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Abstract

Background: Glutarylation, the addition of a glutaryl group (five carbons) to a lysine residue of a protein molecule,
is an important post-translational modification and plays a regulatory role in a variety of physiological and biological
processes. As the number of experimentally identified glutarylated peptides increases, it becomes imperative
to investigate substrate motifs to enhance the study of protein glutarylation. We carried out a bioinformatics
investigation of glutarylation sites based on amino acid composition using a public database containing
information on 430 non-homologous glutarylation sites.

Results: The TwoSampleLogo analysis indicates that positively charged and polar amino acids surrounding glutarylated
sites may be associated with the specificity in substrate site of protein glutarylation. Additionally, the chi-squared test was
utilized to explore the intrinsic interdependence between two positions around glutarylation sites. Further, maximal
dependence decomposition (MDD), which consists of partitioning a large-scale dataset into subgroups with statistically
significant amino acid conservation, was used to capture motif signatures of glutarylation sites. We considered single
features, such as amino acid composition (AAC), amino acid pair composition (AAPC), and composition of
k-spaced amino acid pairs (CKSAAP), as well as the effectiveness of incorporating MDD-identified substrate motifs into
an integrated prediction model. Evaluation by five-fold cross-validation showed that AAC was most effective in
discriminating between glutarylation and non-glutarylation sites, according to support vector machine (SVM).

Conclusions: The SVYM model integrating MDD-identified substrate motifs performed well, with a sensitivity of 0.677, a
specificity of 0.619, an accuracy of 0.638, and a Matthews Correlation Coefficient (MCC) value of 0.28. Using
an independent testing dataset (46 glutarylated and 92 non-glutarylated sites) obtained from the literature,
we demonstrated that the integrated SYM model could improve the predictive performance effectively,
yielding a balanced sensitivity and specificity of 0.652 and 0.739, respectively. This integrated SVM model has
been implemented as a web-based system (MDDGlutar), which is now freely available at http://csb.cse.yzu.
edu.tw/MDDGlutar/.
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Background

Protein post-translational modifications (PTM) consist
of chemical modifications that play an important role in
many cellular processes in biology, such as regulating
the activity, localization, and protein interactions. Some
PTMs occur at amino acid side chains of a protein
molecule, generally by covalent enzymatic modification.
Most PTMs are enzymatically controlled and regulated.
Phosphorylation is the most well-known example of a
PTM, which is the attachment of a phosphoryl group to
a serine (S), threonine (T), or tyrosine (Y) residue of a
protein via protein kinases [1]. Crucial protein PTM oc-
curring at the e-amino groups of specific lysine residues
(K) have proven to be hallmarks of active chromatin,
and major regulators of gene expression, protein-protein
interactions, and protein processing and degradation.
These include 2-hydroxyisobutyrylation [2], acetylation
[3], butyrylation [4], crotonylation [5], malonylation [6],
propionylation [7] and succinylation [8]. In addition,
malonylation, succinylation, and glutarylation, which are
collectively referred to as lysine acylation, are highly dy-
namic PTMs and appear conserved across evolutionarily
related species [3].

Lysine glutarylation, which is the addition of a glutaryl
group to a lysine residue of a protein molecule, is an im-
portant posttranslational modification. It plays a crucial
role in mitochondrial functions and metabolic processes
both in eukaryotic and prokaryotic cells, such as amino
acid metabolism, fatty acid metabolism and cellular res-
piration [6]. Previous studies have indicated that the ac-
tivity of carbamoyl phosphate synthase 1 was inhibited
through protein glutarylation [9]. However, lysine acyl-
transferases (KATs) can bind specificity to its substrates
in malonylation and succinylation but lacking evidence
for glutarylation. Because of the similarities in biological
psychology, we surmised the mechanism of glutarylation
in much the same way that can be enzymatically cata-
lyzed by KATs and removed by lysine deacylases
(KDAC:s) as acylation. Moreover, owing to the labile na-
ture and low abundance of in vivo glutarylation sites,
further research is needed to clarify the characteristics of
glutarylation and its mechanisms. Therefore, there is an
urgent requirement in bioinformatics for a practical ap-
proach to investigate the potential substrate motifs of
protein glutarylation sites to be designed.

In this study, we used a similar concept as that previously
developed to predict protein functional sites using in silico
characterization of substrate specificity [10—14]. We selected
sequence-based features to discriminate between glutaryla-
tion sites and non-glutarylation sites, such as amino acid
composition (AAC), amino acid pair composition (AAPC),
and composition of k-spaced amino acid pairs (CKSAAP).
Additionally, we applied a chi-square test, as part of max-
imal dependence decomposition (MDD), to measure the
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interdependence between positions in the substrate sites.
Further, MDD can partition large-scale PTM sites data into
subgroups according to the most significant dependencies
between amino acid compositions surrounding the substrate
sites. We explored promising consensus motifs for glutaryla-
tion sites by applying MDD [15]. Subsequently, for each
subgroup containing one of the MDD-identified substrate
motifs, we built a predictive model using support vector ma-
chine (SVM). Furthermore, to assess the effectiveness of the
proposed models by five-fold cross-validation, we created an
independent test dataset by extracting experimental data
from the literature, which was completely blind to the
training dataset. To facilitate the study of protein glutaryla-
tion, we are motivated to design a public system, named
MDDGlutar (http://csb.cse.yzu.edutw/MDDGlutar/), for
the identification of glutarylation sites and their correspond-
ing motifs using experimentally verified glutarylation sites
curated from research articles.

Methods

Data collection and preprocessing

Protein Lysine Modifications Database (PLMD) [16] is a
manually curated database of experimentally verified
glutarylation sites, which contains 715 glutarylation sites
of 211 proteins. The purpose of this study was to investi-
gate potential substrate motifs based on the amino acids
surrounding glutarylated lysine residues. For this reason,
we extracted sequence fragments centered around ex-
perimentally verified glutarylation sites with a window
length of 2n + 1, such that the fragment included n up-
stream and n downstream flanking amino acids. These
sequence fragments of length 2n+ 1 amino acids cen-
tered at the glutarylated lysine residue were regarded as
the positive dataset. Alternatively, if the lysine residue
has not been annotated as a glutarylation site, the frag-
ments were regarded as the negative dataset. The deter-
mination of an appropriate window size for model
construction is difficult without the well-defined informa-
tion of motif signatures. Hence, we adopted different win-
dow lengths ranging from 11 to 25 for the preparation of
training datasets. The performance comparison among
predictive models using different window lengths was per-
formed on the basis of SVM classifier with AAC features.
As shown in Additional file 1, the cross-validation results
displayed that the model trained using 21-mer window
length could provide best performance than that using
other window lengths.

The CD-HIT software [17] is a useful tool for clustering
protein sequences based on a specified value of sequence
identity. It was used to remove homologous sequence
fragments from the positive and negative datasets, pre-
venting overestimation of the predictive performance. Be-
cause of the incomplete information available concerning
the experimentally validated glutarylation sites, analysis of
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sequence fragments could sometimes lead to a negative
sequence appearing identical to a positive sequence, po-
tentially causing false positive or false negative predictions.
Therefore, CD-HIT was applied a second time by running
cd-hit-2d across the positive and negative training datasets
with 100% sequence identity. If a sequence in the negative
set was the same as a sequence in the positive set, only
the sequence in the positive set was reserved, and the se-
quence in the negative set was discarded. After filtering
out homologous fragments with 40% sequence identity, as
shown in Table 1, the non-homologous dataset consisted
of 476 positive sequences and 1918 negative sequences.
The non-homologous dataset was divided into two parts,
training dataset and independent dataset. The training
dataset included 430 positive sequences, and a random se-
lection of approximately 1:2 of the 860 negative sequences
(approximately the ratio between the number of positive
and negative sequences). The remaining sites were used as
the testing dataset. Based on the binary classification, the
positive (glutarylation sites) and negative (non-glutaryla-
tion sites) datasets were used to build a predictive model.

However, since the parameters of the predictive model
were optimized, its predictive performance might be
overestimated because of over-fitting the training data-
set. In order to evaluate the actual performance of the
proposed models, we generated an independent dataset,
blind to the training datasets. The independent testing
dataset was generated by extracting glutarylated peptides
excluding those represented in training dataset. Similar
to the training dataset, based on a window size of 21
(n =10), the independent testing dataset contained 46
positive and 92 negative sequences (Table 1).

Investigation and encoding of sequence-based features

The research in this study focused on the analysis of
sequence-based features including amino acid compos-
ition (AAC), amino acid pair composition (AAPC), and

Table 1 Data statistics of training and testing datasets after the
removal of homologous sequences using CD-HIT program

Sequence identity ~ Number of Number of non-glutarylation sites
cut-off glutarylation

sites
Raw Data 715 4145
90% 667 3675
80% 631 3317
70% 597 3037
60% 556 2767
50% 534 2539
40% 476 1918
Training data 430 860
Independent 46 92

testing data
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composition of k-spaced amino acid pairs (CKSAAP).
To construct an SVM prediction model, fragment se-
quences must be transformed into numeric vectors
based on various features. The training dataset contains
k vectors {x;i=1,2...,k}, which represent the k se-
quence fragments of length corresponding to the speci-
fied window length. To classify sites as glutarylation and
non-glutarylation sites, a label was applied to each data
to mark the class of its corresponding protein.

Amino acid composition (AAC) is a widely-used se-
quence feature for calculating the occurring frequency
of twenty amino acids within a given sequence frag-
ment. There are 21 types of amino acids that need to
be considered for feature encoding. The vector x; rep-
resented the 20 native amino acids and 1 rare amino
acid. Some rare amino acids and non-existing “X” res-
idues were used to represent less than 21-mer frag-
ment sequences at an N- or C-terminus [18]. Given a
sequence fragment k, fi(n) represents the number of
occurrences of native amino acids, where »n stands for
one of the 20 types of native amino acids. Hence, the
composition for each of the twenty amino acids Py(n)
is computed as follows [19]:

Pk(l’l) _ fk(n) n

> k()

The AAC vector of a sequence fragment xy is then de-
fine as

=1,2,...,20.

xk = [P(1), Px(2), ..., Px(20)].

To encode the composition of each of the twenty amino
acids around the glutarylation sites, the 21-dimensional
vector & included 21 elements specifying the frequencies
of 21 amino acids normalized by the total number of amino
acids in a fragmented sequence. The composition of amino
acid pairs (AAPC) [20], transforms a sequence fragment
into a 441-dimensional vector, which includes 441 elements
specifying the numbers of occurrences of 441 amino acid
pairs divided by the total number of amino acid pairs in a
fragmented sequence [21]. CKSAAP [22] is a widely used
sequence encoding method that has been applied with great
success to many PTM prediction problems, such as O-gly-
cosylation [23], palmitoylation [24], ubiqutination [8], phos-
phorylation [25], pupylation [26], methylation [27],
N-formylation [28] and crotonylation [29]. In this study, we
also employed CKSAAP to classify lysine residues into
glutarylation and non-glutarylation sites. For example, a
pair between glycine (G) and alanine (A), separated by one
(k=1) amino acid of any type, is represented as GxA. To
represent a sequence fragment, for each k (k=1, 2 and 3),
the 441-dimensional feature vector x; needs to be com-
puted, where each component is the frequency of the
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corresponding k-spaced amino acid pair appearing in this
sequence fragment, respectively.

Capturing the intrinsic interdependence between
positions

Following previously described methods [30], a depend-
ency graph model was developed to fully capture the
intrinsic interdependence between base positions in a
DNA splice site. Hence, we used a chi-square test, as
employed in maximal dependence decomposition (MDD)
[31], to measure the interdependence between positions
in the substrate sites. To perform the dependence testing
on a pair of amino acids at the i-th and j-th positions of a
glutarylated site, we built a 21 x 21 matrix by counting,
from a sample of fragment sequences, the observed num-
ber Y,,,, of fragment sequences where the i-th amino acid
X; was m and the j-th amino acid X; was 7. The test statis-
tic used can be described as follows:

21 21
X (X, X)) ZZ Y=
m=1 n=1

where

mn

Y,.c and Y,,, are row sums and column sums of the
matrix, respectively. E,,, is the expected number of frag-
ment sequences, from a sample of fragment sequences,
in which the i-th amino acid X; is m and the j-th amino
acid Xj is n. We have selected a window size of 21-mer
fragment sequences in the training data to capture the
intrinsic interdependence between positions. The amino
acids upstream to the glutarylated lysine (Py) were
marked as position P_y to P_, whereas those down-
stream were marked as positions P,; to P, . After con-
structing, from a glutarylated site, the matrix for each
pair (P;P;) of amino acids at distinct positions of the
glutarylated site, we measured the independence for P;
and P; with the chi-square test X(P; P)). As stated previ-
ously, the proposed method can fully capture the intrin-
sic interdependence between two positions surrounding
glutarylation sites.

Detection of motif signatures by maximal dependence
decomposition

Three types of lysine modifications have been recently de-
scribed which are collectively referred to as lysine acyl-
ation: malonylation, succinylation, and glutarylation. A
previous study has reported sirtuin 5 (SIRT5) as a lysine
deacylase (KDAC) that has potent demalonylase, desucci-
nylase and deglutarylase activities, both in vitro and in
vivo [9, 32, 33]. In contrast, it is worth noting that protein
malonylation and succinylation can be enzymatically

Page 16 of 242

catalyzed by lysine acyltransferases (KATs). Despite the
lack of direct evidence that KAT enzymes bind specificity
to its substrates and results in glutarylation. Because of
the similarities in biological psychology, we surmised the
mechanism of glutarylation in much the same way that a
substrate can be glutarylated by one or more KATs.

The increasing number of experimentally identified
glutarylation peptides warrants further investigation of
substrate motifs to facilitate the study of protein. How-
ever, no tool was available so far to predict glutarylation
sites, and analysis of their respective substrate motifs re-
mains limited. Thus, the aim of this study was to explore
motif signatures of protein glutarylation based on the
amino acids surrounding substrate sites. Maximal de-
pendence decomposition (MDD) [31] was utilized to
cluster all fragment sequences into subgroups in order
to detect those motifs that were statistically conserved
among largescale sequence data. The clustering method
was performed using MDDLogo [15], which has been
demonstrated to increase the effectiveness of PTM sites
identification by dividing a group of protein sequences
into smaller subgroups before performing the computa-
tional identification of the PTM sites [21, 34—44]. In this
investigation, a chi-square test x4, A;) was used to it-
eratively evaluate the interdependence between two po-
sitions, A; and A, which are flanking the substrate site,
based on the occurrence of amino acids. Amino acids,
20 in total, were categorized into 5 groups, based on
their biochemical properties: polar, acidic, basic, hydro-
phobic, and aromatic. A contingency table describes
the frequency of the presence of each of the twenty
amino acids in positions A; and A;. The chi-square test
was defined as:

5

5
Al,A ZZ an Emn

m=1 n=1 En

where X, is the number of target sequences having
amino acids of group m in position A; and having amino
acids of group # in position A;, for each pair (4; 4;) and
i#j. E,, was determined as X"”;(XC”, where X,z =X,,1 +
v+ X5, Xepn=X1,+ ... + X5, and X stands for the total
number of target sequences. If there is a significant de-
pendence (determined as a X* value higher than 34.3,
proportional to a cutoff level of P = 0.01 with 16 degrees
of freedom) between two positions, it followed the de-
scription of Burge and Karlin [31]. After the recursive
chi-square testing, MDD algorithm can divide a group
of target sequences into subsets that capture the most
significant dependencies of positions on each other.
When executing MDDLogo, a parameter, i.e., the max-
imum cluster size, should be set. If the size of a sub-
group is less than the specified value of maximum
cluster size, the subgroup will not be divided any further.
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The clustering process of MDD shall be terminated
when all the subgroup sizes are less than the specified
value of maximum cluster size [15].

Construction of predictive model

A support vector machine (SVM) [45] is a discrimina-
tive classifier for pattern recognition and data classifi-
cation. As shown in Fig. 1, we employed a public SVM
library (LIBSVM) [46] to implement the predictive
model for distinguishing glutarylation sites from non-
glutarylation sites. Based on this binary classification of
samples as positive or negative, a kernel function
transformed the input samples into a higher dimen-
sional space. Subsequently, a hyperplane is determined
for discriminating between the two classes with max-
imal margin and minimal error by a separating hyper-
plane. As described in a number of previous works [21,
47-52], the radial basis function (RBF): defined as (S;

§;) = exp (-ylIS; - SjIIZ), is a reasonably best choice for
SVM classifier learning. The RBF kernel is determined
by a gamma (y) parameter, while the cost © parameter
controls the hyper-plane softness. The two supporting
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parameters could be optimized by a Python program
(grid.py) of LIBSVM to improve the predictive accur-
acy. In this study, LIBSVM was applied to build a pre-
dictive model for each feature, and the best feature was
selected as the training feature to construct a predict-
ive model for each MDD-clustered subgroup.

Evaluation of predictive performance

We evaluated the predictive performance of the proposed
models trained with various features using five-fold cross-
validation. First, the training data were randomly divided
into five subgroups of approximately equal size, one was
used as validation data and the remaining four subgroups
were used as training data. The five validation results were
then combined to generate a single estimation. Cross-valid-
ation evaluation improves the reliability of evaluation, be-
cause it considers all the original data, both from the
training and testing data sets, and tests each subset only
once [47]. To gauge the effective predictive performance of
the training model, the following measures were used: sen-
sitivity (Sn), specificity (Sp), accuracy (Acc) and Matthews
Correlation Coefficient (MCC):
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G _ TP
"= TP EN
o IN
P = IN + EP
TP + TN

A =
“TTPYEN+IN+ EP
(TP x TN)-(EN x EP)

MCC =
V(TP ¥ EN) x (IN + EP) x (TP + EP) x (IN + EN)

where TP, TN, FP, and FN represent the numbers of true
positives, true negatives, false positives and false negatives,
respectively. To evaluate how well the model distinguished
between glutarylation sites and non-glutarylation sites,
five-fold cross-validation was used to assess the predictive
performance of the models. To compare with other ap-
proaches, we have utilized five-fold cross validation to
evaluate the performance of the proposed method. Mean-
while, we also test the stability of predictive performance
by using other k values (ranging from 6 to 10) for k-fold
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cross validation. The results presented in Additional file 2
indicated that the SVM model trained with AAC feature
could provide a stable performance on different k values
of k-fold cross validation. The predictive model with the
best performance in the cross-validation evaluation was
considered as a final model. Finally, an independent test
was carried out on this final model.

Results

Composition of amino acids around glutarylation sites

To explore potential consensus motifs, the frequency of
occurrence around glutarylation sites of each of the 20
amino acids was investigated based on 430 fragment
sequences using a 21-mer window length. Fig 2a indi-
cates that, at glutarylation sites, lysine (K) and arginine °
residues occur more frequently, while asparagine (N),
histidine (H), methionine (M), phenylalanine (F), and
proline (P) residues occur less frequently. Additionally,
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WebLogo [53] was utilized to compute the position-
specific amino acid composition for glutarylation sites
(Fig. 2b). However, it is difficult to compare the amino
acid composition between glutarylation and non-glu-
tarylation sites at a specific position. Thus, the Two-
SampleLogo tool [54] was employed to detect
differences in position-specific symbol compositions
between the glutarylated and non-glutarylated in-
stances. Lysine was placed in the middle of the frag-
ment sequences, and positions of the flanking amino
acids ranged from - 10 to + 10. Comparison of the 430
glutarylated sites and 860 non-glutarylated sites in Fig.
2¢ indicates that positively charged amino acids such
as lysine (K) residues had the highest ratios at position
+7, upstream on the peptide compared to the glutary-
lation site (with P<0.01). It also shows that polar
amino acids such as threonine (T) and glutamine (Q)
are slightly more abundant than expected at positions
+6 and + 9. Position - 2 was a special case, exhibiting
the highest proportion of acidic residues; namely as-
partate (D). This analysis shows that, in a sequence,
the distance between amino acid with different prop-
erties plays a vital role in distinguishing between glu-
tarylated and non-glutarylated sequences.

Performance evaluation of the trained models

To determine sequence-based features to discriminate be-
tween glutarylation sites and non-glutarylation sites, SVM
models were built using various sequence-based features,
including AAC, AAPC and CKSAAP. Each predictive
model was evaluated using five-fold cross-validation based
on four measures: sensitivity (Sn), specificity (Sp), accur-
acy (Acc), and Matthews correlation coefficient (MCC).
As shown in Table 2, the SVM model trained with AAC
had the highest MCC, 0.22, and relatively high sensitivity,
specificity, and accuracy, with values of 0.62, 0.61, and
0.62, respectively. The SVM model trained using AAPC
with a 441-dimensional vector did not perform well, with
a sensitivity of 0.61, specificity of 0.48, accuracy of 0.53,
and MCC value of 0.09. On the other hand, the compos-
ition of 3-spaced amino acid pairs (CKSAAP) was found
to be the worst feature for predicting glutarylation sites,

Table 2 Five-fold cross validation results on SVM models trained
with various features

Training features Sensitivity Specificity Accuracy MCC

Amino Acid Composition (AAC) 62.0% 61.3% 61.6% 022
Amino Acid Pair Composition  61.3% 48.1% 52.5% 0.09
(AAPQ)

CKSAAPa, K=1 62.0% 51.7% 55.1% 0.13
CKSAAP?, K =2 58.8% 49.8% 52.8% 0.08
CKSAAP?, K=3 66.0% 41.2% 494% 0.07

2CKSAAP Composition of k-spaced amino acid pairs
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with a sensitivity of 0.66, specificity of 0.41, accuracy of
0.49, and MCC of 0.07.

Based on the evaluation of five-fold cross-validation,
Fig. 3 presents the comparison of ROC curves between
the predictive models trained using various features. The
results indicated that the SVM model trained using the
AAC feature yielded the best prediction outcomes. To
examine the robustness of the predictions from the
classification methods, the five-fold cross-validation
results of the models were trained by random-forest and
decision tree, which also have been provided in
Additional files 3 and 4, respectively. According to vari-
ous evaluation criteria, the SVM model trained using
AAC displayed the best overall performance among vari-
ous predictive models.

The intrinsic interdependence between positions in
substrate sites

In this study, we used a dependency graph method to
fully display the intrinsic interdependence between posi-
tions in glutarylation sites. As shown in Fig. 4, the high-
est chi-square test result was obtained between position
+4 and + 5, indicating a strong interdependence between
the two positions. As inferred from Fig. 2c, positively
charged amino acids are frequently found in the up-
stream region of glutarylated sites, at positions starting
from - 10 to - 1. A strong interdependence between po-
sitions — 10 and — 7 was also observed, according to the
upstream consensus region of glutarylation sites. Simi-
larly, we found that acidic amino acids were enriched at
position +9, and that the pair of amino acids in
positions +9 and +7 showed strong interdependence,
according to the downstream consensus region flanking
glutarylation sites. This implies that KAT enzymes
recognize substrates likely on conserved motifs of amino
acids at specific positions, in agreement with previous
biological knowledge.

MDD-identified motif signatures for glutarylated

substrate sites

In this study, MDDLogo was used to explore motif sig-
natures by dividing the positive training dataset (430
sites) into six subgroups. Each subgroup possessed the
potential substrate specificity, containing statistically
significant dependencies of amino acid composition in
specific positions. Fig. 5 provides a tree-like visualization
of MDD-clustered subgroups with statistically significant
motifs for the 430 non-homologous glutarylation sites.
On the left subtree, one motif (subgroup Groupl) was
detected based on the occurrence of basic amino acids
(K, R, and H) at position - 8, with the highest depend-
ence value among all the MDD-clustered subgroups. In
parallel, the remaining dataset (328 sites) was further ex-
amined for maximal dependency in the occurrence of



Huang et al. BVIC Bioinformatics 2019, 19(Suppl 13):384

°
o

°
Y

<)
P

AAC :0.6347
AAPC : 0.5896
AAC+AAPC : 0.6275

True positive rate (Sensitivity)

=]
N

CKSAAP_2:0.5883

CKSAAP_3:0.5861
0.0

0.0 0.2 0.4 0.6 0.8 1.0

False positive rate (1-Specificity)

— AAC —— AAPC = AAC+AAPC

CKSAAP_1 =———CKSAAP_2 =———CKSAAP_3

Fig. 3 Comparison of ROC curves among the SVM models trained
using various features based on five-fold cross-validation

amino acids at other positions. Subgroup Glutar2 (59
sites) had a similar motif of basic amino acids at position
- 6. This result was consistent with the observation in
two-sample logo, that basic and hydrophobic amino
acids are common in the upstream region of glutarylated
lysine. Additionally, subgroups Glutar3 (60 sites) had
basic amino acids at position - 10. Subgroups Glutar4
(55 sites) and Glutar5 (62 sites) had acidic amino acids
at positions +3 and+4, respectively. Finally, the
remaining 92 positive sequences formed the sixth
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subgroup (Glutar6), which contained a slight conserva-
tion of amino acids at positions + 3 and + 4.

Effectiveness of incorporating MDD-identified motifs into
the identification of glutarylation sites

In order to evaluate the predictive power of MDD-iden-
tified substrate motifs in discriminating between glutary-
lation sites and non-glutarylation sites, LIBSVM was
utilized to generate a predictive model for each
subgroup based on AAC, the most informative feature.
Based on the five-fold cross-validation, Fig. 6 provides
the comparison of ROC curves between SVM model
trained using all dataset and that trained from MDD-
clustered subgroups. In addition, Table 3 provides the
predictive sensitivity, specificity, accuracy, and MCC for
each subgroup, based on their five-fold cross-validation
performance. The values of ROC are also given in Table
3. It shows that subgroup Glutarl with K/R motif at
position —8 showed a best performance at sensitivity,
specificity, accuracy and MCC values of 0.81, 0.64, 0.69,
and 0.42, respectively. Subgroup Glutar6 had predictive
sensitivity, specificity, accuracy, and MCC values of 0.72,
0.63, 0.66, and 0.33, respectively, which is comparable to
those of subgroup Glutarl. Subgroup Glutar3, whose
motif was only slightly conserved, performed badly in
general with relatively low sensitivity, 0.60; specificity,
0.59; accuracy, 0.60; and MCC, 0.18. Overall, the six sub-
groups, which contained conserved motifs of amino
acids at specific positions, yielded promising accuracy as
well as a balanced sensitivity and specificity. To use the
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Fig. 5 A hierarchical MDD-clustering process on the detection of motif signatures from 430 glutarylated sequences
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information provided by all six motifs to identify glutary-
lation sites with substrate specificity, the six SVM
models trained from MDD-clustered subgroups were in-
corporated into an integrated SVM model. The values of
probability estimated from five SVM models according
to a specific motif signature were combined to form an
input vector for the integrated SVM classifier. As shown
in Table 3, based on five-fold cross-validation, the pre-
dictive performance of the integrated SVM model was
significantly improved as compared to that of the single
SVM model trained from all datasets without MDD
clustering. The integrated SVM model presented a sensi-
tivity, specificity, accuracy, and MCC of 0.68, 0.62, 0.64,
and 0.28, respectively. In summary, the integrated SVM
model combining all MDD-identified motif signatures
can enhance the performance of glutarylation site identi-
fication and could be implemented as a web-based pre-
diction resource.

Implementation of MDDGlutar web interface

Because experimentation is a time-consuming and labor-
intensive process, development of an effective prediction
system can aid the study of glutarylation sites. However,
no method dedicated to the characterization of potential
substrate motifs of glutarylated sites currently exists. Thus,
we were inspired to develop a user-friendly web tool,
named MDDGlutar, for the identification of glutarylation
sites with their substrate motifs. The generated SVM
model, combining all MDD-identified substrate motifs and

the AAC feature set, was adopted to implement the predic-
tion function on the website. After submitting protein se-
quences in the FASTA format, MDDGlutar returns the
prediction results, including glutarylation sites, their flank-
ing amino acids, and the corresponding substrate motif sig-
natures. A case study on mouse aspartate aminotransferase
(UniProt ID:AATM_MOUSE) was utilized to demonstrate
the effectiveness of MDDGlutar. The mouse aspartate
aminotransferase contains six verified glutarylation sites at
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Fig. 6 ROC curves of six SVM models trained from MDD-clustered
subgroups based on five-fold cross-validation
.
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Table 3 Five-fold cross-validation results for six SYM models trained from MDD-identified motifs

Dataset Number of positive data Number of negative data Sn Sp Acc MCC
All Data 430 860 62.0% 61.3% 61.6% 0.22
Glutar 1 102 204 80.6% 63.7% 69.4% 042
Glutar 2 59 120 64.5% 67.7% 66.7% 031
Glutar 3 60 120 60.0% 59.2% 59.5% 0.18
Glutar 4 55 110 66.1% 60.2% 62.1% 025
Glutar 5 62 121 758% 59.7% 65.1% 033
Glutar 6 92 185 72.1% 62.5% 65.7% 033
Combined result 430 860 67.7% 61.9% 63.8% 0.28

Lys-59, Lys-90, Lys-296, Lys-302, Lys-309, and Lys-396 [9].
As presented in Fig. 7, MDDGlutar could achieve an accur-
ate prediction at the six validated glutarylation sites, accord-
ing to the corresponding motif signatures.

Discussions

An independent test set of glutarylation sites was
also taken from PLMD [16], which consisted of 46
positive sites and 92 negative sites. It was used to
further evaluate the predictive power of the single
SVM model trained using all the training data and the
integrated SVM model trained using the six MDD-

identified motifs. As shown in Table 4, the single SVM
model yielded a sensitivity of 0.609, a specificity of 0.685,
an accuracy of 0.659, and an MCC of 0.28. Meanwhile, the
performance of the integrated SVM model achieved a sen-
sitivity of 0.652, a specificity of 0.739, an accuracy of
0.710, and an MCC of 0.38. However, the prediction abil-
ity of the proposed method, upon independent testing,
showed that it can outperform other prediction methods
at a specified level of false positive rate (1-specificity).

To further demonstrate the effectiveness of the pro-
posed model, the independent test dataset was used to
compare the model with existing prediction tool.
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Considering previously published prediction tools, only
one predictor of glutarylation sites, GlutPred [55], was
freely available. We compared our predictive perform-
ance to that of GlutPred based on independent testing
datasets. As it can be seen in Table 4, GlutPred yielded
higher specificity than our model, i.e., 0.91. However, the
high true-negative prediction of GlutPred resulted in
lower sensitivity in the identification of glutarylation
sites. It is worth noting that the comparison cloud was
controversial because the same data were used as source
for the two studies, which means that a majority of the
testing data was also present in the training data of
GlutPred. However, although the proposed method
could not provide better specificity than GlutPred, the
results of the independent testing demonstrated that the
integrated SVM model (MDDGlutar) could provide a
promising performance with balanced sensitivity and
specificity in the prediction of glutarylation sites.

Conclusion

In this study, we proposed a bioinformatics method for
characterization and identification of glutarylation sites
using substrate site specificity. The investigation using
two-sample logo revealed that the most conspicuous fea-
ture of glutarylation sites is an enrichment of positively
charged amino acids (K and R) upstream of the glutary-
lated lysine, as well as of basic amino acids at positions
- 10. Based on five-fold cross-validation, the SVM model
trained with the feature AAC achieved the highest sensi-
tivity, specificity, accuracy, and MCC. As stated previ-
ously, the main purpose of this study was to explore the
substrate motifs of glutarylation sites based on amino
acid sequences. First, we measured the interdependence
between two positions to fully capture the intrinsic
interdependence in the neighboring region of glutaryla-
tion sites. After application of MDDLogo on positive
training dataset, the glutarylated sequences were clus-
tered into six subgroups corresponding to statistically
significant motif signatures. The MDD-identified motifs
could thus be employed to develop an integrated SVM
model, significantly enhancing the predictive perform-
ance of glutarylation sites identification. An independent
testing dataset was further prepared for evaluating two
models: the integrated SVM model and the single SVM
model without MDD implementation. The independent

Table 4 Performance comparison between proposed methods
and an existing tool (GlutPred) based on independent testing
dataset

Methods TP FN TN  FP  Sn Sp Acc MCC
Single SVM 28 18 63 29 609% 685% 659% 0.28
Integrated SYM 30 16 68 24 652% 739% 71.0% 038
GlutPred 25 21 84 8 543% 913% 790% 0.50
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testing results demonstrated that the integrated model,
which combined six MDD-identified motifs, provided a
better predictive performance with balanced sensitivity
and specificity. Consequently, the proposed model was
employed to build a web-based resource, named MDDGlu-
tar, to identify glutarylation sites and their corresponding
substrate motifs.
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