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Abstract

Background: Data-driven methods that automatically learn relations between attributes from given data are a
popular tool for building mathematical models in computational biology. Since measurements are prone to errors,
approaches dealing with uncertain data are especially suitable for this task. Fuzzy models are one such approach, but
they contain a large amount of parameters and are thus susceptible to over-fitting. Validation methods that help
detect over-fitting are therefore needed to eliminate inaccurate models.

Results: We propose a method to enlarge the validation datasets on which a fuzzy dynamic model of a cellular
network can be tested. We apply our method to two data-driven dynamic models of the MAPK signalling pathway
and two models of the mammalian circadian clock. We show that random initial state perturbations can drastically
increase the mean error of predictions of an inaccurate computational model, while keeping errors of predictions of
accurate models small.

Conclusions: With the improvement of validation methods, fuzzy models are becoming more accurate and are thus
likely to gain new applications. This field of research is promising not only because fuzzy models can cope with
uncertainty, but also because their run time is short compared to conventional modelling methods that are nowadays
used in systems biology.

Keywords: Fuzzy logic, Model validation, Data-driven modelling, Dynamic modelling, MAPK signalling pathway,
Circadian clock

Background
Computational models are depictions of reality that help
us understand biological systems and direct experimen-
tal work in the field of systems biology [1]. A diverse
range of methods for building models is available nowa-
days, with data-driven approaches playing an important
role in cases where a large amount of experimental data
exists and where prior knowledge of the system’s struc-
ture is limited. Amajor advantage of these methods is that
they can incorporate data directly without the need for
expert knowledge to interpret the data, as their aim is to
find correlations between data attributes [2, 3].
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With experimental data, a certain level of measure-
ment error appears [4]. A promising approach to dealing
with this problem are Bayesian networks that allow the
incorporation of qualitative data into the structure of the
network, the likelihood function and the prior probabil-
ity distribution of Bayes’ rules [5], with a drawback that
the prior probability distribution may sometimes not be
available [6]. An alternative approach is fuzzy logic.
Fuzzy logic is an extension of traditional Boolean logic.

The concept of a linguistic variable provides a means of
approximate characterization of phenomena which are
too complex or too ill-defined to be applicable in conven-
tional quantitative terms [7]. To build a model, for each
variable its term-set, the collection of linguistic (fuzzy)
values, and a membership function are defined. Addition-
ally, a set of fuzzy terms in the form of ’IF-THEN’ rules
is constructed, defining the relations between linguistic
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variables [8]. Fuzzy models of cellular networks have been
presented in [3, 6, 9–12].
Fuzzy models contain a large amount of parameters,

hence they are susceptible to over-fitting. Additionally, it
is possible that simulation results on small testing datasets
fit themodelled system equally well formodels with differ-
ent sets of parameter values and topologies. This is espe-
cially likely in case of data-driven models as algorithms
that build them do not account for the biological system’s
topology and may as such find a completely unsuitable
solution. It is therefore important to expand the valida-
tion dataset in a way that helps us distinguish between
accuracies of models with different topologies.
Computational models are typically validated on avail-

able experimental datasets and data that is collected from
experiments that are performed after the establishment
of the model. Models of signalling pathways often assume
that the system’s response only depends on the stimulus
concentration [6, 13, 14], while they ignore the initial state
of the system at the time of stimulation of the pathway.
On the other hand protein concentrations are known to
vary between cells and inside the same cell in different
time points from 15 to 30% of their mean value [15]. This
suggests that perturbations of protein initial concentra-
tions could provide a successful method for fuzzy model
validation.
First we apply our validation method to two fuzzy

models of the classical cascade of the mitogen-activated
protein kinase – MAPK. It is the most studied pathway
from the MAPK signaling cascade family and coordinates
many cellular activities in eukaryotic cells, such as gene
expression, mitosis, metabolism, survival, apoptosis, and
differentiation [16]. In cases where this signalling path-
way is damaged, diseases such as cancer, Alzheimer’s and
Parkinson’s disease may occur [17].
Later we apply the method to two fuzzy models of the

mammalian circadian clock – CC, a timing system that
forms rhythmic changes of processes in the body, with
a period close to 24 h, allowing organisms to adapt to
the cyclic changes in their habitats [18]. The disruption
of this clock may cause a variety of pathologies, includ-
ing cardiovascular and inflammatory diseases, cancer, and
depression [19–22].
Many models have been built to analyse the dynamics

of both systems. These models, however, use conven-
tional computational biology methods [23–32] that have
a long execution time and cannot deal with uncertain
data.

Methods
Training, testing and validation datasets
Training, testing and validation sets for the MAPK
signalling pathway were generated from the model pre-
sented in [23]. The model is based on ordinary differential

equations (ODEs) and was run in MATLAB for a time
span of 30 min using the built-in ode45 function, with
data being collected once per minute. Training and testing
data were generated with constant initial conditions and
variation of the epidermal growth factor – EGF (stimulus)
concentration. All perturbations of the EGF concentra-
tion were inside the range that was experimentally tested
in [23]. The validation set was generated by random per-
turbations of both initial conditions and EGF concentra-
tion. Training set of the mammalian CC was generated
from the findings published in [32] following the recom-
mendations of [33]. As test and validation datasets the
raw data measured in liver under dark-dark conditions
[32] were used.

Data-driven fuzzy models
In this article, two algorithms for building fuzzy models
are used. Both algorithms use Zadeh-Mamdani fuzzy
rules [34] that are of the form

IF x is Ã THEN y is B̃, (1)

where (x is Ã) and (y is B̃) are two fuzzy terms. The
input variable x belongs to the fuzzy set Ã with the
membership function value μÃ(x), and the output vari-
able y belongs to the fuzzy set B̃ with the membership
function value μB̃(y). A general form of this rule that
allows us to use an arbitrary number of input and output
variables is

IF x1 is Ã1 AND x2 is Ã2 AND . . . AND xk1 is Ãk1

THEN y1 is B̃1 AND y2 is B̃2 AND . . . AND yk2 is B̃k2 .
(2)

For input and output variables we assume a Gaussian
membership function that is defined with a mean value
c and standard deviation σ , and is calculated from the
expression

μÃ(x) = e−
(x−c)2
2σ2 . (3)

For defuzzification of output variables, the center of
gravity (COG) method [35] is used. The crisp value R′ of a
result of processing R that is described with a continuous
membership function μR̃(y) equals

R′ =
∫ ∞
0 yμR̃(y)dy∫ ∞
0 μR̃(y)dy

. (4)

Additionally, we assume that the next state of the system
only depends on the previous state and the value of the
stimulus.

Fuzzy c-means clustering algorithm (FCM)
The fuzzy c-means clustering algorithm (FCM) [36] is a
basic fuzzy algorithm for clustering that searches for a
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fuzzy partition U = [uik] of data collection by minimising
the generalised least squares functional

Jm(X,U , v) =
N∑

k=1

c∑

i=1
umikd

2(xk , vi), (5)

where X = {x1, x2, . . . , xN } ⊂ R
n is a set of data, c the

number of clusters in the set X (2 ≤ c < N), m ≥ 1
the degree of fuzzification to remove noise from data, d
a distance function, U the fuzzy partition of set X, and
v = [vi] the vector of cluster centres. The minimisation is
run iteratively under the following conditions:

0 ≤ uik ≤ 1; 1 ≤ i ≤ c, 1 ≤ k ≤ N , (6)

0 <

N∑

k=1
uik ≤ n; 1 ≤ i ≤ c, (7)

c∑

i=1
uik = 1; 1 ≤ k ≤ N . (8)

After each iteration, centres vi and membership degrees
uik are updated using the following procedure:

vi =
∑N

k=1 umikxk∑N
k=1 umik

; 1 ≤ i ≤ c, (9)

uik = 1
∑c

j=1

(
d(xk ,vi)
d(xk ,vj)

) 2
m−1

; 1 ≤ k ≤ N , 1 ≤ i ≤ c. (10)

For a fuzzy model with n input and m output vari-
ables, its learning with FCM uses (n + m)-dimensional
vectors as data, where each vector contains known values
of input and expected values of output variables at given
learning inputs. These data are then clustered in c groups
with every group representing one fuzzy rule. Member-
ship functions of fuzzy variables are determined from the
groups’ centres.
In the case of a cellular network model the input vari-

ables are concentrations of chemical species, while the
output variables are the changes in concentrations of
chemical species in two consecutive measurements. The
change of concentration of the stimulus is ignored, as we
assume that it is constant throughout the whole simula-
tion time span. Since the training and testing datasets con-
tain absolute concentration values, the learning method
determines the changes, while the final model com-
putes absolute values from input values and fuzzy model
outputs.
This learning method is performed using the MATLAB

function genfis3. Since its results are non-deterministic,
the method is run 10 times and the model with the
smallest error on the training set is selected for further
observations.

Multi-atribute fuzzy time seriesmethod
Fuzzy time series is a prediction model that allows
modelling dynamic processes in which linguistic values
are observed. The model assumes that an observation in
a time point is the result of observations from the past
[37]. One of the procedures to build a fuzzy time series
is the multi-atribute fuzzy time series method [38], later
denoted as MAFTS. It consists of four steps:

1 The clustering of time series S(t) into c clusters
using FCM to identify patterns,

2 The ranking of each cluster and fuzzification of time
series S(t) to a fuzzy time series F(t),

3 The determination of fuzzy rules,
4 The prediction of new data and defuzzification of

results.

Data used for clustering is a set of concentrations
of chemical species. The data of each chemical species
is clustered separately to determine membership func-
tions of the corresponding variable. Mean values of the
Gaussianmembership functions are determined as cluster
centres obtained by FCM, while standard deviations are
set to a constant percentage (3.5% in case of the MAPK
signalling pathway and 0.8% in case of the CC) of the
length of the interval on which a fuzzy variable is defined,
in order to reduce the number of parameters that have to
be learnt. Since membership functions for each protein
are determined separately, linguistic names can be given
to linguistic values. Each fuzzy variable gets either 3 or 5
fuzzy values denoted low,medium, and high (with 5 fuzzy
values also very low, and very high), so that their mean val-
ues correspond to the linguistic meaning of the linguistic
values. The number of fuzzy values per variable was set
as in [6, 10], but could be extended in case of inaccuracy
of the built model or reduced in case of over-fitting. The
domain of a fuzzy variable is defined as a closed interval
from 0 to the maximum value achieved by the variable on
the training data.
Data points are fuzzified so that the fuzzy value with the

maximal membership function value is chosen for each
fuzzy variable. For each pair of consecutive data points,
one fuzzy rule is determined. Fuzzy values of the fuzzy
variables at the earlier time point are included in the IF
part of the rule, and the fuzzy values at the later time point
in the THEN part of the rule. Input and output variables
of the fuzzy model are hence concentrations of chemical
species. The stimulus concentration is not predicted as we
assume that it is constant through the whole simulation
time span.
The MATLAB function fcm is used to cluster protein

concentrations. Since its results are non-deterministic and
it sometimes returns results of numeric type NaN, learn-
ing is repeated until a valid numeric result for cluster
centres is obtained.
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Model evaluation metric
Model accuracy is evaluated using a mean absolute error
(MAE)

MAE =
∑n

i=1 abs(εi)
n

, (11)

and a root mean square error (RMSE)

RMSE =
√∑n

i=1 ε2i
n

, (12)

where n denotes the number of test instances and εi
the prediction error of the i-th test instance [39]. The
prediction error is measured as the average normalized
difference between the true values and the predicted val-
ues of a component (variable) within a test instance. Each
component was normalized by the maximal value of its
domain.

Results and discussion
In order to gather validation data for dynamic mod-
els, experimental data needs to be sampled in a series
of time-points after perturbations of experimental con-
ditions. An appropriate design of time-series experi-
ments is difficult and may contain redundant information
leading to the inefficient use of experimental resources
[40]. An alternative approach for model validation is
therefore a comparison with existing models that allows
us to sample validation data of arbitrary size. This is
especially useful when accurate models exit, but are
too slow to be effectively incorporated in experimental
work.

Fuzzy model of the MAPK signalling pathway
We generated two data-driven fuzzy models of the MAPK
signalling pathway from the same training dataset. The
first model was generated using FCMwith 20 clusters and
the second model with MAFTS with 5 fuzzy values per
variable. Bothmodels simulate the dynamics of theMAPK
signalling pathway by iterative runs of the inference sys-
tem. Given an initial condition and EGF concentration
models returns a time series of 30 consecutive states of the
system.
We are searching for a model that describes the dynam-

ics of a signalling pathway. In contrast to some prediction
models, where, given a state, the model has to produce
an accurate prediction of the next state (i.e. the state in
the next time point), later called next state prediction, we
attempt to find a model that given an initial condition
and a stimulus concentration, predicts an accurate series
of consecutive states. We call the later a whole time series
prediction.

MAE and RMSE were hence calculated on two testing
sets and two validation sets. One of the sets used the pre-
dictions of the next state from a given state, while the
other predicted a series of states from a given initial state.
The errors of the generated fuzzy models were of sim-

ilar size for the testing sets that included the results of
a whole time series, while the next state prediction was
better using the model generated with FCM (Table 1). At
this stage of validation, we could thus assume that the
model generated with FCM is either more accurate than
the model generated with MAFTS or that they are both
approximately as accurate.
We then generated validation data with initial state per-

turbations to validate our assumption. Validation data
were generated with two distinct approaches. In the first
case only the initial state was randomly selected so that it
belonged to the domain on which the models are defined,
while the EGF concentration was randomly taken from the
set of EGF concentrations that occur in training data. In
the second case both the initial state and stimulus concen-
tration were randomly selected from the domain. MAE
and RMSE were measured as before.
We found out that in both cases errors of the model

generated with FCM increased notably compared to the
testing data (Tables 2 and 3), while the errors of the
model generated with MAFTS increased only slightly.
The main reason for the increase of the whole series pre-
diction error of the model generated with FCM is that
the model estimates the difference in concentration and
not the concentration itself, allowing the concentration
prediction to increase above the maximum value of the
domain. Once the input variables of the FCM model are
outside the domain, the results are unlikely to be in the
domain, leading to large errors. Such errors are likely to
occur whenever replacing ODEmodels with fuzzy models
with an aim to speed them up.
Our results show that themodel generated withMAFTS

is much more accurate than the model generated with
FCM, although we were unable to form this conclusion
from the testing datasets generated by exclusively EGF
concentration perturbations. These findings suggest that
perturbations of initial conditions can simplify the process
of model validation as even a small dataset can sometimes
eliminate an inaccurate fuzzy model.

Table 1 Test sets errors

FCMmodel MAFTS model

MAE (next state) 0.07 0.14

MAE (whole series) 0.76 0.24

RMSE (next state) 0.02 0.10

RMSE (whole series) 0.47 0.15

MAE and RMSE measured on models generated with FCM and MAFTS with respect
to the testing sets where either the next state or a whole time series is predicted
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Table 2 Errors on validation sets with initial state perturbations

FCMmodel MAFTS model

MAE (next state) 0.20 ∗ 103 0.15

MAE (whole series) 1.41 ∗ 103 0.24

RMSE (next state) 3.28 ∗ 103 0.22

RMSE (whole series) 8.67 ∗ 103 0.31

MAE and RMSE measured on models generated with FCM and MAFTS with respect
to the validation sets with initial state perturbations where either the next state or a
whole time series is predicted

Fuzzy models of the mammalian circadian clock
The observations of the models of the MAPK signalling
pathway might suggest that sensitivity to perturbations
is a feature of FCM models. For this reason we gener-
ated two data-driven fuzzy models of the mammalian
circadian clock from the same training dataset using
MAFTS. In the first case we used 3 fuzzy values per
variable, and in the second case we used 5 fuzzy values
per variable. Both models again simulate the dynam-
ics of the network by iterative runs of the inference
system.
Korenčič et al. [32] suggests that the effect of transcrip-

tion factors on gene expression at a given time point can
bemodelled as an effect of gene expression levels at earlier
time points. This delay corresponds to the time needed
for post-transcriptional modifications and differs between
genes. In order to integrate this approach to MAFTS, the
previous state was defined as a set of gene expression
levels before delay time points. The initial condition in
this case is therefore a series of four states, as the largest
delay observed in [32] corresponds to four hours. In each
model a series of 24 states corresponds to the 24 h day
cycle. As with the previous case study we attempt to find
a model that, given an initial condition, predicts an accu-
rate series of consecutive states, however, in this case it is
more important that the system keeps oscillating than to
obtain low MAE or RMSE. Without any initial state per-
turbations both models produced oscillations with a 24 h
period.
Perturbations of initial conditions were up to 1% of their

value, which is less than the differences between measure-

Table 3 Errors on validation sets with initial state and stimulus
concentration perturbations

FCMmodel MAFTS model

MAE (next state) 0.29 ∗ 103 0.16

MAE (whole series) 2.02 ∗ 103 0.25

RMSE (next state) 4.35 ∗ 103 0.23

RMSE (whole series) 11.5 ∗ 103 0.31

MAE and RMSE measured on models generated with FCM and MAFTS with respect
to the validation sets with initial state and stimulus concentration perturbations
where either the next state or a whole time series is predicted

ments in different mice at the same time point in [32],
meaning that they should not affect the dynamics of the
system. As Fig. 1 shows the model with 5 fuzzy values
per variable keeps oscillating, while the model with only 3
fuzzy values stops oscillating after 10 h of simulation.
While in this case the inaccuracy is not a consequence

of over-fitting, we show that initial state perturbations can
also help as a testing method to determine the minimal
number of fuzzy values needed to accurately describe the
dynamics of a cellular network.

Discussion
The size of available datasets limits many validation
methods not only due to the complexity of the experimen-
tal work, but also due to the long runtime of simulations of
large ODE and partial differential equations (PDE) models
that are still the most popular approach for the depiction
of signalling pathways and gene regulatory networks. This
also holds true for the reference ODE model used in this
study, but wewere still able to generate a validation dataset
of sufficient size to disprove the fuzzy model generated
with FCM.
This limitation should, however, not prevent one from

using the proposed method, as simulations of fuzzy
models are much faster than the corresponding ODE
reference models and several fuzzy models can be val-
idated using the same validation datasets. Additionally,
our method can be extended to cases where appropriate
experimental data or any type of an accurate quantitative
model of the observed biological system is available.

Conclusions
Validation of computational models of biological systems
is often problematic, as only small experimental datasets
are available for comparison. In this paper we provided
a description of an approach that helps in eliminating
inaccurate fuzzy data-driven models through initial state
perturbations of a dynamic system. We demonstrated
the method’s applicability by comparing two data-driven
fuzzy models of the MAPK signalling cascade and two
data-driven fuzzy models of the mammalian CC, where
we successfully detected an over-fitted model. With the
improvement of validation methods fuzzy models are not
only becoming more accurate, but are also becoming
a more promising alternative to conventional modelling
methods as they can cope with uncertain data and can
predict outputs quickly. The presented method can be
also extended to the validation of fuzzy dynamic models
of a diverse spectrum of biological systems, providing an
opportunity for new applications of fuzzy logic to systems
biology. The latter can gain importance through data-
driven models built directly from experimental data or as
a way to speed up existing models that are accurate but
too slow for frequent usage.
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Fig. 1 Comparison of fuzzy models of the circadian clock. Simulation results of both fuzzy models. After initial state perturbations the model with 5
fuzzy values per variable keeps oscillating, while the model with only 3 fuzzy values stops. Without initial state perturbations both models showed
oscillations with a period of approximately 24 h
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