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Abstract

Background: Identifying the interactions between proteins and long non-coding RNAs (lncRNAs) is of great
importance to decipher the functional mechanisms of lncRNAs. However, current experimental techniques for
detection of lncRNA-protein interactions are limited and inefficient. Many methods have been proposed to predict
protein-lncRNA interactions, but few studies make use of the topological information of heterogenous biological
networks associated with the lncRNAs.
Results: In this work, we propose a novel approach, PLIPCOM, using two groups of network features to detect
protein-lncRNA interactions. In particular, diffusion features and HeteSim features are extracted from protein-lncRNA
heterogenous network, and then combined to build the prediction model using the Gradient Tree Boosting (GTB)
algorithm. Our study highlights that the topological features of the heterogeneous network are crucial for predicting
protein-lncRNA interactions. The cross-validation experiments on the benchmark dataset show that PLIPCOMmethod
substantially outperformed previous state-of-the-art approaches in predicting protein-lncRNA interactions. We also
prove the robustness of the proposed method on three unbalanced data sets. Moreover, our case studies demonstrate
that our method is effective and reliable in predicting the interactions between lncRNAs and proteins.
Availability: The source code and supporting files are publicly available at: http://denglab.org/PLIPCOM/.
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Background
Long non-coding RNAs (lncRNAs) have been intensively
investigated in recent years [1, 2], and show close con-
nection to transcriptional regulation, RNA splicing, cell
cycle and disease. At present, a great majority of lncR-
NAs have been identified, but their functional annotations
verified by experiment remains very limited [3, 4]. Recent
studies have proved that the function of lncRNAs strikes
a chord with the corresponding binding-proteins [5–7].
Therefore, the binding proteins of lncRNAs are urgent
to be uncovered for better understand of the biological
functions of lncRNAs.
Although high-throughput methods for characteriza-

tion of protein-RNA interactions have been developed
[8, 9], in silicomethods are appealing for characterization
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of the lncRNAs that are less experimentally covered due
to technical challenge [10]. One common way for compu-
tationally predicting lncRNA-binding proteins is based on
protein sequence and structural information. For example,
Muppirala et al. [11] developed a computational approach
to predict lncRNA-protein interactions by using the 3-mer
and 4-mer conjoint triad features from amino acid and
nucleotide sequences to train a prediction models. Wang
et al. [12] used the same data set byMuppirala et al. [11] to
develop another predictor based on Naive Bayes (NB) and
Extended Naive Bayes (ENB). Recently, Lu et al. [13] pre-
sented lncPro, a prediction method for Protein-lncRNA
associations using Fisher linear discriminant approach.
The features used in lncPro consist of RNA/protein sec-
ondary structures, hydrogen-bonding propensities and
Van der Waals’ propensities.
In recent years, network-based methods have widely

been used to predict lncRNA functions [14, 15]. Many
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studies have paid attention to integration of heteroge-
neous data into a single network via data fusion or
network-based inference [16–21]. The network propa-
gation algorithms, such as the Katz measure [22], ran-
dom walk with restart (RWR) [23], LPIHN [24] and
PRINCE [25, 26], have been used to investigate the
topological features of biomolecular networks in a vari-
ety of issues, such as disease-associated gene prioriti-
zation, drug repositioning and drug-target interaction
prediction. Random Walk with Restart (RWR) [23] is
widely used for prioritization of candidate nodes in a
weighted network. LPIHN [24] extends the random walk
with restart to the heterogeneous network. PRINCE
[25, 26] formulates the constraints on prioritization func-
tion that relate to its smoothness over the network
and usage of prior information. Recently, we developed
PLPIHS [27], which uses the HeteSim measure to pre-
dict protein-lncRNA interactions in the heterogeneous
network.
In this paper, we introduced an computational approach

for protein-lncRNA interaction prediction, referred to
as PLIPCOM, based on protein-lncRNA heteroge-
neous network. The heterogeneous network is con-
structed from three subnetworks, namely protein-protein
interaction network, protein-lncRNA association network
and lncRNA co-expression network. PLIPCOM incor-
porates (i) low dimensional diffusion features calculated
using random walks with restart (RWR) and a dimen-
sion reduction approach (SVD), and (ii) HeteSim features
obtained by computing the numbers of different paths
from protein to lncRNA in the heterogeneous network.
The final prediction model is based on the Gradient
Tree Boosting (GTB) algorithm using the two groups of
network features. We compared our method to both tra-
ditional classifiers and existing prediction methods on
multiple datasets, the performance comparison results
have shown that our method obtained state-of-the-art
performance in predicting protein-lncRNA interactions.
It is worth noting that we have substantially extended

and improved our preliminary work published on the
BIBM2017 conference proceeding [28]. The improve-
ments include: 1) We presented more detail of the
methodology of PLIPCOM, such as the construction of
protein-lncRNA heterogenous work, feature extraction
and gradient tree boosting algorithm; 2) We have con-
ducted extensive evaluation experiments to demonstrate
the performance of the proposedmethod onmultiple data
sets with different positive and negative sample ratios, i.e.
P:N=1:1,1:2,1:5,1:10, respectively. Particularly, we com-
pared PLIPCOM with our previous method PLPIHS [27]
on four independent test datasets, and the experimental
results show that PLIPCOM significantly outperform our
previous method; 3) To verify the effectiveness of the
diffusion and HeteSim features in predicting protein-

lncRNA interactions, we evaluated the predictive perfor-
mance of the two types of features alone and combination
of them, on the benchmark dataset; 4) Case studies have
been described to show that our method is effective and
reliable in predicting the interactions between lncRNAs
and proteins; 5) Last but not the least, we have conducted
the time complexity analysis of PLIPCOM.

Methods
Overview of PLIPCOM
As shown in Fig. 1, the PLIPCOM framework consists of
five steps. (A) Collection of three types of data sources,
including protein-protein interaction network, protein-
lncRNA associations and lncRNA co-expression network.
(B) Construction of the global heterogenous network by
merging the three networks. (C) Running random walks
with restart (RWR) in the heterogeneous network to
obtain a diffusion state for each node, which captures
its topological relevance to all other nodes (proteins and
lncRNAs) in the network. We further apply the singular
value decomposition (SVD) to conduct dimension reduc-
tion and obtained a 500-dimensional feature vector for
each node in the network. (D) The HeteSim score is a
measure to estimate the correlation of a pair of nodes rely-
ing on the paths that connects the two nodes through
a string of nodes. We computed 14 types of HeteSim
features from protein-lncRNA heterogenous network. (E)
We integrate the 1000-dimension (500-dimensional for
the protein and 500-dimensional for the lncRNA) diffu-
sion features and 14-dimension HeteSim scores to train
the protein-lncRNA interaction prediction model using
gradient tree boosting (GTB) algorithm.

Data sources
Protein-protein interaction
All human lncRNA genes and protein-coding genes were
obtained from GENCODE database [29] (Release 24),
which includes 15,941 lncRNA genes and 20,284 protein-
coding genes. We obtained the human protein-protein
interactions (PPIs) from STRING database [30] (V10.0),
which collected PPIs from high-throughput experiments,
as well as computational predictions and text mining
results. A total of 7,866,428 human PPIs are obtained.

LncRNA-lncRNA co-expression
We downloaded the expression profiles of lncRNA genes
from NONCONDE 2016 database [31], and calculated
the lncRNA co-expression similarity between each two
lncRNAs using Pearson’s correlation coefficient.

Protein-lncRNA association
We obtained the protein-lncRNA interactions fromNPin-
ter v3.0 [32], which contains 491,416 experimentally
verified interactions. In addition to the known protein-
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Fig. 1 Flowchart of PLIPCOM consists of five steps. a Protein-protein interaction, protein-lncRNA association, and lncRNA co-expression data are
extracted from multiple public databases. b Global heterogeneous network is built by integrating three subnetworks. c The diffusion scores are
calculated using random walks with restart (RWR) on the heterogeneous network, and then dimensionality reduction is conducted to obtain
low-dimensional topological features using singular value decomposition (SVD). d For each lncRNA-protein pair, the HeteSim scores are calculate by
counting the numbers of different paths linking them on the heterogeneous network. e The diffusion features and HeteSim features are combined
to train the Gradient tree boosting (GTB) classifier for predicting protein-lncRNA interactions

lncRNA interactions, we also employed the co-expression
profiles to build the protein-lncRNA association net-
work. In particular, three co-expression datasets (Hsa.c4-
1, Hsa2.c2-0 and Hsa3.c1-0) with pre-computed pair-
wise Pearson correlation coefficients from COXPRESdb
database [33] were downloaded. The three correlations
are then integrated as below:

C(l, p) = 1 −
D∏

d=1
(1 − Cd(l, p)) if Cd(l, p) > 0 (1)

where C(l, p) is the integrative correlation coefficient
between lncRNA l and protein-coding gene p, Cd(l, p)

represents the correlation coefficient between l and p in
dataset d, and D is the number of data sets. In particu-
lar, we take into account the gene pairs whose correlation
coefficient are positive, and discard those with negative
correlation coefficients, as the mutual exclusion relation-
ship indicates that protein is unlikely to interacting with
the lncRNA.
An additional paired-end RNA-seq datasest includ-

ing 19 human normal tissues are obtained from the
Human Body Map 2 project (ArrayExpress acces-
sion E-MTAB-513) and another study (GEO accession
no.GSE30554). Expression levels are calculated using
Tophat and cufflinks, and the co-expressions of protein-
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lncRNA pairs are evaluated using Pearson’s correlation
coefficients.
Finally, we built a global heterogenous network bymerg-

ing the three types of subnetworks (protein-protein inter-
action network, lncRNA-lncRNA co-expression network,
and protein-lncRNA association network). The resulting
network has 36,225 nodes (15,941 lncRNAs and 20,284
proteins) and 2,339,152 edges after removal of edges wit
similarity scores <0.5.

Low-dimensional network diffusion features
The diffusion feature is a high-dimensional vector
describing the topological properties of each node, which
captures its relevance to all other nodes in the net-
work. The network diffusion features can be calcu-
lated using random walk with restart (RWR) algorithm
[34, 35] on the global heterogenous network. RWR is
able to identify relevant or similar nodes by taking the
local and global topological structure within the net-
work into account. Let G denote the adjacency matrix
for the global network, and T represent the transition
probability matrix. Each entry Tij holding the transi-
tion probability from node i to node j is computed
as below

Tij = Gij∑
k Gik

, (2)

in which Gij is equal to 1 if node i is connected to node j
in the network, and 0 otherwise. The RWR process can be
written as follows:

Pt+1 = (1 − α)TPt + αP0, (3)

where α is the restart probability leveraging the impor-
tance of local and global topological information; Pt
is a probability distribution whose i-th element repre-
sents the probability of node i being visited at step
t. After enough number of iterations, RWR will con-
verge so that Pt holds the stable diffusion distribu-
tion. If two nodes have similar diffusion states, they
locate in similar situation within the global network
with respect to other nodes. Since there are 36,225
nodes (15,941 lncRNA nodes and 20,284 protein nodes)
in the network, each node has a 36,225-dimensional
diffusion state.
In view of excessively high-dimensional features are

prone to noise interference and time-consuming in model
training, we apply singular value decomposition (SVD)
[36–38] to reduce the dimensionality of the diffusion fea-
tures derived by RWR . Formally, the probability transition
matrix P is factorized into the form as below:

P = U�V , (4)

where the diagonal entries of � are the singular values
of P, and the columns of U and V are the left-singular
vectors and right-singular vectors of P, respectively. For a
given number n of output dimensions, we assign the top n
columns of �1/2V to xi, namely,

X = �1/2V , (5)

where X is the derived low-dimensional feature matrix
from the high-dimensional diffusion features. In this work
we set n = 500 according to previous study [38].

HeteSim score-based features
The HeteSim score is a measure to estimate the correla-
tion of a pair of nodes, and its value depends on the paths
that connects the two nodes through a string of nodes in
a graph [39]. HeteSim score can be easily extended to cal-
culate the relevance of nodes in a heterogenous network.
Denote by L and P two kinds of nodes in a heterogenous
network, (ALP)n∗m is an adjacent matrix, the normal-
ization matrix of ALP with respect to the row vector is
defined as

ALP(i, j) = ALP(i, j)∑m
k=1 ALP(i, k)

. (6)

The reachable probability matrix RP can be defined as:

RP = AP1P2AP2P3 · · ·APnPn+1 (7)

where P = (P1P2 · · ·Pn+1) represents the set of paths of
length n, and Pi belongs to any nodes in the heterogenous
network.
The detailed calculation procedure can be found in our

previous work [27]. Here we calculate the paths from a
protein to a lncRNA in the heterogenous network with .
As listed in Table 1, there are in total 14 different paths
from a protein to a lncRNA under the constraint of length
<6. So, we obtain a 14-dimensional HeteSim feature for
each node in the heterogenous network.

The gradient tree boosting classifier
Based on the derived diffusion and HeteSim features, we
build a classifier using the gradient tree boosting (GTB)
[40] algorithm to predict protein-lncRNA interactions.
Gradient tree boosting algorithm is an effective machine
learning-based method that has been successfully applied
for both classification and regression problems [41–43].
In GTB algorithm, the decision function is initialized as:

�0(χ) = arg minc
N∑

i=1
L(yi, c), (8)

where N is the number of protein-lncRNA pairs in the
training dataset. The gradient tree boosting algorithm
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Table 1 14 different paths from a protein to a lncRNA with
length less than 6 in the heterogenous network

ID name path

1 PLL protein-lncRNA-lncRNA

2 PPL protein-protein-lncRNA

3 PPLL protein-protein-lncRNA-lncRNA

4 PLPL protein-lncRNA-protein-lncRNA

5 PLLL protein-lncRNA-lncRNA-lncRNA

6 PPPL protein-protein-protein-lncRNA

7 PPPPL protein-protein-protein-protein-lncRNA

8 PLPPL protein-lncRNA-protein-protein-lncRNA

9 PPLPL protein-protein-lncRNA-protein-lncRNA

10 PLLPL protein-lncRNA-lncRNA-protein-lncRNA

11 PPPLL protein-protein-protein-lncRNA-lncRNA

12 PLPLL protein-lncRNA-protein-lncRNA-lncRNA

13 PPLLL protein-protein-lncRNA-lncRNA-lncRNA

14 PLLLL protein-lncRNA-lncRNA-lncRNA-lncRNA

repeatedly constructs m different classification trees
h(χ ,α1), h(χ ,α2), ..., h(χ ,αm), each of which is trained
based on a subset of randomly extracted samples, and then
constructs the following additive function �m(x):

�m(χ) = �m−1(χ) + βmh(χ ;αm), (9)

in which βm and αm are the weight and parameter vector
of the m-th classification tree h(χ ,αm). The loss function
L(y,�m(χ)) is defined as:

L(y,�(x)) = log(1 + exp(−y�(χ))), (10)

where y is the real class label and �(χ) is the decision
function. Both βm and αm are iteratively optimized by grid
search so that the loss function L(y,�m(χ)) is minimized.
Accordingly, we obtain the gradient tree boosting model
�̃(χ) as follows:

�̃(χ) = �M(χ) (11)

We use grid search strategy to select the optimal param-
eters of GTB with 10-fold cross-validation on the bench-
mark dataset. The optimal number of trees of the GTB
is 600, and the selected depth of the trees is 13. The rest
parameters are set to default values.

Results
Training data sets
We randomly select 2,000 protein-lncRNA interactions
from the experimentally validated protein-lncRNA asso-
ciations as positive examples, and randomly generated
2,000, 4,000, 10,000, 20,000 negative samples that are
not included in all known associations. As a result, we

build a standard training set with 2,000 positive and 2,000
negative samples, and other three unbalanced data sets
with more negative samples than positive ones. The ratios
of positive and negative samples are 1:1, 1:2, 1:5 and 1:10
in the four training sets, respectively.

Test data sets
For objective performance evaluation, an independent test
set is built by randomly selecting 2,000 protein-lncRNA
associations from the experimentally validated ones, plus
2,000 randomly generated negative samples. To be more
realistic, we accordingly construct other three unbalanced
test data sets with positive vs negative ratio 1:2, 1:5 and
1:10, respectively. Note that all the positive and negative
samples in these test sets are independently chosen and
excluded from the training set.

Performance measures
We firstly evaluate the performance of our method using
10-fold cross-validation. The training set are randomly
divided into ten set of roughly equal size subsets. Each
subset is in turn used as the validation test data, and
the remaining nine subsets are used as training data. The
cross-validation process is repeated ten times, and the
average performance measure over the ten folds are used
for performance evaluation. We use multiple measures
to evaluate the performance, including precision (PRE),
recall (REC), F-score (FSC), accuracy (ACC) and the area
under the receiver operating characteristic curve (AUC).
They are defined as below:

precision = TP
TP + FP

,

Recall = TP
TP + FN

,

Accuracy = TP + TN
TP + TN + FP + FN

,

F − Measure = 2 × Precision × Recall
Precision + Recall

,

in which TP and FP represent the numbers of correctly
predicted positive and negative samples, FP and FN rep-
resent the numbers of wrong predicted positive and neg-
ative samples, respectively. The AUC score is computed
by varying the cutoff of the predicted scores from the
smallest to the greatest value.

Predictive power of topological features
To verify the effectiveness of the diffusion and HeteSim
features in predicting protein-lncRNA interactions, we
evaluate the predictive performance of the two feature
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groups alone and combination of them (combined fea-
tures), on the standard training set. As shown in Fig. 2,
the AUC values achieved by diffusion and HeteSim fea-
tures are more than 0.97 and 0.96, respectively. The
combined features obtains even higher performance, i.e.
the AUC value reached 0.98. The experimental results
show that the two types of topological features can accu-
rately predict protein-lncRNA interactions. Moreover, the
diffusion and HeteSim features are complementary and
their combination can further improve the prediction
performance.

Benefit from gradient tree boosting algorithm
Since our method is based on the gradient tree boost-
ing algorithm, we compared our method to several widely
used classifiers, including k-nearest neighbors algorithm
(kNN) [44], random forest (RF) [45] and support vector
machine (SVM) [46], on our build standard training set
using 10-fold cross validation. The counterpart classifiers
are obtained from the python toolkits scikit-learn [47],
and trained using the 1,014-dimensional combined fea-
tures. For kNN classifier, we use 15 nearest neighbors and
leaf size of 30 points. RF builds a number of decision tree
classifiers trained on a set of randomly selected samples of
the benchmark to improve the performance. A total num-
ber of 600 tree classifiers are built in this study. For SVM,
we use radial basis function (RBF) as the kernel, and the
penalty c and gamma g parameters are optimized to 512
and 0.00195, respectively. The number of trees used in the
gradient tree boosting of PLIPCOM is set to 600, and the
maximum tree depth is set to 13.
Table 2 show the prediction performance of PLIPCOM

together with other methods. It can be found that PLIP-
COM achieved the best performance with AUC, ACC,
SEN, SPE, F1-Score and MCC of 0.982, 0.947, 0.931,
0.963, 0.946 and 0.895, respectively. The results indicate
that the GTB algorithm substantially improves the overall
performance.

Fig. 2 Performance comparison of different feature groups (Diffusion,
HeteSim and combined feature)

Table 2 Performance comparison of GTB with other machine
learning algorithms(k-NN, RF and SVM)

AUC ACC SEN SPE F1-Score MCC

KNN 0.916 0.860 0.871 0.849 0.862 0.721

RF 0.969 0.918 0.868 0.966 0.913 0.839

SVM 0.973 0.931 0.921 0.940 0.930 0.862

PLIPCOM 0.982 0.947 0.931 0.963 0.946 0.895

Performance comparison with existing methods
We compare PLIPCOM with four existing network-based
prediction methods, including RWR [23], LPIHN [24],
PRINCE [26] and PLPIHS [27], on the standard and
three unbalanced data sets using 10-fold cross-validation.
The parameter setting of PRINCE is that α=0.9, c=-15,
d=log(9999) and the iteration number is set to 10. The
parameters of LPIHN are set to their default values, i.e.
γ=0.5, β=0.5 and δ=0.3. For RWR, the restart probabil-
ity r is set to 0.5. The ROC curves are drawn using the
true positive rate (TPR) vs. false positive rate (FPR) upon
different thresholds of these prediction results. As shown
in Fig. 3, PLIPCOM obtain the best performance among
these protein-lncRNA interaction prediction methods, its
AUC values achieved on four data sets are both more than
0.98. Particularly, the performance of PLIPCOM keeps
stable on severely unbalanced data sets, while the per-
formance of other methods is significantly influenced.
For instance, on the ratio of 1:10 dataset, PLIPCOM
achieved an AUC score of 0.990, and remarkably outper-
form PLPIHS (0.929), PRINCE (0.854), LPIHN (0.849) and
RWR (0.556).

Evaluation on independent test sets
We further compare PLIPCOM with the most recent
method, PLPIHS, on four independent test sets. As other
three existing methods (PRINCE, LPIHN and RWR) are
network-based and can only predict interactions between
the nodes included in the prebuilt network, they can
not work on independent test set and thus excluded out.
In fact, PLPIHS has been shown to outperform other
three existing methods in our previous study [27] and
the aforementioned 10-fold cross validation. PLIPCOM
and PLPIHS are trained on the standard training set,
and then used to predict the protein-lncRNA interac-
tions included in four independent test sets. We observed
that PLIPCOM approach shows significant improvement
compared with PLPIHS, as shown in Fig. 4. PLIPCOM
achieved 0.977, 0.981, 0.982, 0.979 AUC score, which is
much higher than 0.879, 0.901, 0.889, 0.882 by PLPIHS,
on the independent test sets, respectively. It is worth not-
ing that PLPIHS performs worse than PLIPCOM, mainly
due to the fact that PLPIHS uses only the HeteSim features
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Fig. 3 The ROC curves of PLIPCOM in comparison with other approaches on the train data sets with different positive and negative sample ratios.
The four subfigures a b c and d represent the ROC curves on the datasets with positive vs negative sample ratio 1:1, 1:2, 1:5 and 1:10, respectively

and a SVM classifier to predict protein-lncRNA inter-
actions. The above results suggest that the two groups
of topological features derived from the heterogeneous
network are predictive of protein-lncRNA interactions,
and their combination further improve the prediction
performance.

Case studies
To further illustrate the effectiveness of the proposed
method,Wepresent three lncRNAs for case studies, includ-
ingHOTAIRM1 (ensemble ID: ENSG00000233429), XIST
(ensemble ID:ENSG00000229807) and HOTAIR (ensem-
ble ID:ENSG00000228630). The HOTAIRM1 is a long
non-coding RNA that plays a critical role in regulating
alternative splicing of endogenous target genes, and is
also a myeloid lineage-specific ncRNA in myelopoiesis
[48]. HOTAIRM1 locates between the human HOXA1
and HOXA2 genes. A multitude of evidence indicates
that HOTAIRM1 play vital role in neural differentia-
tion and is a potential diagnostic biomarkers of colorec-
tal cancer [49]. The XIST encodes an RNA molecule
that plays key roles in the choice of which X chro-
mosome remains active, and in the initial spread and
establishment of silencing on the inactive X chromosome

[50]. HOTAIR is a long intervening non-coding RNA
(lincRNA) whose expression is increased in pancreatic
tumors compared to non-tumor tissue. Knockdown of
HOTAIR (siHOTAIR) by RNA interference shows that
HOTAIR plays an important role in pancreatic cancer cell
invasion [51].
In NPInter V3.0 [32], HOTAIRM1 is associated with

71 protein-coding genes, XIST is associated with 38
protein-coding genes and HOTAIR is associated with 29
protein-coding genes. We apply PLIPCOM to predict the
interacting proteins of HOTAIRM1, XIST, HOTAIR and
the results are shown in Fig. 5. Our method correctly pre-
dicted 69 interactions of HOTAIRM1, 36 interactions of
HOTAIRM1, 28 interactions of HOTAIRM1. We further
inspected top 10 predicted proteins of HOTAIRM1, XIST,
HOTAIR as listed in Table 3. For example, GNAS protein
is an imprinted region that gives rise to noncoding RNAs,
HOTAIRM1, and other several transcripts, antisense
transcripts that includes transcription of RNA encoding
the α-subunit of the stimulatory G protein [52]. Indeed,
GNAS has been shown to underlie some important quan-
titative traits in muscle mass and domestic mammals
[53]. In addition, HOTAIRM1 can interact with SFPQ
in colorectal cancer (CRC) tissues that release PTBP2
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a b

c d

Fig. 4 The ROC curves of PLIPCOM in comparison to PLPIHS on four test data sets with different positive and negative sample ratios. The four
subfigures a b c and d represent the ROC curves on the datasets with positive vs negative sample ratio 1:1, 1:2, 1:5 and 1:10, respectively

from the SFPQ or PTBP2 complex. The interaction
between HOTAIRM1 and SFPQ is a promising diagnostic
biomarker of colorectal cancer [54]. NFKB1 is a transcrip-
tional factor that plays crucial role in the regulation of
viral and cellular gene expressions [55], and its associa-
tion withHOTAIRM1 is helpful to uncover the function of
HOTAIRM1. Take HOTAIR for another example, EZH2 is
the catalytic subunit of the polycomb repressive complex
2 (PRC2) and is involved in repressing gene expression
through methylation of histone H3 on lysine 27 (H3K27)
[56], EZH2 (predominant PRC2 complex component)
inhibition blocked cell cycle progression in glioma cells,

which is consistent with the effects elicited by HOTAIR
siRNA. Through the study of EZH2, we can understand
the biological function of HOTAIR more deeply [57].
These cases demonstrate that PLIPCOM is effective and
reliable in predicting the interactions between lncRNAs
and proteins.

Discussion and conclusion
Identification of the associations between long non-
coding RNAs (lncRNAs) and protein-coding genes is
essential for understanding the functional mechanism
of lncRNAs. In this work, we introduced a machine

a b c

Fig. 5 Prediction results of lncRNA HOTAIRM1, XIST, HOTAIR by PLIPCOM. (a), (b) and (c) show the results of HOTAIRM1, XIST, and HOTAIR,
respectively. The correctly predicted interactions are colored in green between HOTAIRM1, XIST, HOTAIR and its partner genes, while wrongly
predicted interactions are colored in red



Deng et al. BMC Bioinformatics  (2018) 19:370 Page 9 of 11

Table 3 Top 10 ranked proteins for lncRNA HOTAIRM1, XIST and
HOTAIR

lncRNA Protein Ensemble ID Score

HOTAIRM1 GNAS ENSG00000087460 0.978906

NFKB1 ENSG00000109320 0.962423

SFPQ ENSG00000116560 0.956276

PLEKHG2 ENSG00000090924 0.948234

MMP14 ENSG00000157227 0.942456

WDR73 ENSG00000177082 0.939295

HNRNPC ENSG00000092199 0.938295

RPS24 ENSG00000138326 0.937062

CPSF7 ENSG00000149532 0.936224

SRSF11 ENSG00000116754 0.935515

XIST GDF15 ENSG00000130513 0.98304

NME4 ENSG00000103202 0.965669

MOV10 ENSG00000155363 0.962258

SFPQ ENSG00000116560 0.961144

QKI ENSG00000112531 0.958775

WDR73 ENSG00000177082 0.95635

CASKIN2 ENSG00000177303 0.950001

WDR33 ENSG00000136709 0.943944

DPF2 ENSG00000133884 0.941258

AKT1 ENSG00000142208 0.940658

HOTAIR EZH2 ENSG00000106462 0.994214

PUM2 ENSG00000055917 0.993374

IGF2BP2 ENSG00000073792 0.970273

UPF1 ENSG00000005007 0.965562

PCBP1 ENSG00000169564 0.959887

WDR33 ENSG00000136709 0.947819

RTCB ENSG00000100220 0.946163

HNRNPA2B1 ENSG00000122566 0.945789

SNIP1 ENSG00000163877 0.942754

HOXD8 ENSG00000175879 0.93755

learning method, PLIPCOM, to predict protein-lncRNA
interactions. The major idea of PLIPCOM is to take
full advantage of the topological feature of lncRNA-
protein heterogenous network. We first build a protein-
lncRNA heterogeneous network by integrating a variety
of biological networks including lncRNA-lncRNA co-
expression network, protein-protein interaction network,
and protein-lncRNA association network. Two categories
of features, including diffusion features and HeteSim
features, are extracted from the global heterogeneous
network. Subsequently, we apply the gradient tree
boosting (GTB) algorithm to train the protein-lncRNA
interaction prediction model using the diffusion and

HeteSim features. Cross validations and independent tests
are conducted to evaluate the performance of our method
in comparison with other state-of-the-art approaches.
Experimental results show that PLIPCOM gains supe-
rior performance compared to other state-of-the-art
methods.
From our perspective, the superior performance of

PLIPCOM benefits from at least three aspects: (i) diffu-
sion features calculated using random walks with restart
(RWR) on the protein-lncRNA heterogenous network,
and the feature dimension is further reduced by applying
singular value decomposition (SVD); (ii) HeteSim fea-
tures obtained by computing the numbers of different
paths from protein to lncRNA in the heterogenous net-
work; and (iii) effective prediction model built by using
the gradient tree boosting (GTB) algorithm. As far as
our knowledge, we are the first to apply both diffu-
sion and HeteSim features to predict protein-lncRNA
interactions, although these two types features are reg-
ularly used in characterizing biological networks in pre-
vious works. As shown in our experimental results,
diffusion and HeteSim features are complementary and
their combination can further improve the predictive
power. Moreover, compared to other classifiers, such
as SVM and kNN, GTB used by PLIPCOM can not
only achieve high prediction accuracy, but also select
the feature of importance for identifying lncRNA-protein
interactions.
The time complexity of our method depends mainly on

the feature extraction procedure and GTB algorithm. The
diffusion feature is calculated using RWR and its time
complexity can be inferred from the equation P = (E −
(1 − α)T)−1(αE) = αQ−1E, in which E is unit matrix, T
is the transition probability matrix, α is the restart prob-
ability and Q is an n ∗ n sparse matrix (n is number of
nodes in the network). The time complexity of calculat-
ing inverse matrix Q−1 is O(n3), and can be optimized
by using Cholesky algorithm. From our previous work,
we know that the time complexity of calculating HeteSim
feature is O(kn), where k is the number of samples and
n is the number of nodes. Note that these two network
features can be calculated in parallel. Moreover, we use
the truncated SVD to reduce the diffusion feature dimen-
sion so that the time of GTB training process is greatly
reduced. As a result, the time complexity of the method-
ology of PLIPCOM is moderate, and can be scaled to large
networks.
Although PLIPCOM show effectiveness and promis-

ing predictive power, we think its performance can
be further improved by adding protein sequence and
structural information. In the near future, we will
integrate sequence and structural features to pro-
mote the prediction of potential lncRNA-protein
interactions.
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