <« matrix of size |P;| x | P3| filled with zeros
for all item € {I1,...,In} do
i < cluster of item in P;
j < cluster of item in Py
Mi,j < Mi,j -1
end for
foralli € P; do
forallj e P, do
Mi,j < MiJ + |l|
end for
end for
return minimum costs of a linear sum assignment
problem with cost matrix M
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of the cluster i € P;, which are not contained in clus-
ter j € Py. We can therefore construct the matrix faster
by first billing for each element a distance reduction of 1
for that single cluster pair, which has this element in com-
mon. Subsequently, we add the size of each cluster i to
each cell ¢(i, j).

Using this reduction, the new cycle runtime of the whole
mean partition approximation algorithm is O(NC*K +
N2CK) instead of O(N?C3K). That means, that now
both complexities correspond solely if the number of
clusters C equals the number of elements N in the par-
titions. In a typical scenario, however, we have C <<
N. For example, we can expect alogN clusters for a
DP-based grouping of observations [19]. In such cases
the new reduction leads to a complexity decrease of
two orders of magnitude because N2CK dominates
its term.

Hungarian Algorithm

We now briefly review the Hungarian Algorithm, which
assigns C workers to C jobs (assigning an unequal num-
ber of workers to jobs can be done with simple adap-
tations). Let c¢(i,j) be the costs if worker i does job ;.
The Hungarian Algorithm works on a directed bipar-
tite graph G = (S, T;E) where one node set consists
of the workers and the other node set consists of the
jobs. The edges E change in the steps k = 1,... of the
Hungarian Algorithm. In addition, a function y : S U
T — R, called the potential, labels the nodes with
numbers.

At every step, the following invariants are upheld: (1)
every node is adjacent to at most one edge from T to S,
(2) for every edge (i,j) € E in either direction, we have
y(@) + y() = c(,)), and (3) for every pair (i,j), we have
y(@)+y() < c(i,j). Let M be the subgraph of all edges from
T to S; M implies a matching of its nodes. It can be proven
that, if all nodes of S are included in M, M is a solution
to the job assignment problem on its nodes (for further
details see [20]). Initially, (i) = O for all nodes, and E
contains exactly those edges (i, j) with c(i,j) = 0, directed
from S to T. Note that the invariants above are satisfied. At
every step, we find all nodes in S and T that are reachable
from nodes in S not already in M. Let us call these S,¢;cx
and Te,e,- If anode of T is reachable and not already in M,
the direction of all edges on this path are reversed. Obvi-
ously, this increases the number of edges in M by one.
Otherwise,let

A = min{c(i,)) — y(i) — y(DI(,)) € Sreach X T/ Treacn} (2)

which corresponds to the minimum costs minus the
potential from reachable nodes in S to non-reachable
nodes in 7. We then increase y(i) by A for all nodes
i € Sreqcn and reduce y(j) by A for all nodes j € Treqep.
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Note that in this way, the invariant is still satisfied, but
edges are added and removed from G. By design, the
reachability of the non-matched nodes increases by at
least one further node in 7. As soon as M includes all
nodes of S, we stop and return the matching implied
by M. Note that the total costs of the matching is
the sum of all y values, } ;¢ ,7¥()). The Hungarian
Algorithm requires O(C*) steps in the version pre-
sented here, but adaptations exist [21] that work in
o(C?) steps.

Methods

Improvement of the approximation algorithm

In the current mean partition approximation algorithm,
we need to carry out a problem reduction to a LSAP for
each distance calculation between two partitions. How-
ever, as we have previously noted, the reduction can often
be more expensive than the Hungarian method itself. In
addition, there is only a minimal distance change between
each sample partition and the candidate partition when
an individual is moved into another cluster. We can there-
fore speed up the process by maintaining and dynamically
adjusting a bipartite graph G for each pair of sample- and
candidate partitions.

Let P; be a sample partition and P; the candidate parti-
tion, which we optimize step by step. We declare C; as the
cluster of an individual p in P; and C, as the match of C;
in P,. In addition, E; denotes the cluster of p in Py and D,
the cluster into which p will be moved.

We recognize that if we move an individual p from
cluster E; with index j to the cluster Dy with index
k, only the row i of the cost matrix associated with
cluster C; changes. Thus, c(i,j) becomes more expen-
sive by one after the removal of p, and ¢(i, k) reduces
by one after adding p. To keep the condition y(i) +
y(G) < c(,)) satisfied, we will not reduce costs in a
cell. We leave them unchanged instead, increase every
other cell in the row by one and substract one from the
final distance. In summary, we increment c(i, ) as well
as every cell of the row except c¢(i, k). Then we remove
the matching edge of C; and Cy from M and carry out
another step in the Hungarian Algorithm to rematch C;.
This step costs O(C?). Finally, we decrement the result
by one.

If a movement of p does not lead to a better dis-
tance, we have to restore the last best state of the
graph G for P; and P; before continuing with the next
p. Saving and restoring the state of the graph is fea-
sible in O(C), since only one row of the cost matrix
changes. A cycle of the improved approximation algo-
rithm runs in O(NC3K) and is therefore at least one
order of magnitude faster then the original version with
O(NC*K + N2?CK). The new procedure is shown in
Algorithm 2.
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Algorithm 2 Firstimproved approximation of the partition
mean
Require: Partition Distribution D
Ensure: partition with local minimal distance to all partitions
inD
candidate = any, flag = true, lowestDistanceSum = 0
forall P € D do
compute Gp = distance(P, candidate) by the Hungar-
ian Algorithm
lowestDistanceSum += partition distance in Gp
end for
while flag do
flag = false
for all individual € D do
save states of all Gp for individual
for all cluster € candidate U { empty cluster} do
distanceSum = 0
forall P € Ddo
distanceSum += move(Gp, individual, cluster)
end for
if distanceSum < lowestDistanceSum then
lowestDistanceSum = distanceSum
flag = true
save states of all Gp for individual
end if
end for
restore states of all Gp for individual
end for
end while
return candidate

In the next subsection we show that the new time complex-
ity is still not at its optimum. We proceed by describing a
detailed theoretical procedure to reduce it further.

Further improvement
To achieve this, we have to reduce the costs of perform-
ing a step in the Hungarian Algorithm, which takes O(C?)
steps so far. These costs are essentially caused by a Breath
First Search or Depth First Search (BFS/DFS), which is
necessary if the reachability of a node from another node
has to be queried. The cost is due to the fact that the bipar-
tite graph has a maximum of C? edges, all of which must
be tested in the worst case. Thus, in order to improve the
approximation further, the reachability check has to be
done with costs < O(C?). A first approach would be to
calculate the reachability between all node pairs before-
hand, that is, before considering the movement for each
individual p. Then we could query the reachability within
the local cluster optimization loop in O(1).

Calculating the All-Pairs Shortest-Paths (APSP) via the
classical methods Floyd-Warshall or Dijkstra is ruled out.
This is because the former requires O(C?) and the latter
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has the same costs in the case of C? edges. Using one of
these algorithms would result in the same time complex-
ity as our first improved algorithm, because we have to
run them before the local cluster optimization loop for
each iteration of p. In summary, we need the All-Pairs-
Reachability (APR) per p with guaranteed pre-calculation
costs < O(C?) and query costs < O(C?).

In principle, three approaches are conceivable. These
are dynamic APSP methods and static and dynamic APR
procedures. Dynamic methods have the advantage that
updates are cheaper than a complete recalculation. For
example using the method of [22], we can delete or
add any number of incoming edges of/to a node and
subsequently update the APSP with amortized costs in
O(C?log C). In principle, the cost of a new calculation of
O(C®) is then surpassed, but unfortunately the method is
still not suitable here. The reason for this is the worst case
number of needed updates if a path has to be reversed
after the movement of an individual p. For example, a
path can consist of 2C — 1 edges and cover 2C vertices.
In this worst case, we have to carry out C updates with
the method of [22]. The amortized update costs therefore
increase to O(C®log C), which is worse than a recalcu-
lation with Floyd-Warshall. Static APR methods are cur-
rently not suitable for our situation either. This is because
current methods require properties of the graph for a sub-
cubic runtime, which are not present in our case (for an
overview, see [23]). Finally, we have the dynamic APR
methods, from which the deterministic variants suffer
from a comparable update problem as the dynamic APSP
methods. Among Monte Carlo methods, however, there
is a variant that is ideally suited for our situation. It is the
method of [24], which dynamically calculates the transi-
tive closure via the dynamic matrix inverse. A requirement
of this approach is a graph with perfect matching. This
method updates one edge of the graph and its transi-
tive closure in O(C'*7°) and queries the reachability in
O(C%575), Thus, if we have a worst case scenario and want
to carry out 2C — 1 edge updates, we now have total
costs of O(C>°7°). This is cheaper than O(C?) by a factor
of almost +/C and reduces the final cost of a cycle from
O(NC3K) to O(NC2575K).

We now want to be able to replace a single step in
the Hungarian Algorithm only by operations in constant
time and reachability queries in O(C%°7%). To achieve this,
we first need to distinguish two situations when moving
an individual p from cluster E; to cluster D,. For both,
we examine the present graph and (if possible) directly
determine the costs after the movement.

Case A: Ey # C,

If Dy equals Cy, the matching of C; and C, becomes
cheaper and the cost is reduced by one. Otherwise, if there
is an edge from Cj to Dy and C; is reachable from D,
the cost is also reduced by one. This is because only the
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costs between C; and D, remain constant. Thus, if there
was already an edge (C1, D7) and a path from D; to Cy, we
can reverse this path and the edge (Cy, D7) with no addi-
tional costs. The final cost reduction of one then reduces
the costs by one. If neither of the two situations is given,
we have a cost change of zero.

Case B: Ez = C2

Similar to the second sub-case of case A, we have a cost
reduction of one, if there is an edge (C1, D7) and a path
from Dy to C,. If this is not the case, we can at least get
the same costs if there is any path from C; to C,. An alter-
native for equal costs exists when the second sub-case of
case A can be achieved with a potential increase of one. In
this case, the final cost reduction leads to a cost change of
zero. Any other non-considered situation will result in a
cost increase by one.

Within the cluster optimization loop, we can directly
examine case A with a worst case cost of O(C%57%). The
latter is due to the possibility of a needed reachability
check. For case B, on the other hand, we possibly need
APSP in the last sub-case. This is because we ask for
the existence of paths that require a maximum potential
increase of one. The method of [24], however, only pro-
vides reachability checks via adjacency matrices. There-
fore, we have to handle this last sub-case separately. We
divide it as follows:

Case B.3.1: (Cy, Dy) exists, there is a path from D5 to Cy

This situation has already been dealt within the first
sub-case of case B. It leads to a cost reduction of one.

Case B.3.2: (Cy, D») exists, there is no path from D5 to C;

If a path exists after a potential increase by one for
a worker of the graph, then the cost remains the same.
Otherwise, the movement of p leads to a cost increase by
one.

Case B.3.3: (C1, D;) exists after a potential increase by
one, there is a path from D; to Cy

We have a path from Cj to C via Dy that requires a
potential increase of one at most. This means that the
costs remain the same.

Case B.3.4: (C1, D;) exists after a potential increase by
one, there is no path from D, to C;

For a path from D, to Cj, a potential increase for a
worker of the graph is required. However, we already have
the maximum increase of one, which means that the costs
increase by one.

Case B.3.5: (C1, D;) exists after a potential increase by
more than one

In this situation, the costs increase by one.

Except for the B.3.2 sub-case, all other sub-cases can
be tested via reachability checks in O(C%°7%). However,
if B.3.2 occurs, there is another situation in which we do
not need to know whether there is a path after a potential
increase or not. The presence of this situation is indicated
by the current cost change CCp,s; by the remaining of the
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K graphs in which B.3.2 does not occur. If CCy,; is greater
or equal to the current best local change L., the move-
ment of p is definitely more or equally expensive, since the
B.3.2 sub-cases can not reduce costs. Therefore, we do not
need to evaluate these graphs in which B.3.2 is present,
but continue with the next cluster or the next individual.

If, on the other hand, CCppy < Lpes, then we must
decide some or all of these graphs with B.3.2 with higher
computational effort. To do this, we first select one of the
undecided graphs and evaluate it using the method pre-
sented below. We then update CCj,, with the cost change
by this graph. If CCpes becomes > Lj,,;, we will terminate
and continue with the next cluster or the next individual.
In the worst case, we must decide all graphs with B.3.2
with higher computational effort.

The evaluation as to whether the cost change is one or
zero in a graph with sub-case B.3.2 works as follows: We
collect all reachable workers and jobs for D, and C; in
O(C157%), We then assume that we have access to a row-
and column-sorted C x C matrix, whose cells store the
values c(i,j) — y(i) — y(j) for each worker-job pair (the
so-called slack values). How and when this matrix is con-
structed is explained later. Since we have this matrix, we
sort the reachable workers and jobs from both Dy and Cy
according to their row and column numbers in the slack
value matrix in O(Clog C). Then we look for a slack value
of one in the sub-matrix for the workers of D, and the jobs
of C; as well as in the sub-matrix for the jobs of Dy and
the workers of C; in O(C) using Saddleback Search [25]. If
this value has been found in one of the two sub-matrices,
the costs remain the same, otherwise they increase by one.
Note that a value of zero can not be present, since case
B.3.2 would not have occurred otherwise. The total run-
time of this procedure is O(C'°7) and is thus smaller than
a BFS / DFS with O(C?).

An unsorted slack value matrix can be constructed in O(C?)
and sorted in rows and columns in O(C? log C). We calculate
it initially and whenever we update the transitive closure.

Resulting Algorithm

In contrast to the first improvement, we will neither store
the states of the graphs before continuing with the next
individual p nor will we restore them at any point. Instead,
we initially calculate the adjacency and slack value matrix
in O(C?logC) and prepare the transitive closure matri-
ces according to [24] in O(C%37®). In the local cluster
optimization loop, we then determine the new costs in
O(C'*75) and memorize the best cluster movement. After
each local optimization, we only update each graph, the
corresponding adjacency matrix, and its transitive closure
in O(C?°7%) if a better cluster was found for p. By doing
this, not only the worst-case performance is reduced to
O(NC?575K) per cycle, but also the costs for the best case.
The latter is given when we do not have to deal with
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the sub-case B.3.2 in a cycle. In such a situation the run-
time drops from O(NC3K) to O(NC!*7°K). On average,
the second improvement is therefore clearly faster than
O(NC?*57°K) per cycle. The procedure is shown in
Algorithm 3.

Note that this last improvement is currently only the-
oretical. This is the case, because the dynamic transitive
closure of [24] is based on fast matrix multiplication via
the Coppersmith-Winograd algorithm [26]. For the lat-
ter there is currently no feasable implementation, since its
benefit would only arise for matrices too large for practi-
cal purposes [27, 28]. However we are confident that this
improvement can be of practical value in the future, if
similar developments are achieved for the Coppersmith-
Winograd algorithm as for the preceding Strassen algo-
rithm. The latter, also regarded as impractical initially,
nowadays has feasable implementations [29].

In the next section, we will have a closer look at the
faster reduction of [18] and the first improvement of the
approximation algorithm. For both we will give bench-
mark results and compare them to their original counter-
parts.

Results

Comparison of old and new partition distance calculation
When assessing the population structure reconstruction
results, statistical simulation is the preferred approach,
since the simulation provides the ground-truth target
partitions. When comparing the reconstruction and the
target partitions, the partition distance is the most com-
mon metric of accuracy. The distance is defined [13] as the
minimum number of individuals that need to be removed
from each partition in order to leave the remaining par-
titions equal. To compare our calculation approach of
the partition distance with the new reduction against the
original Java-based partition-distance algorithm (denoted
by “2005” in Figs. 1 and 2) of [15], we implemented
Algorithm 1 in Java and used the Java-based implementa-
tion of the Hungarian Method of [30] to solve the LSAP.
In Fig. 1, the R1 and R10 simulation tests reproduced
the kinship assignment testing in [31] and [32] for the
extreme case of samples containing only unrelated indi-
viduals and each group containing 10 individuals, respec-
tively. See [15] for the detailed description of the tests.
The new approach achieves an improvement of two orders
of magnitude for most effective partition sizes n. For two
given partitions P; and P, we defined the latter as n =
max{Cy, Cy} after all identical clusters are removed.

The RM simulation test [15] is presented in Fig. 2,
where each sub-figure title A(C, M) denotes C clusters,
each containing M individuals. To simulate the misclassi-
fication errors of a reconstruction algorithm, we created
partition P, by randomly moving x individuals to a differ-
ent cluster. The new approach was consistently faster and
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Algorithm 3 Second improved approximation of the partition
mean
Require: Partition Distribution D
Ensure: partition with local minimal distance to all partitions
in D
candidate = any, flag = true
forall P € D do
calculate Gp =distance(P, candidate) by the Hungarian
Algorithm
calculate Adj(Gp), Slack(Gp)
prepare transitive closure TC(Adj(Gp))
end for
while flag do
flag = false
for all individual € D do
bestChange = 0
for all cluster € candidate U { empty cluster} do
change = 0, hasCaseB32[ ] with all entries = false
forall P € Ddo
(changeG, hasCaseB32[P]) += predictMove(Gp,
individual, cluster)
if not hasCaseB32[ P] then
change += changeG
end if
end for
if change < bestChange and 3P : hasCaseB32[ P]
= true then
for all P € D with hasCaseB32[ P] = true do
(changeG, ..) += handleCaseB32(Gp,
individual, cluster)
change += changeG
if change > bestChange then
break
end if
end for
end if
if change < bestChange then
flag = true
bestChange = change
bestCluster = cluster
end if
end for
if bestChange < 0 then
forall P € D do
move(Gp, individual, bestCluster)
update Adj(Gp), Slack(Gp)
update TC(Adj(Gp)) via dynamic matrix
inverse
end for
end if
end for
end while
return candidate
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Fig. 1 Performance comparison of time taken to calculate partition-distance on the R1 and R10 simulation sets. Natural logarithm of time is
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bars show one standard deviation for R10 test
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Fig. 2 The same performance comparison as in Fig. 1 but for the simulation set RM. Natural logarithm of time is displayed in arbitrary units against




Glassen et al. BMC Bioinformatics (2018) 19:375

did not exhibit deterioration in speed when the partition
distance increased with growing x.

Comparison of old and new mean partition calculation

In the following, the improved partition distance reduc-
tion was used both for the old and the new mean partition
algorithm [33]. In this way we show that the new algo-
rithm alone already represents a significant improvement.

First, we analyze the influence of the partition size on
the computation time. Here, we used the famous Iris
Flower Dataset (IFD) of [34] as a comparison benchmark.
To receive different partition sizes in our posterior sample,
we expanded the IFD stepwise by new individuals drawn
from assumed cluster-specific multivariate Gaussian dis-
tributions. Besides the original size of the sample of 150
individuals with 50 individuals per cluster, data sets with
250 to 1050 individuals per cluster were generated in
this way.

For every dataset we first drew 100 partitions from a DP
Gaussian mixture model (DPGMM) and then determined
their mean partition using the old and new algorithm.
When the dataset contained < 850 individuals per clus-
ter, the mean partitions consistently showed a two-cluster
solution. Only the two largest datasets revealed the actual
partition structure with three clusters.

Figure 3 shows the course of the average calculation
effort of 100 calculation repetitions for different partition
sizes N and both algorithms. All computations were car-
ried out on a laptop with i7-4870HQ CPU. Table 1 lists
the corresponding calculation times in milliseconds, as
well as the acceleration factor of the new versus the old
variant.

In addition to the partition size, the number of clusters
has an influence on the performance of both algorithms.

. old
— — new

time (in ms)

0 10000 25000 40000 55000 70000 85000
|

—_—— - — — ¢ — —0
T T 1
150 750 1350 1950 2550 3150
partition size N

Fig. 3 Average effort of 100 calculation repetitions using the old and

the new mean partition algorithm as a function of the partition size N
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Table 1 Average calculation time (in ms) of 100 calculation
repetitions for different partition sizes

N Time (old) Time (new) Factor
150 449 (£0.2) 40(£0.1) 11.2
750 17833 (£2.1) 427 (£0.3) 418
1350 23182 (£2.0) 33.2(x03) 69.8
1950 4706.0 (£3.2) 47.1 (£0.3) 100.0
25508 24681.0 (£47.5) 1813 (£0.9) 136.1
31508 36614.3 (£ 17.0) 222.0(£1.0) 164.9

The clustering-samples of the DPGMM for the datsets marked with @ suggested a
three- instead of two-cluster solution. The values in parentheses are the distances to
the upper and lower bounds of the corresponding 95% confidence interval

To take a closer look at this influence we took the orig-
inal IFD with dataset size of 150 and again drew parti-
tions from a DPGMM. This time, however, we varied the
concentration parameter @ and used values of 1, 50000,
100000, 150000, 200000 and 300000. This procedure has
the effect that the samples from the DPGMM tend to
have a higher number of clusters, which is also noticeable
from the aforementioned expected number of clusters
E(C|DP) = alogN for the DP [19].

Figure 4 presents the curve of the average effort of
100 calculation repetitions as a function of the «-induced
average number of clusters C in the posterior sample.
As in the last simulation, the posterior sample consisted
of 100 partitions. Table 2 shows the corresponding cal-
culation times in milliseconds, as well as the respective
acceleration factor achieved by the new algorithm.

As one can see, the new algorithm proves to be much
faster than the old one at both given benchmarks. This
is notably true if C << N, which is in accordance

time (in ms)

0 10000 25000 40000 55000 70000 85000
|

i __._._-.-—.——.——“——_'.
I T T T T 1
2.00 480 6.21 7.49 9.05 13.16

average number of clusters C

Fig. 4 Average effort of 100 calculation repetitions using the old and
the new mean partition algorithm as a function of the average
number of clusters C within 100 sample partitions
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Table 2 Mean calculation time (in ms) of 100 calculation
repetitions for different average numbers of clusters

C Time (old) Time (new) Factor
20 449 (£0.2) 4.0(£0.7) 11.2
4.8 8676.6 (£5.9) 4173 (19 20.8
6.21 97225 (£4.2) 391.3(£1.5) 24.8
749 311864 (£26.7) 11263 (£2.3) 27.7
9.05 332778 (£24.8) 12380 (£22) 269
13.16 80026.3 (£ 209.5) 26894 (£8.2) 29.8

The values in parentheses are the distances to the upper and lower bounds of the
corresponding 95% confidence interval

with the previously explained time complexities for both
algorithms.

Discussion

We highlighted the faster variant of the partition distance
reduction of [15] and presented two further improve-
ments of the current mean partition approximation
algorithm. The first is deterministic and by at least one
magnitude faster than the original method. This is the
case, even if the latter makes use of the new reduction. The
second theoretical enhancement employs Monte Carlo
techniques and reduces the worst case complexity by
almost another +/C to O(NC>*7°K). Additionally, it also
reduces the best-case runtime from originally O(N2C3K)
to O(NC*75K) per cycle. Further improvements may
be possible, because the entire path to be reversed is
already known before the transitive closure is updated.
This knowledge could be used to calculate the dynamic
transitive closure with lookahead according to [35]. Note
however, that like our second improvement, this enhance-
ment also remains theoretical at present.

Conclusion

In this article, we have shown that the runtime of the
current mean partition approximation algorithm can be
significantly reduced. This makes it possible to calcu-
late and analyze a consensus for a large set of partitions
much faster, even when the number of elements and/or
the number of clusters is high. We are convinced that
not only the popular Structurama, which was often criti-
cized for long runtimes, benefits from this result, but also
application scenarios in which a frequent calculation of a
representative partition is necessary.
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