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Abstract

Background: The automated prediction of the enzymatic functions of uncharacterized proteins is a crucial topic in
bioinformatics. Although several methods and tools have been proposed to classify enzymes, most of these studies
are limited to specific functional classes and levels of the Enzyme Commission (EC) number hierarchy. Besides, most
of the previous methods incorporated only a single input feature type, which limits the applicability to the wide
functional space. Here, we proposed a novel enzymatic function prediction tool, ECPred, based on ensemble of
machine learning classifiers.

Results: In ECPred, each EC number constituted an individual class and therefore, had an independent learning
model. Enzyme vs. non-enzyme classification is incorporated into ECPred along with a hierarchical prediction
approach exploiting the tree structure of the EC nomenclature. ECPred provides predictions for 858 EC numbers
in total including 6 main classes, 55 subclass classes, 163 sub-subclass classes and 634 substrate classes. The proposed
method is tested and compared with the state-of-the-art enzyme function prediction tools by using independent
temporal hold-out and no-Pfam datasets constructed during this study.

Conclusions: ECPred is presented both as a stand-alone and a web based tool to provide probabilistic enzymatic
function predictions (at all five levels of EC) for uncharacterized protein sequences. Also, the datasets of this study
will be a valuable resource for future benchmarking studies. ECPred is available for download, together with all of
the datasets used in this study, at: https://github.com/cansyl/ECPred. ECPred webserver can be accessed through
http://cansyl.metu.edu.tr/ECPred.html.
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Background
Nomenclature Committee of the International Union
of Biochemistry classifies enzymes according to the
reactions they catalyse. Enzyme Commission (EC)
numbers constitute an ontological system with the
purpose of defining, organizing and storing enzyme
functions in a curator friendly and machine readable
format. Each EC number is a four digit numerical
representation, four elements separated by periods

(e.g., EC 3.1.3.16 - Protein-serine/threonine phosphat-
ase), computationally stored within a unique ontology
term. Four levels of EC numbers are related to each
other in a functional hierarchy. Within the first level,
the system annotates the main enzymatic classes (i.e.,
1: oxidoreductases, 2: transferases, 3: hydrolases, 4: ly-
ases, 5: isomerases and 6: ligases). The first digit in
any EC number indicates which of the six main clas-
ses the annotated enzyme belongs to, the second digit
represents the subclass class, the third digit expresses
the sub-subclass class and the fourth digit shows the
substrate of the enzyme [1]. Currently, the EC system
is the universally accepted way of annotating the en-
zymes in biological databases.
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Automated prediction of the enzymatic functions of
uncharacterized proteins is an important topic in in
the field of bioinformatics, due to both the high costs
and the time-consuming nature of wet-lab based
functional identification procedures. The hierarchical
structure of EC nomenclature is suitable for auto-
mated function prediction. Several methods and tools
have been proposed to classify enzymes [2–25]. How-
ever, most of the studies are limited to specific func-
tional classes or to specific levels of the EC hierarchy,
and there is limited availability considering methods
that assume a top-down approach to classify all en-
zymatic levels (i.e. Level 0: enzyme or non-enzyme,
Level 1: main class, Level 2: subclass, Level 3: sub-
subclass and Level 4: substrate classes). One of the
basic problems in this field is predicting whether an
uncharacterized protein is an enzyme or not, and this
topic is not considered in many previous studies. Be-
sides, most of the previous methods incorporated only
a single input feature type, which limits the applic-
ability to the wide functional space. Furthermore,
most of these previous tools are no longer available.
Apart from the EC numbers, there are also other sys-
tems, such as the Gene Ontology (GO), an ontology
that annotate the attributes of not only enzymes but
also all other gene/protein families with molecular
functions, cellular locations and large scale biological
processes [26]. There are several automated methods
that use GO to predict the functions of proteins in-
cluding the enzymes [27–30].
In order to predict the functions of enzymes using

classification methods the input samples (i.e., proteins)
should be represented as quantitative vectors, reflect-
ing their physical, chemical and biological properties.
These representations are called feature vectors in the
machine learning terminology. The selection of the
type of representation is an important factor, which
directly affects the predictive performance. Various
types of protein feature representations have been pro-
posed in the literature, and the major ones employed
for the prediction of enzymatic functions can be cate-
gorized as homology [2, 10, 17], physicochemical prop-
erties [9], amino acid sequence-based properties [2, 3,
5, 7, 12, 14, 15, 21–25], and structural properties [6,
10, 11, 13, 18–20]. There are also a few EC number
prediction methods, which utilize the chemical struc-
tural properties of compounds that interact with the
enzymes [4, 13]. Finally, there are ensemble protein
function prediction methods that integrate multiple
types of protein feature representations at the input
level in order to exploit the advantages of each [27–
29]. The utilization of some of the feature types listed
above (e.g., 3-D structural properties) require the
characterization of proteins, which is a difficult and

expensive procedure. Thus, only a sub-group of the
proteins available in biological databases can be
employed in these methods, which reduces the cover-
age of the predictions on the functional space. The sec-
ond important factor in automated function prediction
is the employed machine learning classification algo-
rithm. The choice of algorithm, in relation to the data
at hand, affects both the predictive performance and
the computational complexity of the operation. In this
sense, traditional and conventional classifiers such as the
naïve Bayes classifier [20], k nearest neighbor classifier
(kNN) [6, 11, 22, 24, 25], support vector machines (SVM)
[5–7, 13, 14, 19, 21, 23], random forests (RF) [2, 4, 9], arti-
ficial neural networks (ANN) [3, 12], and only recently,
deep neural networks (DNN) [16, 17] have been adapted
for the problem of enzymatic function prediction. Many
of these studies left out Level 0 prediction and focused
mostly on EC Level 1. One of the most important criter-
ion to evaluate an automated prediction system is the
predictive performance. Many studies mentioned above
reported performance values assessed based on their
training accuracy (the reported rates are generally above
90 %.), which usually is not a good indicator due to the
risk of overfitting. Here, we will focus on five studies, with
which we compared the proposed method (i.e., ECPred):
ProtFun, EzyPred, EFICAz, DEEPre, and COFACTOR.
Jensen et al. [3] proposed ProtFun, one of the first

systems to perform enzyme function prediction using
ANNs. In terms of the input feature types, post-transla-
tional modifications and localization features such as
subcellular location, secondary structure and low com-
plexity regions have been used in this method. ProtFun
produces enzymatic function prediction on Level 0 and
Level 1.
Shen and Chou [22] developed a web-based tool,

EzyPred to predict the Level 0, Level 1 and Level 2 of the
EC hierarchy using a top-down approach. Functional do-
main information was used to construct pseudo position-
specific scoring matrices (Pse-PSSM) to be used as the in-
put features. The optimized evidence-theoretic k-nearest
neighbor (OET-kNN) algorithm was employed as the clas-
sifier, which was previously applied to the subcellular
localization prediction problem.
EFICAz (the new version: EFICAz2.5) [10] is a webser-

ver, which predicts EC number of protein sequences using
a combination of approaches. EFICAz2.5 combines 6
different methods including CHIEFc (i.e., Conservation-
controlled HMM Iterative procedure for Enzyme Family
classification) family and multiple PFAM based function-
ally discriminating residue (FDR) identification, CHIEFc
SIT evaluation, high-specificity multiple PROSITE pattern
identification, CHIEFc and multiple PFAM family based
SVM evaluation. EFICAz gives a complete four digit EC
number prediction for a given target sequence. EFICAz is

Dalkiran et al. BMC Bioinformatics  (2018) 19:334 Page 2 of 13



dependent on finding pre-defined domain or family signa-
tures of the query sequences.
DEEPre [17] is a sequence-based EC number predic-

tion method with a webserver, which employs deep
neural networks as its classifier. Instead of using conven-
tional types of features, DEEPre uses raw protein
sequence based on two different types of encoding, se-
quence length dependent ones such as the amino acid
sequence one-hot encoding, solvent accessibilities, sec-
ondary structures and position specific scoring matrices
(PSSM), and sequence length independent ones, such as
functional domain based encoding. Using these input
features, convolutional neural network (CNN) and re-
current neural network (RNN) based deep learning clas-
sifier has been constructed. DEEPre predicts enzymatic
functions on all levels of EC.
COFACTOR [18] is a protein function prediction web-

server, which uses structural properties of proteins to
predict Gene Ontology (GO) terms, EC numbers and
ligand-binding sites. In the COFACTOR pipeline, first,
the target protein structure is aligned with the template
library. A confidence score is then calculated, based on
both the global and local similarities between the target
structure and template structures to assign the EC
number of the most similar template enzyme to the
target protein.
The objective in ECPred is to address all of the prob-

lems listed above and to generate a straightforward
predictive method to be used in the fields of protein
science and systems biology that works both as a
web-based tool and as a stand-alone program through
the command-line interface. While composing ECPred,
a machine learning approach was pursued and multiple
binary classifiers were constructed, each correspond to
a specific enzymatic function (i.e. individual EC num-
ber). ECPred system was trained using the EC number
annotations of characterized enzymes in the Uni-
ProtKB/Swiss-Prot database [31]. We developed a
method for the construction of negative training data-
sets to reduce the number of potential false negatives
in the training datasets. Positive and negative predic-
tion score cut-off (i.e., threshold) values were individu-
ally determined for each classifier. The performance of
ECPred was tested via cross-validation and with mul-
tiple independent test datasets and compared with the
state-of-art methods in the field of enzyme classifica-
tion. Finally, we built a web based service and a
stand-alone tool by incorporating our models in a hier-
archical manner.

Implementation
System design
In ECPred, each EC number constitutes an individual
class and therefore, has an independent learning model.

This brings the necessity of a separate model training
for each EC number, with individual parameters (i.e.,
prediction score cut-offs), which are explained in
Section “Class specific positive and negative score
cut-offs”. ECPred was constructed considering an en-
semble prediction approach, where the results of 3 dif-
ferent predictors (i.e., classifiers) with different qualities
are combined. The machine learning-based predictors
of ECPred are explained in Section “Predictors of
ECPred”. The positive training dataset for an EC num-
ber is constructed using proteins that are annotated
with that EC number in the UniProtKB/Swiss-Prot
database. The negative training dataset for the same EC
number is constructed by using both the proteins that
have not been annotated with any enzymatic function
(i.e. non-enzymes) and the proteins that are annotated
with other EC numbers (i.e. proteins from different
enzymatic families). The detailed procedure of nega-
tive training dataset construction is given in Section
“Negative Training Dataset Generation Procedure”
and the finalized training and validation dataset statis-
tics are given in Section “Training and Validation
Dataset Generation Rules and Statistics”. EC numbers
which have more than 50 protein associations were
chosen for training by ECPred, for statistical power.
Totally, 858 EC classes (including 6 main class, 55
subclass, 163 sub-subclass and 634 substrate EC num-
bers), satisfied this condition, and thus trained under
the ECPred system.
ECPred first predicts whether a query sequence is an

enzyme or a non-enzyme, together with the prediction
of the main EC class (in the case that the query is pre-
dicted to be an enzyme). After deciding the main EC
class of a query, subclass, sub-subclass and substrate
classes are predicted. The flow-chart of ECPred along
with the prediction route for an example query is given
in Section “Prediction procedure”.

Predictors of ECPred
ECPred combines three independent predictors: SPMap,
BLAST-kNN and Pepstats-SVM that are based on subse-
quences, sequence similarities, and amino acid physico-
chemical features, respectively. The ensemble-based
methodology used here is explained in our previous pub-
lications, where we constructed a protein function pre-
diction tool using Gene Ontology terms [29, 32, 33]. The
training procedure of the individual predictors are briefly
explained below.

SPMap
Sarac et al. [32] developed a subsequence-based method
called Subsequence Profile Map (SPMap), to predict pro-
tein functions. SPMap consists of two main parts: subse-
quence profile map construction and feature vector
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generation. Subsequence profile map construction part
further consists of three modules: subsequence extrac-
tion module, clustering module and probabilistic profile
construction module. In the subsequence extraction
module, all possible subsequences for given length l are
extracted from the positive training dataset using the
sliding window technique. After that, the subsequences
are clustered in the clustering module, based on their
pairwise similarities. Blocks substitution matrix (BLO-
SUM62) [34] is used to calculate the similarity score be-
tween two subsequences via a simple string comparison
procedure. At a given instant of time, a subsequence is
compared with the subsequences in all existing clusters
and assigned to the cluster which gives the highest simi-
larity score. Similarity score s(x, y) between two subse-
quences is calculated as follows.

s x; yð Þ ¼
Xl

i¼1

M x ið Þ; y ið Þð Þ ð1Þ

where x(i) i s the amino acid at the ith position of the
subsequence x and M(x(i), y(i)) is the similarity score in
BLOSUM62 matrix for the ith position of x and y. After
calculating similarity score between a cluster c and a
subsequence ss, if s (c, ss) ≥ t (t denotes the similarity
score threshold), the subsequence ss is assigned to c;
otherwise a new cluster is generated. The threshold
value (t) used here is 8, the selection of which was dis-
cussed in our previous paper [32]. After all clusters are
generated, a position specific scoring matrix (PSSM) is
created for each cluster in the probabilistic profile con-
struction module. PSSMs consist of l columns and 20
rows (amino acids). The amino acid count for each pos-
ition is stored in the PSSM and the value of each matrix
element is determined by the amino acid count of the
subsequences assigned to that cluster. Subsequently,
each PSSM is converted to a probabilistic profile. Let Sc
denote the total number of subsequences in cluster c. If
Sc is less than 10% of the positive training dataset size,
that cluster is discarded; otherwise, a probabilistic profile
is generated. The reason behind this application is that
the discarded clusters’ PSSMs would only hit a few se-
quences, resulting in a scarcely populated dimension on
the feature vectors, and thus have an insignificant con-
tribution to the classification. Let the amino acid count
for the amino acid j at the ith position of the subse-
quence be shown by aacount(i, j), the probability of the
amino acid j to occur at the ith position of the subse-
quence: PPc(i, j) is then calculated as follows.

PPc i; jð Þ ¼ log
aacount þ 0:01

Sc
ð2Þ

0.01 is added to the amino acid count for each pos-
ition to avoid zero probabilities. Next, feature vectors

(each correspond to an individual query sequence) are
generated by using the subsequences of the query se-
quences and the extracted probabilistic profiles. The size
of the feature vector is the same as the number of prob-
abilistic profiles (i.e., the number of clusters). Here, we
consider the highest probability value when assigning a
query subsequence to a profile. In a more formal defin-
ition, each subsequence ss is first compared with a prob-
abilistic profile PPc and a probability is computed as:

P ssjPPcð Þ ¼
Xl

i¼1

PPc i; ss ið Þð Þ ð3Þ

The cth dimension element of the feature vector V is
then determined as follows:

V cð Þ ¼ max
ss∈E

P ssjPPcð Þ ð4Þ

where the probability value of the subsequence ss of pro-
tein E with the highest probability on PPc is assigned to
the cth element of the feature vector. After that, the ele-
ments of the feature vector are changed back to natural
logarithms (between 0 and 1), using exponential func-
tion. The same operations are applied for the proteins in
both the positive and negative datasets, and finally, a
training file is created. Support vector machines (SVM)
classifier is then used for the classification.

BLAST-kNN
In order to classify a target protein, the k-nearest neigh-
bor algorithm is used, where the similarities between the
query protein and proteins in the training dataset are
calculated using the NCBI-BLAST tool [35]. k-nearest
neighbors with the highest BLAST scores are extracted.
The output OB of BLAST-kNN, for a query protein, is
calculated as follows:

OB ¼ Sp−Sn
Sp þ Sn

ð5Þ

where Sp is the sum of the BLAST scores of pro-
teins in the k-nearest neighbors in the positive
training dataset. Similarly, Sn is the sum of scores of
the k-nearest neighbor proteins in the negative
training dataset. Note that the value of OB is be-
tween − 1 and + 1. The output is 1 if all k nearest
proteins are elements of the positive training dataset
and − 1 if all k proteins are from the negative train-
ing dataset. In BLAST-kNN, OB is directly used as
the prediction score.

Pepstats-SVM
The Pepstats tool [36] is a part of European Molecular
Biology Open Software Suite (EMBOSS), and con-
structed to extract the peptide statistics of the proteins
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(e.g., molecular weight, isoelectric point, physicochemi-
cal properties and etc.). In Pepstats, each protein is rep-
resented by a 37-dimensional vector. These features are
scaled and subsequently fed to the SVM classifier [37] as
input.
For a query protein sequence, ECPred combines the

individual prediction scores of these three predictors
(shown in Fig. 1). A 5-fold cross-validation is applied for
each method and the area under the receiver operating
characteristic curve (AUROC) is calculated for
BLAST-kNN, Pepstats-SVM and SPMap, individually.
Using these AUROC values, all three methods are com-
bined and weighted mean score for each method is cal-
culated [33]. The weight for method m where m ϵ
{BLAST-kNN; PEPSTSTATS-SVM; SPMap} is calculated
as follows;

W mð Þ ¼ R4
m

R4
BLAST−kNN þ R4

SPMap þ R4
PEPSTATS−SVM

ð6Þ

where the weight of the method m is represented by
W(m). Rm stands for AUROC value for method m. The
weights of the base predictors are calculated individually
for each EC class model. When a query protein is given
as input to ECPred, first it is run for base predictors in-
dividually (i.e., SPMap, Blast-kNN and Pepstats), each of
which produces a prediction score to associate the query
protein with the corresponding EC number. Then, these
scores are multiplied with the class-specific weights and
summed up to produce the weighted mean score, which
corresponds to the finalized prediction score for the
query protein for that EC number.
The approaches employed in each individual predictor

has both advantages and disadvantages in predicting dif-
ferent enzymatic classes. For example, GDP binding

domains of G-proteins has unique structural features
which are well conserved, thus a homology-based ap-
proach that considers the overall sequence similarity
would be effective in identifying these domains. Apart
from that, proteins which are targeted to endoplasmic
reticulum carry short signal peptides independent of
their overall structure hence a subsequence-based ap-
proach would be more appropriate for these types of
proteins. Each enzymatic function can be differentiated
by different types of classifiers; therefore, their weighted
combination achieves the best performance.

Prediction procedure
The flowchart of the method is given in Fig. 2 to-
gether with a toy example where the tool produced
the prediction EC 1.1.2.4 for the query. Given a query
protein, the algorithm starts with the prediction of
enzyme vs. non-enzyme (Level 0) together with main
class (Level 1) predictions (i.e. 1.-.-.-, 2.-.-.-, 3.-.-.-,
4.-.-.-, 5.-.-.- or 6.-.-.-). After deciding the main EC
class, subclass, sub-subclass and substrate classes of
the query protein are predicted subsequently.
The rules of producing predictions are given below:

1) Main classes (i.e. Level 0 and Level 1):
a. If only one of the main classes obtains a

prediction score over the class specific positive
cut-off value, the query protein will receive the
corresponding EC number as the prediction and
the algorithm continues with the models for the
descendants of that main class EC number;

b. if multiple classes produced higher-than-
positive-cut-off scores for the query protein, the
main class with the maximum prediction score
will be given as the prediction and the algorithm
continues with the models for the descendants
of that main class EC number;

c. if the prediction score is lower than the
pre-specified negative cut-off score for all main
EC classes, algorithm stops and the query
protein is labeled as a non-enzyme;

d. for the rest of the cases, algorithm stops as
there will be no prediction for the query
protein.

2) Subclasses, sub-subclasses, substrates (i.e., Level 2,
Level 3 and Level 4):
a. If only one of the subclasses obtains a prediction

score over the class specific positive cut-off
value, the query protein will receive the
corresponding EC number as prediction and the
algorithm continues with the models for the
descendants of the corresponding subclass EC
number (if there are any);

Fig. 1 Structure of an EC number classifier in ECPred
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b. if multiple subclasses produced higher-than-
positive-cut-off scores for the query protein,
the subclass with the maximum prediction
score will be given as the prediction and the
algorithm continues with the models for the
descendants of the corresponding subclass EC
number (if there are any);

c. if the prediction score is lower than the
subclass specific positive cut-off values for all
of the EC subclasses at that level, algorithm
stops and the query protein receives the
finalized label, which is the EC number
prediction obtained from the previous level.

Negative training dataset generation procedure
Since ECPred is composed of binary classifiers, positive
and negative datasets are required for training. There is
a basic problem in many existing studies related to the
construction of negative datasets. The conventional pro-
cedure is to simply select all of the proteins that are not
in the positive dataset as the negative dataset samples,
for that class. In our case, this conventional procedure is
translated as follows: if a protein is not annotated with a
specific EC number, that protein could be included in
the negative dataset for that EC class. However, this
approach is problematic. These conventionally generated
negative sets potentially include the proteins that

Fig. 2 Flowchart of ECPred together with the prediction route of an example query protein. Query protein (PQ) received a score that is higher
than the class specific positive cut-off value of main EC class 1.-.-.- (i.e., oxidoreductase) at Level 0–1 classification (Sm1 > Sc1); as a result, the query
is only directed to the models for the subclasses of main class 1.-.-.-. Considering the subclass prediction (Level 2), PQ received a high score
(Ss1.1 > Sc1.1) for EC 1.1.-.- (i.e., acting on the CH-OH group of donors) and further directed to the children sub-subclass EC numbers, where it
received a high score (Sss1.1.2 > Sc1.1.2) for EC 1.1.2.- (i.e., with a cytochrome as acceptor) at Level 3, and another high score (Su1.1.2.4 > Sc1.1.2.4) for EC
1.1.2.4 (i.e., D-lactate dehydrogenase - cytochrome) at the substrate level (Level 4) and received the final prediction of EC 1.1.2.4
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actually have the corresponding function, but the anno-
tation has not been yet recorded in the source database
(i.e., false negatives). Such cases may lead to confusion
for the classifier and thus may reduce the classification
performance.
In ECPred, a negative dataset is composed of two

parts: (i) samples coming from other enzyme families,
and (ii) the non-enzyme samples. In order to avoid in-
cluding ambiguous samples in the negative datasets, we
have developed a hierarchical approach to select nega-
tive training dataset instances for each EC class. Fig. 3
shows the positive and negative training dataset gener-
ation for the example EC class 1.1.-.-. Proteins annotated
with EC 1.1.-.- and its children (e.g., 1.1.1.-, 1.1.2.-, …)
are included in the positive training dataset (green
coloured boxes); whereas, proteins annotated with sib-
lings of 1.1.-.- (e.g., 1.2.-.-, 1.3.-.-, …) and children of
these siblings (e.g., 1.2.1.-, 1.3.1.-, …), and all the pro-
teins annotated with the other EC main classes together
with their respective subclasses (e.g., 2.-.-.-, 3.-.-.-, … and
their children terms) and selected non-enzymes are in-
cluded in the negative training dataset for EC 1.1.-.- (red
coloured boxes).
The selection of non-enzyme proteins for the nega-

tive training datasets required additional information.
There is no specific annotation that marks sequences
as non-enzymes in major protein resources. There-
fore, we had to assume that proteins without a docu-
mented enzymatic activity should be non-enzymes.
However, this assumption brings the abovementioned
ambiguity about whether a protein is a true negative
or a non-documented positive sample. In UniProtKB,

each protein entry has an annotation score between 1
star to 5 star. An annotation score of 5 star indicates
that the protein is well studied and reliably associated
with functional terms, while the annotation score of 1
star means that the protein only has a basic annota-
tion that is possibly missing a lot about its functional
properties. We tried to make sure that only reliable
non-enzymes are included in the negative dataset by
selecting the proteins that have an annotation score
of 4 or 5 stars and without any enzymatic function
annotation. By constructing the negative datasets with
these rules, we also tried to include a wide selection
of proteins, covering most of the negative functional
space; as well as, excluding ambiguous cases.

Training and validation dataset generation rules and
statistics
In this section, we focused on training and validation
datasets while the test datasets are described in the Re-
sults and Discussion section. Protein sequences and their
EC Number annotations are taken from UniProtKB/
Swiss-Prot (release: 2017_3). All proteins that are associ-
ated with any of the EC numbers were initially down-
loaded from the database (approximately 248,000
protein entries) and proteins that are associated with
more than one EC number (approximately 0.5% of all
enzyme entries) were discarded, since multi-functional
enzymes may be confusing for the classifiers. After that,
all annotations were propagated to the parents of the
annotated EC number, according to the EC system’s in-
heritance relationship. Finally, EC classes that are associ-
ated with at least 50 proteins were selected for the

Fig. 3 Positive and negative training dataset construction for EC class 1.1.-.-. Green colour indicates that the members of that class are used in
the positive training dataset, grey colour indicates that the members of that class are used neither in the positive training dataset, nor in the
negative training dataset and red colour indicates that the members of that class are used in the negative training dataset
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training. Totally, 858 EC classes (including 6 main EC
classes) satisfied this condition. Table 1 shows the statis-
tics of the initial datasets (second column) for each EC
main class, together with the non-enzyme proteins that
satisfied the conditions explained above. The third col-
umn indicates the number UniRef50 clusters [38] for the
protein datasets given in the preceding column. In Uni-
Ref50, sequences that are greater than or equal to 50%
similar to each other are clustered together; so that, the
value in this column indicates how diverse the enzymes
in a particular EC main class are.
Instead of directly using all of the proteins (shown

in the second column of Table 1) for system training
and validation with random separation, we chose the
representative protein entries from the corresponding
UniRef50 clusters and employed and randomly sepa-
rated this set for training and validation (90% to 10%
distribution). This way, sequences that are very simi-
lar to each other would not end up both in training
and validation datasets, which would otherwise cause
model overfitting and the overestimation of the sys-
tem performance. The final configuration of the train-
ing and validation datasets are given in Table 2. 10%
of the UniRef50 clusters were used for the positive
validation dataset and 90% was employed for the
positive training dataset. These same separation ratio
was used for the negative validation and the negative
training datasets. For each class, the enzyme part of
the negative training dataset was constructed using
the proteins from the other five main enzyme classes.
The number of proteins in the negative training data-
sets were fixed to make them equal to the number of
proteins in the positive datasets, to obtain balanced
training datasets. A similar procedure was applied to
generate the datasets of the EC numbers at the sub-
class, sub-subclass and substrate levels.

Class specific positive and negative score cut-offs
Positive and negative optimal score cut-off values were
calculated for each EC class, in order to generate binary
predictions from continuous score values. The cut-off

values were determined during the cross-validation
procedure. For any arbitrarily selected score cut-off
value, if a protein from the positive validation dataset
obtained a prediction score above the cut-off value, it
was labeled as a true positive (TP); otherwise, it was la-
beled as a false negative (FN). Furthermore, if a protein
from the negative validation dataset got a prediction
score above the score cut-off value, it was labeled as a
false positive (FP); otherwise, it was labeled as a true
negative (TN). After determining all TPs, FPs, FNs and
TNs; precision, recall and F1-score values were calcu-
lated. This procedure was repeated for all arbitrarily se-
lected score cut-off values. The cut-off value, which
provided the highest classification performance in
terms of F1-score was selected as the positive cut-off
value for that EC number class. A similar procedure
was pursued to select the negative score cut-off values.
After investigating the automatically selected negative
cut-off values for all EC number classes, we observed
that highest F1-scores were obtained for the values
around 0.3; therefore, we decided to select 0.3 as the
global negative score cut-off value for all classes. The
positive cut-off values varied between 0.5 to 0.9. The
reason behind selecting two different cut-off values for
the negative and positive predictions was to leave the
ambiguous cases without any prediction decision (i.e.
no prediction).

Results and discussion
ECPred validation performance analysis
The overall predictive performance of each EC number
class was measured on the class-specific validation
datasets, the generation of which were explained in the
Methods section. The average level specific perform-
ance results in terms of precision (i.e., TP / TP + FP),
recall (i.e., TP / TP + FN) and F1-score (i.e., the har-
monic mean of precision and recall) values are shown
in Table 3. The performance in the validation analysis
was considerably high (i.e., below 0.90 for only 11 EC

Table 1 The number of proteins and UniRef50 clusters in the
initial dataset for each main enzyme class and for non-enzymes

EC main classes # of proteins # of UniRef50 clusters

Oxidoreductases 36,577 8242

Transferases 86,163 20,133

Hydrolases 59,551 16,018

Lyases 22,368 3475

Isomerases 13,615 2883

Ligases 29,233 4429

Non-Enzyme 42,382 25,333

Table 2 The number of proteins that were used in the training
and validation of ECPred, for each main enzyme class

EC main classes Positive
Training
Dataset
Size

Negative Training
Dataset Size

Positive
Validation
Dataset
Size

Negative
Validation
Dataset
Size

Enzymesa Non-
enzymes

Oxidoreductases 7417 3709 3709 825 822

Transferases 18,119 9060 9060 2014 2012

Hydrolases 14,416 7208 7208 1602 1601

Lyases 3127 1564 1564 348 344

Isomerases 2549 1275 1275 284 282

Ligases 3986 1993 1993 443 441
aEqual number of enzymes were selected from the other EC classes
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numbers). UniRef50 cluster were employed in the valid-
ation analysis in order to separate the training and val-
idation instances from each other with at least 50%
sequence divergence; so that the results would not be
biased. However, sequence similarity was still an im-
portant factor, which might led to the overestimation of
the performance. In order to observe better estimates
of the performance of ECPred, we carried out add-
itional analyses using independent test sets, which are
explained in the following sub-sections. In general, the
validation performance results indicated that ECPred
can be a good alternative to predict the enzymatic func-
tions of fully uncharacterized proteins, where the only
available information is the amino acid sequence.

Performance comparison with the state-of-the-art tools
via independent test sets
Temporal hold-out dataset test
An independent time-separated hold-out test dataset
was constructed in order to measure the performance
of ECPred and to compare it with the existing EC
number prediction tools. This dataset consisted of 30
proteins that did not have any EC number annotation
at the time of ECPred system training (UniProtKB/
Swiss-Prot release 2017_3), but annotated with an EC
number in UniProtKB/Swiss-Prot release 2017_6; and
another 30 proteins still without an EC number anno-
tation (i.e., non-enzymes) that have an annotation
score of 5. These 60 proteins were never used in the
ECPred system training. The UniProt accession list of
the temporal hold-out test dataset proteins are given
in the ECPred repository. These proteins were fed to
ProtFun, EzyPred, EFICAz, DEEPre tools along with
ECPred, and the resulting predictions were compared
to the true EC number labels of these proteins to cal-
culate the predictive performances. All compared
methods were run in default settings, as given in both
their respective papers and web servers. Tables 4, 5, 6
and 7 display the performance results for Level 0,
Level 1, Level 2, and Level 3 EC classes, respectively.
In these tables, the best performances are highlighted
in bold fonts. In Tables 6 and 7, the state-of-the-art
prediction tools, which do not predict EC numbers at
those respective levels, are not shown. The substrate

level EC number prediction performances are not
given in a table because the compared tools produced
zero performance on this level. ECPred performed
with F1-score = 0.14, recall = 0.10 and precision = 0.21
on the substrate level. It is important to note that,
some resources consider the prediction of the sub-
strate level EC numbers unreliable [17].
There are two observations from Tables 4, 5, 6 and 7;

first of all, the predictive performance significantly de-
creases with the increasing EC levels, for all methods.
The probable reason is that, the number of training in-
stances diminishes going from generic to specific EC
numbers, which is crucial for proper predictive system
training. This is more evident for DEEPre (please refer
to Tables 6 and 7), which employs deep neural net-
works (DNN) as its classification algorithm, as DNNs
generally require higher number of training instances
compared to the conventional machine learning classi-
fiers. The second observation from Tables 4, 5, 6 and 7
is that, ECPred performed as the best classifier in most
cases and produced comparable results for the rest, in-
dicating the effectiveness of the proposed methodology
in enzyme function prediction. It was also observed
that ECPred was more robust against the problem of
low number of training instances. At Level 1 prediction,
ECPred and DEEPre performances were very close but
on the higher levels ECPred performed better. The bet-
ter performance of ECPred at high EC levels can be at-
tributed to the employed straightforward methodology,
where independent binary classifiers are used for all EC
number classes. It is also important to note that, the

Table 3 The performance results of the ECPred validation
analysis

EC Level F1-score Recall Precision

Level 0 0.96 0.96 0.96

Level 1 0.96 0.96 0.96

Level 2 0.98 0.97 0.99

Level 3 0.99 0.98 0.99

Level 4 0.99 0.99 0.99

Table 4 Temporal hold-out test enzyme – non-enzyme (Level
0) prediction performance comparison

Method F1-score Recall Precision

ProtFun 0.79 0.87 0.72

EzyPred 0.15 0.13 0.16

EFICAz 0.42 0.30 0.69

DEEPre 0.53 0.43 0.68

ECPred-wne 0.65 0.93 0.50

ECPred 0.83 0.97 0.73

Table 5 Temporal hold-out test EC main class (Level 1)
prediction performance comparison

Method F1-score Recall Precision

ProtFun 0.12 0.10 0.15

EzyPred 0.15 0.13 0.16

EFICAz 0.42 0.30 0.69

DEEPre 0.50 0.40 0.67

ECPred-wne 0.40 0.48 0.34

ECPred 0.48 0.43 0.54
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performance values of the state-of-the-art methods
given here can be significantly different from the values
given in the original publications of these methods. The
reason behind this is that, the test samples we used
here are extremely difficult cases for predictors. Most
of the enzymes in the temporal hold-out set have low
number of homologous sequences in the database of
known enzymes, which also is one of the reasons that
these proteins were not annotated as enzymes in the
source databases before. We believe our test sets reflect
the real world situation better, where automated predic-
tors are expected to annotate uncharacterized proteins
without well annotated homologs.
At this point in the study, we tested the effectiveness

of the proposed negative training dataset construction
approach. For this, the six main EC class models have
been re-trained without the incorporation of the non-
enzyme sequences in the negative training datasets. In-
stead, the negative training dataset of a main EC class
model only included enzymes from the other five main
EC classes. This variant of ECPred is called ECPred-
wne (ECPred without non enzymes). We tested the
performance of ECPred-wne using the temporal
hold-out test set. The results of this test are shown in
the Tables 4 and 5, where it is observed that the per-
formance of ECPred decreases significantly without
the involvement of the non-enzyme sequences, indicat-
ing the effectives of the negative training dataset con-
struction approach proposed here.

Classifier comparison on the temporal hold-out data-
set test In order to observe the performance of the
individual predictors incorporated in ECPred (and to
compare them with their weighted mean - the final-
ized ECPred) we carried out another test using the
temporal hold-out set, where we calculated the
predictive performance of BLAST-knn, SPMap and

Pepstats-SVM individually. As shown in Tables 8 and
9, ECPred performed as good as the best individual
predictor for the level 0 prediction (i.e.,
Pepstats-SVM). Also, ECPred performed slightly better
compared to the best individual predictor in the main
class prediction task (i.e., BLAST-knn). Pepstats-SVM
is a tool based on the physiochemical properties of
amino acids and their statistics found in the protein
sequences. Enzyme and non-enzyme classes can be
differentiated by this property, since enzymes have
preferences on certain types of functional residues
such as the polar and hydrophilic amino acids. There-
fore, Pepstats-SVM performs better in differentiating
enzymes from non-enzymes. When we consider the
main EC classes, BLAST-kNN performs better, since
there are certain motifs in the active regions of en-
zymes, which can be captured by the BLAST-kNN.
On overall, ECPred performs either as good as or bet-
ter than the individual predictors at each EC level by
calculating their weighted mean.

No domain annotation dataset test
Protein Families Database (Pfam) [39] uses functional
domain information to assign EC numbers to protein
sequences. Since structural domains are the evolution-
ary and functional units in proteins, it is logical to as-
sociate enzymatic functions (through EC numbers) to
protein domains. Sophisticated domain annotation al-
gorithms predict the presence of these domains on
uncharacterized protein sequences. This way, large-
scale automated enzyme function predictions are pro-
duced. However, there is still need for novel predictive
methods to produce enzymatic function annotations
for the proteins without any domain annotation. In
order to investigate ECPred’s ability to predict func-
tions of enzymes which don’t have domain informa-
tion, a dataset called no-Pfam test, which consists of
40 enzymes and 48 non-enzymes, was constructed.
The proteins in this dataset were not used during the
training of ECPred. The UniProt accession list of the
no-Pfam test dataset proteins are given in the ECPred
repository. These proteins were fed to EzyPred, EFI-
CAz, DEEPre tools along with ECPred, and the result-
ing predictions were compared to the true EC number
labels of these proteins to calculate the predictive

Table 6 Temporal hold-out test EC subclass class (Level 2)
prediction performance comparison

Method F1-score Recall Precision

EzyPred 0.11 0.10 0.13

EFICAz 0.11 0.07 0.33

DEEPre 0.11 0.25 0.07

ECPred 0.26 0.20 0.35

Table 7 Temporal hold-out test EC sub-subclass class (Level 3)
prediction performance comparison

Method F1-score Recall Precision

DEEPre 0.05 0.03 0.14

ECPred 0.22 0.17 0.31

Table 8 Performance comparison of the individual predictors
and ECPred for enzyme – non-enzyme (level 0) prediction

Method F1-score Recall Precision

SPMap 0.82 0.90 0.75

BLAST-kNN 0.75 0.83 0.68

Pepstats-SVM 0.83 0.97 0.73

ECPred 0.83 0.97 0.73
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performances. Tables 10, 11, 12, 13 and 14 display the
performance results for Level 0, Level 1, Level 2, Level
3 and Level 4 EC classes, respectively. In these tables,
the best performances are highlighted in bold fonts.
The results show that, ECPred can predict the enzym-
atic functions of proteins with no Pfam domain infor-
mation. On no-Pfam test set, the performance
difference between ECPred and the next best per-
former DEEPre is more evident even on Level 1 pre-
diction (please refer to Tables 5 and 9). One possible
reason is that, DEEPre uses domain annotation as one
of its input feature types; on the other hand, ECPred
only takes amino acid sequences as its input. Another
important observation here is that, ECPred performed
significantly better in Level 0 prediction, both on the
temporal hold-out test dataset and on the no-Pfam test
set. This ability is attributed to the sophisticated nega-
tive training dataset construction method proposed
here, where the negative datasets covered a high por-
tion of the functional space.

COFACTOR dataset test
COFACTOR is a protein function prediction tool that
use 3-D structural information of proteins [18, 40]. In
their article, the authors of the COFACTOR tool con-
structed an independent test dataset [18], which was
also employed in later studies with the purpose of
benchmarking [17]. This dataset is composed of PDB
ids and their corresponding amino acid sequences, in-
stead of full protein sequences, and considered to be a
difficult dataset for enzymatic function prediction. In
this experiment, ECPred was ran on the COFACTOR
test dataset, which consisted 318 samples. The same
procedure was applied to produce predictions on the
COFACTOR test dataset samples and the performance

values were calculated according to the true EC num-
ber labels. ECPred obtained 0.95, 0.87 and 0.90 in
terms of macro-precision, macro-recall and macro-F1,
respectively on the COFACTOR test dataset EC main
class (Level 1) prediction task. The detailed COFAC-
TOR test dataset results of the state-of-the-art
methods are given in Li et al. [17] together with the ex-
planation of the performance measures. ECPred out-
performed all methods under macro-precision and
macro-F1 measures. It also outperformed all methods
under macro-recall, except DEEPre, where both
methods obtained similar results. On the subclass pre-
diction task, ECPred obtained 0.92, 0.78 and 0.83
macro-precision, macro-recall and macro-F1, respect-
ively. ECPred again outperformed all the other
methods under macro-precision and macro-F1 mea-
sures in COFACTOR test dataset subclass prediction,
and produced comparable results in terms of
macro-recall [17].
Since all of the features incorporated in ECpred are

sequence-based, it can predict the functions of com-
pletely uncharacterized enzymes without any known
domain/family signatures or motifs, which is an ad-
vantage over methods that rely on existing annotation
or ocumented signatures. The results of the tests in-
dicated the effectiveness of the methodological ap-
proach used in ECPred, which is mainly intended to
be employed to help experimental researchers to plan
their further research and to aid expert curators in
protein function annotation.

Conclusions
ECPred is an automated EC number based enzymatic
function prediction method, that takes the amino acid
sequences as inputs. ECPred adopts a supervised

Table 10 No-Pfam test dataset enzyme – non-enzyme (Level 0)
prediction performance comparison

Methods F1-score Recall Precision

EzyPred 0.54 0.54 0.54

EFICAz 0.37 0.23 1.00

DEEPre 0.60 0.4 0.85

ECPred 0.85 0.82 0.89

Table 9 Performance comparison of the individual predictors
and ECPred for the main EC class (level 1) prediction

Method F1-score Recall Precision

SPMap 0.23 0.17 0.36

BLAST-kNN 0.47 0.43 0.52

Pepstats-SVM 0.26 0.20 0.35

ECPred 0.48 0.43 0.54

Table 11 No-Pfam test dataset EC main class (Level 1)
prediction performance comparison

Methods F1-score Recall Precision

EzyPred 0.42 0.39 0.46

EFICAz 0.33 0.20 1.00

DEEPre 0.52 0.38 0.82

ECPred 0.73 0.63 0.86

Table 12 No-Pfam test dataset EC subclass class (Level 2)
prediction performance comparison

Methods F1-score Recall Precision

EzyPred 0.30 0.26 0.36

EFICAz 0.33 0.20 1.00

DEEPre 0.40 0.27 0.77

ECPred 0.60 0.47 0.82

Dalkiran et al. BMC Bioinformatics  (2018) 19:334 Page 11 of 13



ensemble classification approach by incorporating 3 dif-
ferent predictors based on homology, subsequence ex-
traction and peptide physicochemical properties. We
trained independent classification models for each EC
number, which enabled the optimization of the parame-
ters according to the respective enzymatic function.
ECPred was trained and validated using the enzyme en-
tries located in the UniProtKB/Swiss-Prot database. We
rigorously tested and compared the proposed method
with the state-of-the-art EC number prediction tools by
constructing various independent test datasets and run-
ning ECPred and the other tools on them. The results
of these analyses showed that ECPred is able to predict
the enzymatic functions of uncharacterized proteins at
all five levels of EC, and ECPred’s prediction perform-
ance was better compared to the other tools, in most of
the test cases. All of the datasets employed in this
study, together with the prediction results of ECPred
are available in the ECPred repository (https://github.-
com/cansyl/ECPred/). Especially the test datasets con-
structed here (i.e., temporal hold-out and no-Pfam
datasets) will be valuable for future studies, where they
can be employed for benchmarking purposes.
ECPred was constructed as a Java based stand-alone

tool that accepts FASTA protein sequence files contain-
ing up to 20 proteins, as inputs. The output is a “tsv”
file containing the EC main class, subclass, sub-subclass
and substrate class predictions together with a confi-
dence score; alternatively, the output can be “non-e-
nzyme” or “no prediction”. The detailed information
regarding the download, installation and the usage of
ECPred is provided at https://github.com/cansyl/
ECPred/. Furthermore, an online webserver was con-
structed for ECPred to give EC number prediction for a
given sequence. The webserver is available at http://
cansyl.metu.edu.tr/ECPred.html.
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