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Abstract

Background: Identification of homologous genes is fundamental to comparative genomics, functional genomics
and phylogenomics. Extensive public homology databases are of great value for investigating homology but need
to be continually updated to incorporate new sequences. As new sequences are rapidly being generated, there is a
need for efficient standalone tools to detect homologs in novel data.

Results: To address this, we present a fast method for detecting homology groups across a large number of individuals
and/or species. We adopted a k-mer based approach which considerably reduces the number of pairwise protein
alignments without sacrificing sensitivity. We demonstrate accuracy, scalability, efficiency and applicability of the
presented method for detecting homology in large proteomes of bacteria, fungi, plants and Metazoa.

Conclusions: We clearly observed the trade-off between recall and precision in our homology inference. Favoring
recall or precision strongly depends on the application. The clustering behavior of our program can be optimized for
particular applications by altering a few key parameters. The program is available for public use at https://github.com/
sheikhizadeh/pantools as an extension to our pan-genomic analysis tool, PanTools.
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Background
Detection of homologous genes (genes that share evolutionary
ancestry) is fundamental to comparative genomics, func-
tional genomics and phylogenomics. Homologs inherited
from a single gene in the last common ancestor of two
species are called orthologs, while those inherited from
distinct duplicated genes are called paralogs [1]. Orthologs
are usually under selection pressure, which conserves their
sequence, structure and function; while paralogs can di-
verge rapidly and lose their previous functions or achieve
completely or partially new functions [2].
With increasingly evolutionary distance and/or increased

data-set sizes, there will be greater sets of gene and genome
changes, that can complicate orthology inference [3].
Whole-genome and segmental duplications increase gen-
omic content, local and structural mutations lead to gene
losses and gains, and horizontal gene transfers mix genomic
content between species. As a result, orthology detection is
increasingly difficult in higher organisms and across large
evolutionary distances.

In the presence of gene duplications, orthology is not al-
ways a one-to-one relationship but rather can be a
one-to-many or even many-to-many relationship [4]. As a
consequence, an orthology group may contain not only
orthologous pairs, but also pairs of homologs duplicated
after the speciation of the two species, so-called in-paralogs.
In the rest of this text we therefore use the term homology
group instead of orthology group to be more precise.
To date, several databases of homology groups have

been established, which need to be continually updated to
incorporate new genomes [5–8]. As genomic projects are
generating novel data at an unprecedented scale, the ana-
lysis of new data means that researchers have to automate
the process of inferring homology in their large gene sets.
Consequently, in parallel to the static databases there has
been a development of standalone tools for automatic de-
tection of homologs [9–11]. Accurate homology detection
tools rely on all-pairs comparison of proteins. However,
calculating all-pair similarity scores quickly becomes a
major computational burden as the number of proteomes
increases. As the number of eukaryotic proteomes keeps
expanding in the coming years, there is a need for even
more efficient homology detection methods.
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Here, we present an efficient graph-based approach towards
homology detection. This method extends the functionality of
our pan-genomic data analysis tool, PanTools [12], which inte-
grates genomes, annotations and proteomes in a single graph
database to facilitate comparative studies at the levels of struc-
ture, variation and function [13]. The motivation of this study
was to detect homology groups de novo and efficiently, in large
datasets of hundreds of eukaryotic genomes. The presented
method scales to large proteome sets while maintaining its
accuracy and can be tuned for different application scenarios.

Methods
We represent a pan-genome by a hierarchy of genome, an-
notation and proteome layers stored in a Neo4j graph data-
base to connect different types of data (Fig. 1). The genome

layer consists of pan-genome, genome, sequence and nucleo-
tide nodes which contain some essential information about
these entities. Nucleotide nodes form the generalized de
Bruijn graph [12] which enables the compression and recon-
struction of the constituent genomes. The annotation layer,
currently, consists of the genomic features like genes,
mRNAs, etc. Finally, the proteome layer of the pan-genome
is formed by proteins and homology nodes which group the
homologous proteins.
Before homology detection, first the protein nodes should

be stored in a pan-genome graph. Instructions for construct-
ing a pan-genome can be found in the Additional file 1.
Having the proteins available in the proteome layer of the
pan-genome, we take the steps described in Algorithm 1 to
cluster them in homology groups.
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First, we extract the hexamers of all proteins and, for
each hexamer, keep track of the proteins containing that
hexamer (lines 1–4). Then, we find all pairs of intersecting
proteins (lines 5–10) and calculate their similarity score
by aligning them. Two proteins intersect (Fig. 2a-b) if the
number of hexamers they share is greater than the prod-
uct of the intersection parameter (I) and the total number
of hexamers of the shorter protein. We connect the inter-
secting proteins with a similarity score greater than the
similarity threshold T (lines 11–15) to form the similarity
graph (Fig. 2c). For reasons of efficiency, we have imple-
mented this as three parallel routines A-C, in which B
consumes the output of A and C the output of B. A and C
employ one working thread and B multiple threads to
maximize performance. Next, all the connectivity compo-
nents of the resulting similarity graph are found using a
simple breadth-first search (lines 16–18). This search al-
lows to detect not only the directly connected proteins
but also those connected through a path in the graph, the

potential distant homologs. Every similarity component is
then passed to the MCL (Markov clustering) algorithm
[14] to be possibly broken into several homology groups
(lines 19–24) (Fig. 2d). MCL has been frequently
employed in homology inference methods [11, 15, 16].
Finally, the members of each homology group are
connected to a single homology node in the graph
(lines 25–27).

Normalizing the raw similarity scores
We compare intersecting pairs of proteins by a
Smith-Waterman local alignment algorithm with an af-
fined gap penalty (opening = − 10, extension = − 1) using
the BLOSUM62 (Blocks Substitution Matrix 62) scoring
matrix. After calculating the raw similarity scores, we
normalize them to be independent of the protein
lengths. To this end we divide each raw score by the
score achieved by aligning the shorter protein to itself
and multiply the result by 100; this way, the normalized

Fig. 1 Integrating genomic data in a hierarchical pan-genome. The Neo4j graph data model allows to store different types of data in the nodes
and edges of a graph

a b c d
Fig. 2 a An example of two intersecting proteins, P1 and P2, which share some hexamers. b The intersection graph is built from intersecting
pairs of proteins. c The similarity graph consists of similarity components. Each bold edge represents a similarity score greater than the threshold (T).
d Homology groups are detected in each similarity component by MCL
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similarity scores will always be less than or equal to 100.
For the sake of simplicity, we use the term similarity
score to refer to the normalized similarity score between
pairs of proteins.

Rescaling the similarity scores
The pairwise similarity scores of highly similar homologs,
which usually lie in the same similarity component, are
very close to each other. This makes it very hard for MCL
to detect the underlying substructures in such similarity
components. To resolve this problem, we rescale the simi-
larity scores in three different ways (Algorithm 1, line 22).
First, we subtract the value T from these scores to
emphasize small differences for the MCL process.
Furthermore, we would like the clustering to be rela-

tively insensitive to evolutionary sequence divergence.
That is, within a similarity component pairs of homologs
from two distant species should be ideally scored nearly
as high as pairs from two closely related species. To
achieve this, in each similarity component we calculate
the average distance between each pair of species as 100
minus the average inter-species similarity score and add
it to all the similarity scores between those species
within the similarity component.
Finally, to increase the contrast between the final simi-

larity scores, before the similarity component is passed
to the MCL algorithm, we raise the scores to the power
of C, the contrast parameter. This operation is similar to
one round of expansion as explained in [14] and was ex-
perimentally observed to increase the specificity of the
resulting clusters.

Choice of k
Short peptide k-mers may occur in many proteins. This
raises the number of intersecting proteins which will be
aligned, increasing the resource consumption of the pro-
gram significantly. On the other hand, long k-mers are
more specific and decrease the sensitivity of the program
in detecting the intersecting pair of proteins, thereby re-
ducing the recall. As a result, we calculate the smallest k
value which keeps the probability of random occur-
rences of a k-mer below a desirable probability p. For
peptide sequences, size of the alphabet α = 20, and con-
sidering L = 30,000 the length of the largest known pro-
tein [17] and setting p = 0.001, the smallest suitable k
will be 6 (see Additional file 1). Therefore, we chose to
use hexamers for detecting the intersections.
To reduce the memory needs of the program and in-

crease the specificity of the intersections, we ignore ex-
tremely abundant hexamers (for example “QQQQQQ”
in the yeast datasets), which their frequency exceeds p ×
n + c ×m, where p = 0.001, n is the total number of pro-
teins, c = 50 is an a priori estimate of the maximum
number of occurrences of a hexamer in the proteome of

a species, and m is the total number of species
(proteomes). Likewise, hexamers with frequency 1 are con-
sidered rare and thereby ignored. This filtration notably im-
proves the efficiency and the precision of the method.

Measures of accuracy for evaluation
To evaluate the accuracy of the method, we used the re-
call, precision and F-score measures as defined previ-
ously [16, 18] (Fig. 3). Given a set of real and detected
homology groups, for each true homology group, THG,
we find the detected homology group, DHG, which has
the largest overlap with the THG. Then we consider true
positives (tp) as the number of proteins in both THG
and DHG, false negatives (fn) as the number of proteins
in THG but not in DHG, and false positives (fp) as the
number of proteins avilable in DHG but not in THG.
Then TP, FP and FN are defined as the summation of
the tp’s, fp’s and fn’s over all true homology groups, re-
spectively. Finally, the recall, precision and F-score mea-
sures are calculated as follows:

recall ¼ TP= TPþ FNð Þ
precision ¼ TP= TPþ FPð Þ
F‐score ¼ 2� Recall� Precisionð Þ= Recallþ Precisionð Þ

Recall represents the ability of the method to put the true
homologs together in one group, precision shows its ability
to separate the non-homologs, and the F-score is the har-
monic mean of these two measures combining them in
one. There is always a trade-off between recall and preci-
sion, since detecting more TPs often leads to some FPs.
In the following experiments, we need to know the

real groups in various datasets to serve as a ground truth
for evaluation. For the S.cerevisiae datasets and the

Fig. 3 Proteins of three distinct homology groups are represented
as triangles, circles and squares. Green shapes are true positives (tp)
which have been assigned to the true group; red shapes are false
positives (fp) for the group they have been incorrectly assigned to,
and false negatives (fn) for their true group
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single E.coli dataset, the real groups are defined based
on the locus tags of the proteins extracted from the
GenBank files (Additional file 2). For A.thaliana datasets
the real groups are defined based on the gene identifiers
which end with .1, for example AT3G54340.1, which
correspond to the first annotated isoform of the genes.
For the single Metazoa dataset, we used the identifiers of
the 70 protein families of OrthoBench as the real group
identifiers.

Results and discussion
Here, we present results demonstrating the accuracy,
scalability, efficiency and applicability of PanTools for
detecting homology in large proteomes of bacteria,
fungi, plants and Metazoa (Additional file 1: Table S1).
We compare PanTools to the BLAST-based orthology
detector OrthoFinder [16] and to DIAMOND-based
PanX [19], a pipeline dedicated to microbial data
(Additional file 1: Tables S2–S5). First we evaluated the
methods on OrthoBench [18], a public benchmark of
curated protein families from 12 metazoans. Unfortu-
nately, we were not able to run PanX on this data
(M12), as this benchmark only provides the protein se-
quences but not the gene sequences PanX requires.
Next, we tested scalability on 5 datasets of increasing
size compiled from 93 Saccharomyces cerevisiae strains
[20] and 5 datasets compiled from 19 Arabidopsis thali-
ana accessions [21]. Additionally, we compared the
performance of PanTools and PanX on a large dataset
of 600 Escherichia coli; we did not run OrthoFinder,
as we estimated it would need ~ 5000 h on this data-
set. Finally, we studied the effect of evolutionary dis-
tance on homology detection using 12 Brassicaceae
species proteomes. Experiments were executed on an
Ubuntu 14.04 server, Intel® Xeon® X5660@2.8GHz,
with 64GB RAM using 16 processing cores and 32GB
of RAM disk.

PanTools is adaptable to handle varying degrees of input
divergence
PanTools has four main parameters that affect the hom-
ology clustering: intersection rate, similarity threshold,
contrast and MCL inflation. To examine the general ef-
fect of these parameters on the accuracy of the method
on proteomes of diverged species, we used the set of
1695 proteins from the OrthoBench. Figures 4 and 5
present contour plots illustrating the effect of these four
parameters on the recall and precision of PanTools, re-
spectively; lighter colors represent higher values.
The first parameter, intersection rate (I) (in the range

of 0.01–0.1), determines the minimum number of hex-
amers that two proteins need to have in common to be
considered intersecting proteins in order to be selected

for exact alignment. This number is calculated as the
product of the intersection rate and the total number of
hexamers of the shorter protein. In general, by choosing
lower intersection values the number of pairwise align-
ments and, in turn, the resource consumption of the
program increases, significantly. The lower the intersec-
tion value, the higher the recall and the lower the
precision.
The second parameter affecting the clustering is the

similarity threshold (T) (in the range of 25–99). Two
proteins are considered similar if the normalized similar-
ity score of their local alignment exceeds this threshold.
Lower thresholds increase the number of detected simi-
larities, boosting the sensitivity of the homology detec-
tion. So, the lower the threshold, the higher the recall,
but the lower the precision.
The connectivity components of the similarity graph

(similarity components) are the candidate homology
groups which are then passed to the MCL clustering al-
gorithm to be possibly split into more specific hom-
ology groups. To increase the granularity of the
clustering and split the similarity components into a
larger number of groups, we choose greater MCL infla-
tions (M). Finally, we raise the scores to the power of
the contrast parameter (C) to increase the contrast be-
tween the final similarity scores. Like for I and T, the
lower the inflation and/or contrast, the higher the recall
and the lower the precision.
The resulting F-scores (Additional file 1: Figure S1)

suggest that higher values of the four parameters are not
desirable for grouping the proteome of these distant spe-
cies. In support of this, we observed that increasing the
parameter values improves the F-score of the method
when analyzing the proteomes of closely related species.
Based on these observations, we experimentally opti-

mized 8 groups of default parameter settings (d1-d8),
ranging from strict to relaxed by linearly decreasing the
4 mentioned parameters (Additional file 1: Table S6).
This allows the user to fine-tune the settings for differ-
ent types of datasets and/or downstream applications.
We recommend users to either use Table S6 to choose
appropriate settings based on the divergence of the pro-
teomes or try multiple settings and pick one based on
the desired resolution from one-to-one orthologs to
multi-gene families. In our experiments, we used the
most strict setting (d1) for the closely related strains of
E.coli and S.cerevisiae, the next strict setting (d2) for
A.thaliana datasets, and the most relaxed setting (d8)
for the OrthoBench data.

PanTools is efficient and accurate on OrthoBench data
OrthoBench is a resource of 70 curated eukaryotic protein
families from 12 metazoans which was established to assess
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the performance of TreeFam [22], eggNOG [23], OrthoDB
[24], OrthoMCL [25], and OMA [26]. We call this bench-
mark M12 in the rest of this paper. The homology relation-
ships between these protein families are difficult to detect
due to differences in their rate of evolution, domain archi-
tecture, low-complexity regions/repeats, lineage-specific
losses/duplications, and alignment quality [18].
We compared the performance of PanTools to that of

OrthoFinder, which previously showed the highest ac-
curacy on this benchmark data. We first created a map-
ping from the 1695 OrthoBench proteins to the
404,657 proteins of the 12 metazoans available in
Ensembl release 60. We then ran PanTools and Ortho-
Finder independently on these 12 complete proteomes
and calculated the recall, precision and F-score using
the same procedure as proposed for OrthoFinder. In
this experiment, PanTools achieved the same recall as
OrthoFinder but at a remarkably higher precision,
resulting in a 3% higher overall F-score of 85.5%. Add-
itionally, there were significant differences in run-times.
Running on 16 cores, PanTools terminated after 2 h
and OrthoFinder after 77.6 h.

PanTools scales to large eukaryotic datasets and maintains
accuracy
To examine the scalability of our method to large
eukaryotic datasets, we first ran it on 5 datasets of
Saccharomyces cerevisiae (Y3, Y13, …, Y93) and on 5
datasets of Arabidopsis thaliana accessions (A3, A7, …,
A19) with an increasing number of proteomes. We com-
pared the run-time and accuracy (F-score) of PanTools
to those of OrthoFinder and PanX (Fig. 6).
On the largest yeast dataset (Y93), PanTools was 112

times faster than OrthoFinder (0.9 h vs. 4 days) and 7.6
times faster than PanX, with a slightly higher F-score.
Similarly, on the largest Arabidopsis dataset (19 acces-
sions), PanTools was 42 times faster (1 h vs. 2.7 days)
than OrthoFinder and 5.2 times faster than PanX while
maintaining its higher F-score. Overall, OrthoFinder
starts with a low accuracy but seems to level out at a
higher value as the number of proteomes grows, albeit
at the cost of drastic increase in run-time. Although
PanX was almost as accurate as OrthoFinder on the
S.cerevisiae data, its accuracy fell below that of Ortho-
Finder on the A. thaliana data, likely because plants

Fig. 4 The effect of intersection rate, similarity threshold, contrast and inflation rate, on the recall of PanTools. Each contour plot belongs to a pair
of intersection and threshold values, with the x and y axis representing inflation and contrast parameters
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have more diverse proteomes than the bacteria PanX
was designed for.

PanTools is applicable to large microbial datasets
To compare the performance of our approach to PanX, a
recently published tool dedicated to the microbial data,
we applied both tools to the proteomes of 600 E.coli
strains downloaded from GenBank (Additional file 2).
Both PanX and PanTools processed this large dataset in
~ 15 h, resulting in F-scores of 71.6 and 72.9, respectively.
In this experiment, we ran PanX in divide-and-conquer
mode to speed it up.

PanTools significantly reduces the number of pairwise
comparisons
The efficiency of PanTools is due to its k-mer-based ap-
proach, which significantly reduces the number of fruitless
protein alignments. Table 1 shows that the numbers of
pairwise comparisons in different experiments are
thousands-fold less than what is needed in a naïve
all-pairs approach.

Fig. 5 The effect of intersection rate, similarity threshold, contrast and inflation rate, on the precision of PanTools. Each contour plot belongs to a
pair of intersection and threshold values, with the x and y axis representing inflation and contrast parameters

Table 1 The number of PanTools comparisons compared to a
naïve all-pairs approach

Dataset Naïve (millions) PanTools (thousands) Fold decrease

Y13 2472 507 4874

Y33 15,979 3415 4679

Y53 41,181 8888 4633

Y73 78,121 16,937 4613

Y93 126,519 27,494 4602

A3 4284 508 8435

A7 23,225 2889 8038

A11 57,382 7229 7938

A15 105,111 12,904 8146

A19 169,570 21,022 8066

M12 81,873 20,094 4074

E600 4,993,364 926,638 5389
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To scale to hundreds of eukaryotic or thousands of
prokaryotic proteomes using reasonable amount of re-
sources, there were two main limitations to be resolved:
first, the local sequence alignment of proteins, which we
tried to mitigate by distributing the intersecting pairs
among multiple threads to be aligned in parallel; second,
the size of the data structure used for detecting the
intersecting proteins, which grows linearly with the size
of the input data. To reduce the memory needs, cur-
rently we ignore extremely abundant and rare hexamers,
which are less informative. By using space-efficient data
structures, for example MinHash sketches [27], we may
be able to further decrease the memory consumption of
the program.

PanTools reproduces the majority of groups detected by
other tools
In all experiments, PanTools was able to perfectly repro-
duce the majority of the groups detected by OrthoFinder
and PanX. Table 2 shows the percentage of the groups
generated by OrthoFinder and PanX which have an
identical counterpart in the PanTools groups. Generally,
the overlap decreases as the size of data grows, because

(a) (b)

(c) (d)
Fig. 6 a The run-time and b the F-score of the three methods on the 5 S. cerevisiae datasets. c The run-time and d the F-score of the three methods
on the 5 A. thaliana datasets

Table 2 The percentage of OrthoFinder and PanX groups that
PanTools reproduce

Dataset Reproduced Reproduced

OrthoFinder groups PanX groups

Y13 94.9% 96.3%

Y33 94.9% 95.5%

Y53 93.9% 94.8%

Y73 93.6% 94.5%

Y93 93.3% 93.8%

A3 72.1% 80.1%

A7 64.9% 71.5%

A11 64.9% 69.1%

A15 64.8% 72.5%

A19 64.6% 79.8%

M12 76.3% –

E600 – 59.7%
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the probability of having exactly identical groups drops,
although the corresponding groups have highly similar
compositions.

Parameters can affect the performance of different
application scenarios
To investigate the effect of the 8 suggested parameter sets
(from strict to relaxed) on homology clustering, we used a
large proteome of 12 phylogenetically diverse Brassicaceae
species, including the model plant Arabidopsis thaliana,
plus Vitis vinifera as an outgroup. We specifically consid-
ered four genes with different copy numbers in A.thali-
ana, including three MADS-box genes – the floral
homeotic protein APETALA 3 (AP3), the floral homeotic
protein AGAMOUS (AG) and the flowering locus C
(FLC) – and one housekeeping gene: the ubiquitin exten-
sion protein 1 (UBQ1), and looked into the composition
of their homology groups detected by PanTools using the
8 parameter settings from strictest (d1) to the most re-
laxed (d8). Each column of Table 3 represents a homology
group and each entry reflects the count of homologs of
the genes AP3, AG, FLC and UBQ1 from different species
in that group.
With all settings, we detected a single AP3 homolog in

Arabidopsis, which indicates that this MADS-box gene is
significantly differentiated from other MADS-box genes.
We also found unique orthologues for most of the other
species.
We detected a single ortholog of AG until d5, after

which we also identify its ancient paralogs Shatterproof
1 and 2 (SHP1/2). The duplication that gave rise to the
split between AG and SHP1/2 is quite old (the gamma

triplication shared by most eudicot species). At d6 we
also detect STK which comes from an even earlier dupli-
cation (perhaps at the origin of angiosperms) [28]. At d7
and d8 we identify many of the various MADS-box
genes across different lineages.
FLC is alone until d4, where the transposition dupli-

cate MAF1 (but not yet members of the MAF2–5 clade)
is added. Then MAF2–5 members derived from the
At-alpha WGD (whole genome duplication) from FLC
come up, followed by inclusion of the tandem expansion
of these genes. At subsequent settings, we start picking
up other MADS-box genes.
UBQ1 is a house-keeping gene that was duplicated by

the ancient whole genome duplication (WGD) At-alpha
shared across the Brassicaceae (PGDD database) [29]. Our
method recovered both the ortholog and its in-paralog
(UBQ2) even using the strictest setting (d1), meaning that
these genes are very similar despite having diverged
around 40 mya. Thus, the function of the two genes is
likely highly conserved. From d5 on, PanTools identifies
other, more distantly related homologs and ultimately (d8)
all members of the larger family (UBQ1-UBQ14) plus a
few related genes.
Table 4 shows the distribution of the normalized simi-

larity scores in each of the detected homology groups. It
is clear that more relaxed settings allow including more
diverse pairs of homologs, which are less similar in the
final clusters.

Conclusion
We presented an efficient method for detecting hom-
ology groups across a large number of individuals and/

Table 3 Counts of the homologs of 4 genes from Brassicaceae species in each homology group

AP3 AG FLC UBQ1

(AT3G54340) (AT4G18960) (AT5G10140) (AT3G52590)

d1 d2 d3 d4 d5 d6 d7 d8 d1 d2 d3 d4 d5 d6 d7 d8 d1 d2 d3 d4 d5 d6 d7 d8 d1 d2 d3 d4 d5 d6 d7 d8

A. thaliana 1 1 1 1 1 1 1 1 1 1 1 1 3 4 8 27 1 1 1 2 4 6 8 36 2 2 2 2 15 16 17 17

A. lyrata 1 1 1 1 1 1 1 3 1 1 1 1 4 4 7 24 0 1 1 1 4 5 5 32 0 0 0 0 19 20 21 22

C. rubella 1 1 1 1 1 1 1 2 1 1 1 1 3 4 8 24 0 1 1 1 2 3 4 33 2 2 2 2 15 15 18 19

M. maritima 1 1 1 1 1 1 1 3 1 1 1 1 4 4 7 24 0 1 1 1 4 4 6 34 2 2 2 2 12 12 16 18

D. sophiades 1 1 1 1 1 1 1 3 1 1 1 1 4 4 9 26 0 1 1 1 7 9 12 42 2 2 2 2 11 12 12 12

S. irio 0 1 1 1 1 1 3 6 0 0 2 3 8 8 10 26 0 0 0 2 4 4 11 36 3 3 3 3 13 14 17 20

M. perfoliatum 1 1 1 1 1 1 1 2 1 1 1 1 4 4 8 28 0 1 1 1 3 5 8 35 3 3 3 3 13 13 18 21

T. salsuginea 1 1 1 1 1 1 1 3 1 1 1 1 4 4 8 27 0 1 1 1 5 5 7 33 2 2 2 2 12 13 13 13

T. halophila 0 0 2 2 2 2 2 3 0 0 0 4 6 9 13 41 0 0 0 0 0 4 4 48 4 4 4 4 15 15 15 15

A. alpina 1 1 1 1 1 1 2 3 0 1 2 2 5 7 9 21 0 0 1 3 6 7 11 30 5 6 6 7 17 17 21 23

E. syriacum 1 1 1 1 1 1 1 2 0 0 0 0 2 3 7 21 0 0 1 1 3 5 9 31 3 3 3 3 18 20 21 22

A. arabicum 0 1 1 1 2 3 4 5 0 1 2 2 8 11 13 24 0 1 2 3 4 5 7 25 3 3 3 3 12 12 12 13

V. vinifera 0 0 0 0 1 1 1 4 0 0 1 1 4 4 8 26 0 0 0 0 0 0 3 34 2 2 3 3 7 9 9 10

Each column represents a detected homology group with one of the default settings (d1-d8)
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or species. To make homology detection efficient we
adopted a k-mer-based approach, which substantially re-
duces the number of pairwise comparisons. Specifically,
we first count the number of peptide hexamers two pro-
teins share, and only if this number is high enough, we
perform a local alignment of the so-called intersecting
proteins to calculate their exact similarity score.
We clearly observed a trade-off between recall and

precision of the homology inference. Favoring recall or
precision strongly depends on the application [30]. In a
phylogenetic study one may specifically be interested in
identifying precise one-to-one orthologs, while others
may want to capture a complete protein family to
achieve insights into gene-duplication events across spe-
cies. The four defined parameters (and the 8 default set-
tings) give users the flexibility to control the program’s
behavior. It is important to note that different types of
genes may be under different selection pressures and
constraints and have different evolutionary dynamics.
Thus, the optimal parameter setting will depend both on
the specific gene and on the desired application, as dem-
onstrated by the four genes across the Brassicaceae.
As we store the homology groups in the pan-genome, it

is possible to query the pan-genome graph database for
statistics on, for example, the size of the homology groups,
the copy number of the genes and the conservation rate
of the proteins in different groups. In the future, we will
extend PanTools with additional functionality to exploit
this pan-genome database for comparative genomics on
large collections of complex genomes.
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