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Abstract

Background: Many algorithms and programs are available for phylogenetic reconstruction of families of proteins.
Methods used widely at present use either a number of distance-based principles or character-based principles of
maximum parsimony or maximum likelihood.

Results: We developed a novel program, named PQ, for reconstructing protein and nucleic acid phylogenies
following a new character-based principle. Being tested on natural sequences PQ improves upon the results of
maximum parsimony and maximum likelihood. Working with alignments of 10 and 15 sequences, it also outperforms
the FastME program, which is based on one of the distance-based principles. Among all tested programs PQ is proved
to be the least susceptible to long branch attraction. FastME outperforms PQ when processing alignments of 45
sequences, however. We confirm a recent result that on natural sequences FastME outperforms maximum parsimony
and maximum likelihood. At the same time, both PQ and FastME are inferior to maximum parsimony and maximum
likelihood on simulated sequences. PQ is open source and available to the public via an online interface.

Conclusions: The software we developed offers an open-source alternative for phylogenetic reconstruction for
relatively small sets of proteins and nucleic acids, with up to a few tens of sequences.
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Background
Phylogenetic reconstruction based on biological sequences
is widely used in bioinformatics. Orthologous RNA and
protein sequences are used to investigate the evolutionary
relationships between taxonomic groups. Molecular biol-
ogists investigating protein families often reconstruct the
phylogeny of these families to understand the evolution-
ary origins of important protein features, such as substrate
specificity of enzymes.
Many software tools are available for phylogenetic

reconstruction, and different tools often produce differ-
ent results with the same input. At present, several types
of phylogenetic algorithms are commonly used. The max-
imum parsimony (MP) criterion [1] informs the first type
of algorithms; these algorithms rate trees using the num-
ber of mutations that are required to obtain a given set
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of sequences. The second class of algorithms are based
on probabilistic models of sequence evolution and on
the maximum likelihood (ML) criterion [2]. A specific
variant of ML algorithms are quartet puzzle (QP) algo-
rithms [3], where the criterion is not the likelihood itself,
but the number of quartets of sequences such that the
quartet topology induced by a given tree has the max-
imum likelihood among three possible topologies. The
third class of algorithms uses evolutionary distance crite-
ria. These distance-based algorithms vary widely, though
the most popular are the neighbor-joining algorithm [4]
and algorithms based on several varieties of the minimum
evolution (ME) criterion.
This paper presents a new character-based algorithm

based on a novel criterion PQ (for position-quartet) that
resembles both MP and QP, but significantly differs from
that. This new criterion is inspired by the fact that a cor-
rect tree often includes a number of branches that split
sequences into groups with or without certain characters
in certain alignment positions. It seems natural to count
such branch-compatible positions and take their number
as an optimality score for a tree.
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However, thementioned approach can hardly be applied
as is, because branches close to the edges of the tree are
more likely to produce a compatible position by chance,
compared with branches more central to the tree. Thus,
an optimization of this “position-branch” score would give
an advantage to certain tree topologies, namely those hav-
ing less “deep” branches. Moreover, in alignments of a
substantial number of sequences, completely compatible
positions are rather rare and counting a small number of
such positions is not informative.
With these considerations in mind, our method counts

branch-compatible positions, not in the whole tree, but
instead in its four-leaf subtrees, which have only one
branch each. The topology of a tree is known to be unam-
biguously determined by the topologies of its four-leaf
subtrees. At the same time, many branch-compatible posi-
tions should occur in a four-sequence alignment. Hence,
a correct tree should contain more alignment positions
that support splits of the four-leaf subtrees, relative to an
incorrect tree.
We propose the position-quartet (PQ) score, which

counts the number of pairs of an alignment position and
a quartet of sequences such that the position supports the
subtree of the quartet. In the simplest variant (which is
used for nucleic acid alignments) “support” means that
one side of the quartet contains the same letter in the posi-
tion and both letters on the other side are some other
ones. The mentioned sides of any quartet are uniquely
determined by the topology of the tree. If a position pro-
vides a “double” support (i.e., one letter in both sequences
from one side and some other letter in both sequences
from the other side of the quartet), then such position-
quartet pair counts twice.
A refined version of the PQ score relies on the fact that

in proteins, a specific feature of a clade may not be a sin-
gle amino-acid residue at a certain position, but instead
may represent a group of related residues at the position.
This fact inspired us to use scoring matrices for amino
acid residues. More precisely, a position supports a quar-
tet, if the value of the scoring matrix on two letters on
one side of the quartet is greater than on any two letters
from different sides. The measure of support is the dif-
ference between the matrix value on the supported side
and the maximum of matrix values across the split of the
quartet. Again, if both sides of a quartet are supported
by a position, the measure of support for such position-
quartet pair is the sum of two measures. The overall score
of a tree topology is the sum of these support measures
over all positions of the alignment and all quartets of the
tree.
In what follows, we report tests of our program with

the BLOSUM62 matrix. We plan to compose a matrix
designed especially for phylogenetic reconstruction with
PQ, as BLOSUM62 was designed for protein alignment.

The PQ score resembles the parsimony score, as they
are both summed over all positions of the alignment.
They differ significantly, however, because the PQ score
of a position is the sum of scores over all quartets of
input sequences, while the parsimony score is the mini-
mal number of mutations needed to produce the letters at
a position via the given tree.
The criterion used in the quartet-puzzling (QP) method

also resembles the PQ score. In the QP method, the main
score is the number of quartets such that the tree-induced
topology has the maximum likelihood among three possi-
ble quartet topologies. PQ and quartet-puzzling differ in
two main respects: first, PQ uses the sum over all posi-
tions and all quartets instead of a simple count of quartets;
second, PQ does not use the maximum likelihood crite-
rion. In addition, the program TREE-PUZZLE [5], which
is the only available realization of the quartet-puzzling
method, yields a tree as a majority-rule consensus of many
trees obtained by stepwise addition in randomized orders
of input sequences, while PQ produces the tree with the
highest found score.
Our tests show that PQ, MP, and QP yield different

results. TNT [6] (a realization of MP) and PQ both pro-
duce fully resolved trees, and in all our tests, species trees
are more distant from MP trees than they are from PQ
trees, on average. TREE-PUZZLE (a realization of QP)
usually produces unresolved trees, so it cannot be com-
pared with PQ directly. Thus to compare PQ with QP we
prepared a script that produces a resolved tree basing on
draft trees generated by TREE-PUZZLE.
To evaluate the quality of phylogenetic reconstructions

performed with PQ, we used natural instead of simu-
lated protein sequences. With the available models of
protein evolution, simulated sequence alignments differ
from natural alignments in many respects. In the RAxML
manual [7], A. Stamatakis writes, “. . . the current meth-
ods available for generation of simulated alignments are
not very realistic. . . . Typically, search algorithms execute
significantly less (factor 5–10) topological moves on sim-
ulated data until convergence as opposed to real data, i.e.
the number of successful Nearest Neighbor Interchanges
(NNIs) or subtree rearrangements is lower” and later: “. . . a
program that yields good topological Robinson-Foulds
distances on simulated data can in fact perform much
worse on real data than a program that does not perform
well on simulated data” (p. 60). Our results support the last
statement. For example, ME outperforms ML on natural
data but is inferior to ML on simulated data.
We used sequence alignments of orthologous proteins

for testing; one protein per organism. We compared the
reconstructed trees with species trees. We recognize that
the actual tree of a given set of orthologous proteins
may differ from the species tree because of horizon-
tal gene transfer (HGT) and/or the loss of paralogs, but
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these deviations should not lead to incorrect conclusions
when comparing phylogeny reconstruction methods. If a
method reconstructs the actual tree better than another
method, then the result from the first method will be
closer to the species tree, in most cases. Exceptions to this
trend are possible because reconstruction errors can by
chance partly compensate for the difference between the
real and species trees. Such exceptions, however, will pro-
duce just random noise, which is equally likely to improve
the results from bothmethods. If such exceptions are rare,
the resulting noise will not influence the comparison sig-
nificantly. If not, and thus the noise is sufficiently large,
then the comparison will yield statistically insignificant
results.
On all the sets of alignments we tested, PQ shows a sta-

tistically significant (p < 0.001) advantage over ML and
MP. This indicates that the deviations between actual for
each protein and species trees do not significantly affect
our conclusions about the results of program comparison.
Testing phylogenetic programs on natural nucleotide

sequences is a much more complicated task. We per-
formed just two small tests on extractions from align-
ments of ribosomal RNA. These tests show that PQ
performs well on nucleotide sequences, too.
We also performed tests on simulated protein and

nucleic acid alignments. On the simulations, PQ is infe-
rior to ML and MP. Also on the simulations ME and QP
have less accuracy than MP and ML, in contrast to our
tests on natural sequences. In our opinion, this primar-
ily demonstrates a low quality of simulations made with
current mutation models.

Algorithm
Tree score
Consider a multiple alignment of protein sequences and
an unrooted binary phylogenetic tree with leaves labeled
with the sequences of the alignment. We assume that
more than three sequences are present. Let us denote the
letter (i.e., an amino acid residue or the gap symbol) in
the c-th column of the i-th sequence of the alignment as
aic. Each four-element subset {i, j, k, l} of the sequences of
the alignment can be divided into two two-element sub-
sets following by the tree topology. We assume that this
division is {i, j} ∪ {k, l}, which means that the tree contains
at least one branch that separates i and j from k and l. We
also fix an amino acid substitution matrix S(a, b), such as
BLOSUM62.
The tree score Q is calculated using the following

formula:

Q =
∑

c

∑

q
Qcq

where c accounts for all columns of the alignment, q
accounts for all quartets {i, j, k, l} of sequences such that

aic, ajc, akc, alc are residues (not gaps), and Qcq (called the
position-quartet score or the PQ score) is given by the
following formula:

Qcq = max
(
S(aic, ajc) − Xcq, 0

)+max
(
S(akc, alc) − Xcq, 0

)

(1)

where

Xcq = max
(
S (aic, akc) , S (aic, alc) , S

(
ajc, akc

)
, S

(
ajc, alc

))

For example, if the matrix S(a, b) is diagonal, with all diag-
onal elements equal to 1 and other elements equal to 0
(which is a natural choice for nucleic acid sequences), then
the PQ score Qcq is equal to:

• 0 if all four letters aic, ajc, akc, alc are different;
• 0 if the intersection of two sides of the split quartet,

{aic, ajc} and {akc, alc}, is not empty (particularly if all
four letters are the same);

• 1 if aic = ajc while aic �= akc, akc �= alc, and aic �= alc;
• 1 if akc = alc while aic �= akc, aic �= ajc, and ajc �= akc;
• 2 if aic = ajc and akc = alc, but aic �= akc.

We also implemented a generalized variant of the PQ
score. It is based on the idea that a quartet that has two
pairs of similar letters of both its sides should “cost” more
than just a sum of contributions of two sides. Thus it
seems natural to multiple the score Qcq of a position-
quartet pair (c, q) by a certain number if both sides of the
quartet contribute positively to the score.
More precisely, let α be any positive number. Replace

the above formula (1) for Qcq with the following:

Qcq =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0, if S(aic, ajc) ≤ Xcq and S(akc, alc) ≤ Xcq
S(aic, ajc) − Xcq, if S(aic, ajc) > Xcq and S(akc, alc) ≤ Xcq
S(akc, alc) − Xcq, if S(aic, ajc) ≤ Xcq and S(akc, alc) > Xcq
α

(
S(aic, ajc) + S(akc, alc) − 2Xcq

)
,

if S(aic, ajc) > Xcq and S(akc, alc) > Xcq
(2)

This formula reduces to (1) if α = 1.
Our implementation of PQ includes two ways of

accounting gaps, in addition to the default variant in
which gaps are ignored. The gap symbol is treated as
an additional letter in both variants. One variant makes
no difference between gaps and other letters, which
denote amino acid residues or nucleotides, and the other
accounts for Qcq only if the quartet q in the position c
includes one gap at most.

Normalized tree score
Together with the tree score described above, the normal-
ized tree score is computed as follows. For each quartet
of input sequences q and each position c the maximum
position-quartet score Qm

cq is calculated as the maximum
value of the above-described Qcq scores among all three
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possible splits, regardless of the split realized in the tree.
We defineQm as the sum of allQm

cq. Note thatQm does not
depend on tree topology, but depends only on the input
alignment. Finally, we define the normalized tree score S
as the ratio Q/Qm. If the input alignment is fixed, then
S is proportional to Q; S simultaneously gives a more-
objective indicator for the tree-reconstruction quality
when considering various alignments. Indeed, Q depends
on the total numbers of quartets and positions, while S
is the fraction of position-quartet pairs that support the
tree and thus does not directly depend on the size of an
input alignment. Tests show that both values negatively
correlate with distance from the inferred tree to the refer-
ence tree, but for all tested sets the correlation coefficient
between S and the distance is higher in absolute value.

Search algorithms
For a given alignment, the tree with the highest score must
be identified. An exact solution requires factorial time, so
we used several standard heuristics to select a tree scored
nearly the highest. It is possible that trees with several
topologies have the same highest score, in this case, the
program returns the one found first.

Stepwise addition
This heuristic fixes the order of the input sequences. For
the first four sequences, it finds the tree with the best
score, which only requires checking three trees. Then the
fifth sequence is added, and the best tree is chosen from
the trees with five leaves such that their subtrees with
the first four leaves coincide with the tree found at the
first step. Sequences are added in this manner until a tree
corresponding to the entire set of sequences is obtained.

Multiple stepwise addition
The process of stepwise addition is repeated several times
while changing the input order of sequences with ran-
dom shuffling. The result is the best-scoring tree among
all obtained trees.

NNI hill climbing
From an initial tree, such as the result of stepwise addi-
tion, this heuristic performs all possible nearest-neighbor
interchanges (NNI) [8], one by one. If the current NNI
yields a tree with a higher score, then that tree is processed
again. This heuristic repeats until all NNIs of the current
tree yield trees with scores not greater than the score of
the current tree.

NNIMonte Carlo optimization
An initial temperature T = Tini is set, Tini = 1000 by
default, and K = 12000000. Only the ratio K/T is sig-
nificant, so we set K to be large enough to allow T to be
expressed as an integer. Then all possible NNIs are per-
formed one by one in an initial tree. If the current NNI

gives a tree with a scoreQnew that is greater than the score
Qold of the current tree, then the procedure is repeated
with the new tree. If Qnew < Qold, then the new tree is
next processed with the probability:

P = exp
(
K
T

· Qnew − Qold
Qold

)

and with the probability 1 − P the next NNI is performed
on the old tree. T is reduced by Tini/N after each step,
whereN is a parameter,N = 1000 by default. The process
stops whenT reaches zero. The tree with the highest score
among all tested is output.

SPR hill climbing
SPR hill climbing is analogous to NNI hill climbing, but
uses subtree pruning and regrafting (SPR [9]) instead
of NNI.

Materials andmethods
Compared software
We compared results of our program with implemen-
tations of four well-known algorithms for phylogenetic
reconstruction. These algorithms are: maximum parsi-
mony (MP) implemented in TNT 1.1 [6], maximum
likelihood (ML) implemented in RAxML 8.2.8 [7, 10],
balanced mimimum evolution (ME) implemented in
FastME 2.1.5 [11] and quartet puzzle (QP) implemented
in TREE-PUZZLE 5.2 [5].
For MP the parameters are as follows:

• Program: TNT
• Result: RAxML_parsimonyTree
• Search strategy: “mult”, which means several rounds

of randomized stepwise addition of sequences
followed by search using tree bisection and
reconnection (TBR).

For our ML tests, we used the PROTGAMMAAUTO
model of RAxML for amino acid sequences and
GTRGAMMA model for nucleotide sequences. All other
parameters remained set at default values.We took the so-
called “bestTree” from the output of RAxML, as the result
for comparison. The parameters for ML are as follows:

• Program: RAxML 8.2.8
• Result: RAxML_bestTree
• Amino acid substitution model:

PROTGAMMAAUTO. This involves automatic
model choice and using the gamma distribution of
rates; see [7] for details.

• Nucleotide substitution model: GTRGAMMA.
• Search strategy: starting with MP tree several SPR

steps are performed with the radius (i.e. the number
of nodes away from the original pruning position)
determined automatically by RAxML.
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For ME tests, we used FastME 2.1.5 with the default
parameters:

• Program: FastME v2.1.5.
• Amino acid substitution model for distance

calculation: LG, gamma rate variation parameter
(alpha) equals 1, do not remove sites with gaps.

• Initial tree: BIONJ (see [11] for details).
• Search strategy: NNI and SPR postprocessing.

For QP tests, we used the program TREE-PUZZLE 5.2.
This program produces an unresolved tree in general
case, which makes impossible a direct comparison with
other programs producing resolved (binary) trees. Thus
we implemented a script that takes so-called “puzzling
step trees” generated by TREE-PUZZLE and inputs it to
the program consense of PHYLIP [12] package. The lat-
ter is able to produce a resolved consensus of a number of
trees with so-called extended majority rule. The number
of puzzling steps was set to 100, other parameters were by
default:

• Program: a pipeline from TREE-PUZZLE 5.2 to
consense.

• Substitution model: auto; parameter estimates:
approximate.

• Rate of site heterogeneity: uniform.
• Approximate quartet likelihood.
• Number of puzzling steps: 100.
• List puzzling step trees.
• Consensus type: majority rule (extended)

Data sets of protein alignments
We used three sets of organisms: 25 Metazoa species, 45
Fungi species and 45 Proteobacteria species.
The fungal and proteobacterial species were selected

trying to maximize the total number of common Pfam
[13] families in their proteomes. Pfam families consist
of evolutionary domains, which are segments of proteins
whose evolution included only point mutations and small
insertions or deletions, without large rearrangements. The
evolution of these domains can be studied by analyzing
their alignments.
The metazoan species were chosen with the NCBI tax-

onomy in mind: the goal was a set of popular organisms,
with many sequenced proteins and a fully resolved taxo-
nomic tree.
For each set we found as many orthologous groups

of protein domains as was possible, using the proce-
dure described in [14]. In brief, this procedure uses the
following instructions.
From a set of species, take all Pfam families that

are present in all species. For each family, take all
sequences of protein domains of this family from all
species. Then construct pairwise global alignments of

the sequences from different species and compute the
alignment scores. Finally, find the best bidirectional hits,
which are pairs of domains from different species in
which each member of the pair has the maximum align-
ment score with the other member when compared with
all other domains of the same species. An orthologous
group is defined as a set of domains, one from each
species, such that each pair of the domains forms a best
bidirectional hit.
The organisms are listed in Additional file 1, and the

sequences of orthologous groups are in Additional file 2.
To examine the relative effectiveness of the programs

when analyzing differently sized alignments, we used
alignments of subsets of sequences from each ortholo-
gous group in addition to alignments of entire orthologous
groups. We thus tested the programs on nine alignment
datasets, as listed in Table 1.
Each metazoan orthologous group was randomly split

into 10 and 15 sequences; each fungal or proteobacterial
orthologous group was split into 15 and 30 sequences.
All the sets of sequences so obtained were aligned using
Muscle 3.8.31 [15].
An alignment was removed from the dataset if: (i)

it contains two or more identical sequences, or (ii)
the distance matrix (generated by the protdist pro-
gram of the PHYLIP package) contains negative dis-
tances, meaning that some sequences are too distant
so that the distance likelihood function has no maxi-
mum. This explains why, for example, the Metazoa-25
dataset contains fewer alignments than the Metazoa-15
dataset.

Comparison procedure for protein alignments
To compare two fully-resolved (binary) trees for the same
set of species, we use the normalized Robinson–Foulds
distance [16], which is the number of different splits in the
two trees, divided by the total number of splits in the trees.
This value remains between 0 and 1.

Table 1 Alignment datasets

Name Number of alignments

Metazoa-10 1499

Metazoa-15 1283

Fungi-15 1191

Proteobacteria-15 784

Metazoa-25 970

Fungi-30 1004

Proteobacteria-30 783

Fungi-45 827

Proteobacteria-45 780

The name of each set consists of the taxon name and the number of sequences in
each alignment of the set
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A species tree was created for each dataset. For the
25 metazoa, we designed this tree to be unique, as sup-
ported by the NCBI Taxonomy, since the 25 species were
selected to ensure this. For the 45 fungi, the species tree
is the consensus of all trees that were built by all four
of the MP, ML, ME and QP methods using all align-
ments of 45 fungal domains. This consensus was created
with the program consense of PHYLIP package using the
“Majority rule extended” option, which yields a binary
consensus tree. The same procedure was used for the 45
proteobacteria.
For the other datasets we studied, namely Metazoa-10,

Metazoa-15, Fungi-15, Fungi-30, Proteobacteria-15 and
Proteobacteria-30, species trees were obtained by restrict-
ing the corresponding complete tree to the appropriate
subset of organisms.
All three of the complete species trees are included in

Additional file 2 in Newick format and as PNG images.
For each alignment, we computed the normalized

Robinson–Foulds distances between the corresponding
species tree and the trees created by the five methods: PQ,
MP, ML, ME and QP.
For each alignment dataset, we compared the results

from PQ with results fromMP, ML, ME, and QP. To com-
pare PQ with, for instance, MP, we counted the number
of alignments for which the distance from the PQ tree to
the species tree is less than the distance from the corre-
sponding MP tree to the species tree. We also counted
the number of alignments for which the distance from the
PQ tree is greater than the distance from the MP tree.
These two numbers were then compared by the sign test.
If the p-value is less than 0.001, then one of the compared
methods is judged to be more effective for the present
dataset.
As a reference for fungal and proteobacterial align-

ments, we may use the consensus of trees created by
any one program alone with almost the same results. All
three consensus trees are close to each other. For Fungi,
the maximum normalized Robinson–Foulds distance
2/42 ≈ 0.048 occurs between the MP and ML con-
sensus trees, meaning that each tree contains two splits
of 42 that are not presented in another tree. For Pro-
teobacteria, the maximum distance 8/42 ≈ 0.19 occurs
between the ME and QP consensus trees. The compar-
ison results depend only slightly on the choice of the
reference tree. For example, comparing PQ with ML
on Proteobacteria-30, the result is 430/186 using the
overall consensus as a reference, i.e., in 430 cases the
PQ reconstruction is closer to the reference and in 186
cases it is farther. Compare these values with 428/195
using the ML consensus, 429/181 using the ME con-
sensus, 421/183 using the MP consensus, and 431/194
using the QP consensus; these are all quite close to
each other.

Datasets of nucleic acid alignments and comparison
procedure for them
To produce a good reference dataset of nucleic acid
alignments is a much more complicated task compar-
ing to the same one for protein alignments. We decided
to perform a rather small test to check the ability of
PQ to reconstruct phylogeny from a set of nucleic acid
sequences.
For 45 fungi and 45 proteobacteria that are involved

in the protein test, we downloaded their small riboso-
mal RNA from the database Silva [17]. We aligned these
two sets of RNA sequences by Muscle, then excluded
redundant sequences (there are two pairs of completely
identical rRNA sequences in the fungal set), also, we
removed all sites represented by only one sequence. The
resulting alignments consist of 43 sequences and 1853
columns for Fungi and of 45 sequences and 1666 columns
for Proteobacteria, these alignments are available in
Additional file 3. Then 100 times for Fungi and 100 times
for Proteobacteria we performed the following procedure:
random selection of a number N from the range 300
to 800; random selection of 15 species and N columns
from the alignment; composing an artificial alignment
from these rows and columns. The resulting set of 200
artificial subalignments was used for testing programs.
These subalignments and trees inferred from them are
available in Additional file 3. We used restrictions of our
species trees to corresponding species subsets as reference
trees.

Simulated alignments
Amino acid simulated alignments were extracted from
raw data to the paper [18] from Dryad Digital Repository
[19]. From there we used 500 “reference” alignments
from the folder “simulation/30taxa” in the archive
rawData.zip. According to that paper, “30-sequence
multiple sequence alignments were simulated using
Artificial Life Framework (ALF) [20]. The sequence
length was drawn from a Gamma distribution with
parameters k = 2.78, θ = 133.81. Sequences were
evolved along 30-taxa birth–death trees (with parame-
ters λ = 10μ) scaled such that the distance from root
to deepest branch was 100 point accepted mutation
(PAM) units. Characters were substituted according
to WAG substitution matrices [21], and insertions and
deletions were applied at a rate of 0.0001 event/PAM/site,
with length following a Zipfian distribution with
exponent 1.821 truncated to at most 50 characters
(default ALF parameters).”
Five hundred nucleotide 15-sequence alignments were

simulated using phylosim R package [22]. The trees for
simulations were created by rtree function from the phy-
losim package with parameters by default, which means
branch lengths uniformly distributed in interval 0 to 100
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PAM. The length of the initial sequence was chosen
uniformly from 300 to 800. Characters were substituted
according to GTR substitution model with a mutation
rate heterogenity modeled according to a Gamma dis-
tribution with the shape parameter of 4.5 and the frac-
tion of invariant sites of 0.5. Insertions and deletions
were applied at a rate of 0.0045 event/PAM/site, with
the maximum length of 4. The simulated nucleotide
alignments, the trees used for simulations, and the
trees inferred from the alignments are available in
Additional file 4.

Implementation
We implemented PQ in a command-line application writ-
ten in ANSI C. The source code, an executable file
for Windows, and a brief user manual are available at
http://mouse.belozersky.msu.ru/software/pq/.
The program takes an alignment in Fasta format as input

and outputs an unrooted tree with no branch lengths in
Newick format. Users may select a number of parameters,
among them the file with the scoring matrix, the posi-
tive integer value of α, and the optimization strategy to
be used. Further details are available in the online user
manual.
A web interface is available at http://mouse.belozersky.

msu.ru/tools/pq/. It allows the reconstruction of phy-
logeny from alignments of up to 100 sequences using
any optimization strategy except for SPR. For user conve-
nience, the web interface returns an unrooted tree without
branch lengths along with a rooted phylogram that has
the same topology. Branch lengths are computed by the
program proml in the PHYLIP package. The resulting tree
with branch lengths is rooted to its midpoint. The pro-
gram drawgram in PHYLIP is used to generate an image
of the tree.

Results and discussion
Time andmemory complexity
The time complexity of PQ with parameters by default,
i.e., using 10-fold stepwise addition followed by gradi-
ent NNI search, is C1N4L + C2N5, where N is the
number of sequences in the input alignment, L is the
number of informative (not completely conserved) sites
in the alignment, and C1 and C2 are coefficients that
do not depend on N or L. During the stepwise addi-
tion, calculation of Qcq for all alignment columns c and
all quartets q requires O(N4L) operations. After that

(N
4
)

sums over columns can be stored in memory. Stepwise
addition implies N − 4 steps of O(N4) operations each,
because each step requires testing, in average, (2N − 3)/2
branches and testing each branch requires calculations
withO(N3) quartets (notO(N4) because the fourth mem-
ber of each quartet is fixed, it is the added leaf ). During the
NNI search, each round implies testing N − 3 branches,

with calculations with O
(
N4) stored quartets for

each branch.
The memory complexity of the program is proportional

to
(N
4
)
.

Testing on fungal alignments shows that the perfor-
mance of PQ with default parameters takes for a 30-
sequence alignment in average 26 times more time and
for a 45-sequence alignment 223 times more time com-
paring with a 15-sequence alignment. This approximately
coincides with the N5 rule.
SPR requires more computation time than NNI and

the difference grows dramatically with the number of
sequences. For alignments of theMetazoa-10 dataset, SPR
takes on average of 1.3 times more time than NNI hill
climbing and 2.5 times more time than single stepwise
addition; for Proteobacteria-45, the values are 30 times
and 210 times, respectively. Theoretical considerations
give the sixth power dependence of time with respect to
the number of sequences for one round of an SPR search.
However, the average number of the rounds alsomay grow
with the sequence number and the rule of this growth is
hard to predict theoretically.
Comparing with other programs, the fastest one is

FastME. The work of FastME with one 45-sequence align-
ment takes (at our computer) in average 0.13 s. For TNT
this time is 0.23 s, for PQ (with parameters by default)
is 12 s, for TREE-PUZZLE is 100 s and for RAxML is
430 s. Among these programs, PQ has the worst time
dependence on the number of sequences. A rough extrap-
olation shows that PQ would work faster than RAxML up
to approximately 150 sequences in the input data.

Tree scores and distances to the species tree
Table 2 lists the mean normalized tree scores S, mean nor-
malized Robinson–Foulds distances to the species trees
D, and correlation coefficients: rSD between the scores
and the distances, rSL between the scores and the lengths
of alignments, and rDL between the distances and the
lengths. All data are for trees obtained through NNI
hill climbing using the BLOSUM62 scoring matrix. The
parameter α was equal to 1, and gaps were ignored. We
also tested other values of α, namely 2, 3, 5 and 10, and
we took gaps into account, but neither of those improved
accuracy, so we omit those results from this paper.
Turning to an analysis of the distances between the

reconstructed and species trees, first, notice the difference
between fungi and proteobacteria datasets. Trees recon-
structed from proteobacterial alignments are on average
much more distant from the corresponding species tree
than are trees reconstructed from fungal alignments. This
divergence may be explained by HGT, which is rather fre-
quent among bacteria. Due to HGT, the real phylogeny
of a protein family may differ slightly from the phylogeny
of the corresponding organisms, and this difference will

http://mouse.belozersky.msu.ru/software/pq/
http://mouse.belozersky.msu.ru/tools/pq/
http://mouse.belozersky.msu.ru/tools/pq/
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Table 2 Mean relative tree scores (< S >), mean normalized
Robinson – Foulds distances to the species trees (< D >) and the
correlations coefficients: between scores and distances (rSD),
between scores and alignment lengths (rSL), and between
distances and lengths (rDL)

Dataset < S > < D > rSD rSL rDL

Metazoa-10 0.9919 0.345 − 0.40 0.29 − 0.21

Metazoa-15 0.9901 0.388 − 0.44 0.37 − 0.25

Fungi-15 0.9915 0.329 − 0.42 0.38 − 0.31

Proteobacteria-15 0.9816 0.564 − 0.27 0.39 − 0.03

Metazoa-25 0.9900 0.418 − 0.39 0.42 − 0.25

Fungi-30 0.9908 0.415 − 0.43 0.45 − 0.33

Proteobacteria-30 0.9779 0.682 − 0.25 0.42 − 0.15

Fungi-45 0.9912 0.445 − 0.48 0.47 − 0.33

Proteobacteria-45 0.9762 0.739 − 0.29 0.43 − 0.18

Optimization strategy was 10 times repeated stepwise addition followed by NNI hill
climbing, the scoring matrix was BLOSUM62

increase the distances we consider. Other causes likely
contribute to this divergence as well; the lower values of
S for proteobacterial datasets hint that specific features of
proteobacterial alignments make phylogeny reconstruc-
tion more difficult. The correlation rSD between the nor-
malized scores and distances to the species trees is rather
stable for all fungal and metazoan datasets and is prac-
tically independent of the size of the alignments. For
proteobacterial datasets, the values of rSD are also stable
with respect to alignment size, but they are significantly
lower than those for eukaryotic datasets.

Optimization strategies
For all alignments, we reconstructed phylogenies with
PQ using the following six optimization heuristics: sin-
gle stepwise addition, stepwise addition with randomized
order repeated tenfold, 100-fold repeated stepwise addi-
tion, NNI hill climbing, NNI Monte Carlo search, and
SPR hill climbing. Each NNI and SPR search started
with the best-scoring result of the tenfold repeated step-
wise addition. We measured the frequency at which each
heuristic reaches the maximum tree score of the six trees,
and how frequently the heuristic produces the minimum
Robinson–Foulds distance to the species tree. The results
are listed in Tables 3 and 4.
We expected and found that more-complicated opti-

mization algorithms are required to obtain a maximum
possible tree score for alignments of more sequences.
Less expected, we found that the difference between com-
plicated and simple optimization algorithms is less for
distance to the species tree than it is for tree scores. This
likely indicates that the tree score well distinguishes a tree
that is far enough from the real tree from a tree that is

Table 3 Percents of alignments for which different search
strategies reach a maximum tree score

Dataset 1SA 10SA 100SA NNI HC NNI MC SPR

Metazoa-10 61.4% 99.3% 99.9% 99.5% 100% 99.8%

Metazoa-15 42.3% 92.2% 99.8% 97.7% 99.4% 99.1%

Fungi-15 41.6% 91.9% 99.7% 98.7% 99.7% 99.4%

Proteobacteria-15 25.5% 73.5% 97.2% 93.5% 98.2% 97.1%

Metazoa-25 22.6% 72.0% 96.6% 92.4% 95.1% 98.9%

Fungi-30 8.7% 42.3% 87.1% 85.8% 92.0% 97.8%

Proteobacteria-30 1.4% 11.4% 41.0% 57.3% 70.9% 93.4%

Fungi-45 1.6% 13.3% 48.0% 62.8% 75.1% 96.1%

Proteobacteria-45 0.0% 0.4% 4.4% 27.4% 37.2% 88.5%

1SA, 10SA and 100SA are for single, 10 times and 100 times repeated stepwise
addition, respectively; NNI HC is for NNI hill climbing, NNI MC is for NNI Monte Carlo
search

close to the real tree, but that the score often fails to
choose among two nearly correct trees. This trend resem-
bles results obtained by Takahashi and Nei [23] in tests
with MP, ML, and ME scores using simulated data.
Analysis of the results presented in Table 3 suggests

that proteobacterial alignments have some features that
make phylogenetic reconstruction harder than it is with
eukaryotic alignments. Note that the data in Table 3
is independent of the species tree and, therefore, does
not depend directly on possible HGTs. Nevertheless,
with prokaryotic alignments each search strategy reaches
the highest tree score less frequently than with eukary-
otic alignments of the same number of sequences. This
result is in accordance with the lower normalized tree
scores for proteobacterial alignments. HTG from taxons
other than Proteobacteria may make tree topology more
complicated, and this is one possible explanation of the
phenomenon.

Table 4 Percents of alignments for which different search
strategies reach minimum Robinson – Foulds distance to the
species tree

Dataset 1SA 10SA 100SA NNI HC NNI MC SPR

Metazoa-10 85.4% 91.4% 91.5% 91.3% 91.5% 91.7%

Metazoa-15 80.3% 84.8% 85.1% 85.3% 85.0% 85.3%

Fungi-15 75.1% 83.4% 83.7% 83.8% 83.5% 83.7%

Proteobacteria-15 71.0% 80.9% 81.5% 80.1% 81.0% 81.1%

Metazoa-25 70.8% 77.4% 78.5% 78.5% 78.8% 78.2%

Fungi-30 50.2% 63.3% 65.8% 65.8% 65.3% 65.5%

Proteobacteria-30 42.5% 55.6% 57.7% 53.8% 57.2% 58.5%

Fungi-45 37.7% 49.1% 49.6% 49.8% 49.7% 52.5%

Proteobacteria-45 31.8% 38.3% 39.9% 43.8% 40.9% 46.0%

Notation is the same as in Table 3
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Another feature that complicates the reconstruction lies
in the shorter average length of proteobacterial protein
domains, as compared with eukaryotic protein domains.
For example, the median alignment length in Fungi-45
is 264, and in Proteobacteria-45 is 160. The normalized
tree score correlates well with the length of the align-
ment as it is shown in Table 2. But the domain length
is not the only factor complicating reconstructions of
proteobacterial phylogeny. To check this, we extracted
alignments of medium length, namely all alignments of
the length between 161 and 263, from Fungi-45 and
Proteobacteria-45. These datasets include nearly equal
numbers of such alignments: 222 from Fungi-45 and 217
from Proteobacteria-45. For these medium-length align-
ments, the difference between Fungi and Proteobacteria is
also impressive. For example, 100-fold stepwise addition
gives a maximum score among scores that can be reached
with at least one of the heuristics for only 8, which is
3.7%, proteobacterial medium-length alignments and for
96, which is 43.2%, fungal medium-length alignments. It
means that even working with alignments of the approx-
imately same length, the simple search strategy produces
the same result as more complicated strategies much less
frequently in case of proteobacteria comparing with the
case of fungi.
The behavior of the mean normalized score confirms

this length-independent relative complexity of proteobac-
terial alignments. For fungal medium-length alignments
mean value of S is 0.9899, which is lower than that for
the total set of fungal 45-sequence alignments (0.9912)
but higher than that for proteobacteial medium-length
alignments, 0.9795.

Comparison with other programs on protein alignments
We examined the results of NNI hill climbing to compare
PQ with other software, and list the results in Tables 5, 6,
7, and 8.
Table 5 contains the average distances to species trees,

for each dataset and each tested method.

Table 5 Average Robinson – Foulds distances between the
species trees and reconstructions by the programs

Dataset PQ ME ML MP QP

Metazoa-10 0.345 0.379 0.390 0.433 0.357

Metazoa-15 0.388 0.417 0.424 0.475 0.401

Fungi-15 0.329 0.355 0.391 0.417 0.335

Proteobacteria-15 0.564 0.584 0.620 0.633 0.574

Metazoa-25 0.418 0.441 0.440 0.515 0.437

Fungi-30 0.415 0.421 0.444 0.486 0.417

Proteobacteria-30 0.682 0.697 0.718 0.747 0.693

Fungi-45 0.445 0.438 0.457 0.512 0.452

Proteobacteria-45 0.739 0.744 0.761 0.790 0.744

Table 6 Numbers of “good” reconstructions

Dataset Threshold PQ ME ML MP QP

Metazoa-10 0.143 192 145 152 111 166

Metazoa-15 0.25 297 267 253 129 262

Fungi-15 0.167 166 143 108 71 161

Proteobacteria-15 0.417 143 126 81 71 127

Metazoa-25 0.273 188 169 173 61 147

Fungi-30 0.296 206 208 182 96 185

Proteobacteria-30 0.593 186 166 127 78 163

Fungi-45 0.357 198 236 211 108 187

Proteobacteria-45 0.643 152 134 110 57 128

The column “Threshold” contains first quartils of Robinson – Foulds distances
between PQ trees and species trees, for each set. Numbers in other columns are
numbers of trees reconstructed by each method whose distance to the
corresponding species tree is less than the threshold. Numbers in PQ column are
less than 1/4 of total volumes of the sets because the distance can take only few
possible values

Table 6 contains the numbers of alignments produc-
ing relatively good results. As thresholds for this “relative
goodness” we chose the lower quartiles of RF distances
among trees built by PQ for each particular dataset, thus
these numbers for PQ are always close to 25% of the
dataset volume. The percents are not equal to 25% exactly
because RF distance takes a limited number of possible
values. For example, for Metazoa-10 the lower quartile of
RF distances between PQ trees and reference trees is 1/7,
i.e. the lowest possible nonzero value. Thus for this data
set, the percent of good results is equal to the percent of
perfect results, i.e. alignments for which the inferred phy-
logeny coincides with the real phylogeny. For 15-species
data sets, the percents of perfect results are much lower,
1.2 to 2.3% for Metazoa-15, 1.3 to 4.1% for Fungi-15 and

Table 7 Numbers of “bad” reconstructions

Dataset Threshold PQ ME ML MP QP

Metazoa-10 0.571 193 239 248 317 210

Metazoa-15 0.5 320 375 402 487 333

Fungi-15 0.417 278 336 413 486 287

Proteobacteria-15 0.667 184 213 250 297 189

Metazoa-25 0.545 203 247 248 371 213

Fungi-30 0.518 223 235 297 355 212

Proteobacteria-30 0.778 173 210 252 290 197

Fungi-45 0.524 205 202 255 344 200

Proteobacteria-45 0.833 169 172 202 262 172

The column “Threshold” contains third (higher) quartils of Robinson – Foulds
distances between PQ trees and species trees, for each set. Numbers in other
columns are numbers of trees reconstructed by each method whose distance to
the corresponding species tree is greater than the threshold. Numbers in PQ
column are less than 1/4 of total volumes of the sets because the distance can take
only few possible values
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Table 8 Pairwise comparison of PQ with ME, ML, MP, and QP

Dataset ME ML MP QP

Metazoa-10 466/240 530/261 683/189 342/255

Metazoa-15 483/291 566/300 758/184 370/270

Fungi-15 467/275 638/209 730/181 352/302

Proteobacteria-15 283/188 403/143 417/127 236/184

Metazoa-25 432/266 458/270 676/113 413/220

Fungi-30 412/390 525/313 687/186 396/360

Proteobacteria-30 353/233 430/186 530/119 338/232

Fungi-45 303/406 412/315 589/152 382/306

Proteobacteria-45 350/273 426/217 550/128 347/279

The number before “/” in each cell is the number of alignments for which PQ result
is closer to the species tree, the second number is the number of alignments for
which PQ result is more distant from the species tree. Statistically significant
(p < 0.001) results are in boldface

0 to 0.3% for Proteobacteria-15. For other datasets, there
are almost no perfect results of any program.
Table 7 contains the percents of alignments producing

relatively bad results. Thresholds are the higher quar-
tiles of RF distances among trees built by PQ for each
dataset.
Table 8 contains the results of pairwise comparisons of

PQ with ME, ML, MP, and QP, as detailed in Materials
and Methods. We conclude from Table 8 that PQ recon-
structs phylogenymore accurately than doML andMP for
all the datasets we tested. However, there is a significant
point to note about relative accuracy of PQ and ML. The
distances between ML trees and species trees correlate
with lengths of alignments stronger, comparing with dis-
tances between PQ trees and species trees. For example,
for Fungi-30 the correlation coefficient is − 0.46 for ML
trees and− 0.33 for PQ trees, for Proteobacteria-30− 0.22
and − 0.15, respectively. Regarding only alignments of
Fungi-45 with the length greater than 550, ML has a
statistically significant advantage over PQ. Namely among
64 such alignments, for 47 the ML tree is closer to the
species tree and only for 11 is more distant than the PQ
tree. For all other sets the difference between ML and
PQ for long (length > 550) alignments is not significant,
but the ratio of two numbers, “ML better” to “PQ better”
is always less for long alignments than for short ones. It
is not completely clear if this effect is due to the align-
ment length itself or is related to some features of large
proteins.
For sets with alignments of 10, 15, and 25 sequences,

PQ is more accurate than ME. The same is correct for
the Proteobacteria-30 set. For two sets, Fungi-30 and
Proteobacteria-45, the difference between PQ and ME is
not statistically significant, and for Fungi-45 ME outper-
forms PQ.

Note that the advantage of ME over both ML and MP
accords with G. Gonnet’s results from only, as far as
we know, testing phylogeny reconstruction methods on
large natural datasets [24]. The commonly held opinion
that ML is more accurate than distance-based methods
is probably based on tests with simulated alignments,
which may differ significantly from alignments of natural
sequences.
PQ is more accurate than QP for all metazoan sets, and

also for Proteobacteria-30. For other sets, the difference
between PQ and QP is not statistically significant, but PQ
is always slightly better.

Comparisonwith other programs on nucleotide alignments
Tables 9 and 10 demonstrate results of the five programs
on subalignments of rRNA sequences. All programs show
medium results for subalignments of fungal 18S rRNA
and poor results (average distance to reference is about
0.5) for proteobacterial subalignments. For both sets PQ
shows slightly better results comparing with ME and QP
and significantly better results comparing with ML and
MP. For fungal subalignments ML shows a greater depen-
dence on the subalignment length than other programs,
which is in accordance with the same phenomenon for
protein alignments.

Comparison with other programs on simulated alignments
Tables 11 and 12 demonstrate results of the five programs
on simulated alignments. On amino acid simulations, the
best results are demonstrated by ML, MP is much worse,
PQ and QP are approximately equal and slightly worse
than MP and the worst is ME.
On nucleic acid simulations, MP is the best, even better

than ML. Here ME works slightly better than PQ, while
QP becomes the worst method.

Table 9 Results of the programs on 100 extractions from the
alignment of fungal 18S rRNA

Value PQ ME ML MP QP

< D > 0.20 0.21 0.23 0.28 0.22

rDL − 0.17 − 0.21 − 0.37 − 0.25 − 0.21

Perfect 9 9 4 4 6

Bad 18 23 29 45 21

PQ is better NA 33 46 64 28

PQ is worse NA 22 26 14 16

P-value NA 0.17 0.024 8 · 10−9 0.1

The row < D > contains average Robinson – Foulds distances to the species tree,
the row rDL contains the correlation coefficient between distance and alignment
length. “Perfect” are numbers of inferred trees that coincide with the species tree.
“Bad” are numbers of inferred trees whose distance from the species tree is greater
than 0.25. “PQ is better” and “PQ is worse” are numbers of trees whose distance from
the species tree is, respectively, greater or less than the same distance of the tree
inferred by PQ, “P-value” is the p-value of comparison the least two numbers by the
sign test
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Table 10 Results of the programs on 100 extractions from the
alignment of proteobacterial 16S rRNA

Value PQ ME ML MP QP

< D > 0.38 0.43 0.51 0.50 0.40

rDL − 0.26 − 0.28 − 0.16 − 0.09 − 0.21

Good 27 21 9 12 24

Bad 14 25 45 41 18

PQ is better NA 51 76 74 34

PQ is worse NA 7 8 9 14

P-value NA 2 · 10−9 5 · 10−15 8 · 10−14 0.01

“Good” are numbers of inferred trees whose distance from the species tree is less
than 0.25. “Bad” are numbers of inferred trees whose distance from the species tree
is greater than 0.5. Other notations are the same as in Table 9

These results dramatically differ from the results on
natural sequences. It means that the used simulation
procedures produce alignments that are not realistic
and cannot be used for comparison of phylogenetic
programs. Probably the natural evolution of biological
sequences possesses some properties that are not taken
into account by standard algorithms for its computer
simulation.

Long-branch attraction
Long-branch attraction (LBA) often occurs as an artifact
in phylogenetic reconstruction [25, 26]. We attempted to
investigate the frequency of LBA using our set of fungal
alignments when reconstructing phylogeny with the four
programs we tested. From 827 alignments of 45 fungal
orthologous sequences, we selected alignments satisfy-
ing the following condition: each of five branches marked
by letters in Fig. 1 was reconstructed by at least one of
the four tested programs. Two hundred ninety five such
alignments are available in our data.

Table 11 Results of the programs on 500 simulated amino acid
alignments

Value PQ ME ML MP QP

< D > 0.144 0.165 0.111 0.133 0.136

rDL − 0.34 − 0.49 − 0.50 − 0.48 − 0.52

Perfect 15 13 65 24 19

Good 156 115 316 181 172

Bad 106 146 30 96 96

PQ is better NA 248 53 167 188

PQ is worse NA 145 347 227 198

P-value NA 2 · 10−7 5 · 10−54 0.003 0.65

The row < D > contains average Robinson – Foulds distances between inferred
trees and reference trees. “Good” are numbers of inferred trees whose distance from
the corresponding reference trees is less than 0.074. “Bad” are numbers of inferred
trees whose distance from the corresponding reference tree is greater than 0.185.
Other notations are the same as in Table 9

Table 12 Results of the programs on 500 simulated nucleotide
alignments

Value PQ ME ML MP QP

< D > 0.259 0.248 0.218 0.150 0.277

rDL − 0.12 − 0.15 − 0.31 − 0.22 − 0.15

Perfect 20 28 51 86 10

Good 177 204 253 362 146

Bad 95 85 79 17 108

PQ is better NA 118 153 58 154

PQ is worse NA 165 245 341 76

P-value NA 0.006 4 · 10−6 7 · 10−50 3 · 10−7

“Good” are numbers of inferred trees whose distance from the corresponding
reference trees is less than 0.1667. “Bad” are numbers of inferred trees whose
distance from the corresponding reference tree is greater than 0.3333. Other
notations are the same as in Tables 9 and 11

Next, each of those 295 alignments was restricted to 18
sequences. First, we removed sequences from two poorly
represented classes: Leotiomycetes and Dothidiomycetes.
Then, in each alignment, we found a sequence among Sac-
charomycetes that has the maximal mean distance from
sequences of Eurotiomycetes. The same was done for
sequences from Sordariomycetes. The species set for each
of the 295 selected orthologous groups consists of all five
Basidiomycota, all 11 Eurotiomycetes, and the two most-
rapidly evolving sequences, one from Saccharomycetes
and one from Sordariomycetes.
To evaluate the degree of unevenness of the evolu-

tion rate in our data, for each of 295 selected protein
families we computed the ratio of two values: the first
is the average distance from the “fastest” sequence of
Saccharomycetes to all sequences from Eurotiomycetes,
the second is the average distance between sequences
of these two classes. For different protein families,
this ratio is proved to be between 1.03 and 3.89, in
average 1.18.
We intended to observe the attraction of branches

adjacent to the two lone and rapidly evolving species
(Fig. 2). This effect cannot result from an erroneous
selection of orthologs, because with the selected 45-
species alignments the Pezizomycotina branch was
reconstructed.
We reconstructed phylogenies from the restricted align-

ments with PQ, ME, ML, MP, and QP. For each pro-
gram, we counted the number of trees containing an
erroneous split that separates two lone sequences from
others (as in Fig. 2b). Such a split appears in 13 PQ
trees, 17 ME trees, 20 ML trees, 20 MP trees, and 18 QP
trees.
We repeated the same test, switching Sordariomycetes

and Eurotiomycetes so that all Sordariomycetes sequences
remained, and the most-rapidly evolving sequences were
chosen from Saccharomycetes and Eurotiomycetes. The
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Fig. 1 Tree of 45 Fungi. The tree of 45 Fungi labeled with two phyla: Basidiomycota and Ascomycota, subphylum Pezizomycotina and five classes of
Ascomycota. Letters a, b, c, d, and e denote branches that must be reconstructed by at least one program for using an orthologous group while
investigating long-branch attraction. These branches are: a branch separating two phyla (a), a branch separating Pezizomycotina (c), and three
branches separating well-represented classes of Ascomycota (b, d, e)

results of this test are close to those from the first test. An
erroneous split appears in 7 PQ trees, 16 ME trees, 13 ML
trees, 12 MP trees, and 14 QP trees.
The alignments and trees are available in Additional

file 5.
To estimate the statistical significance of comparison

of two programs, say A and B, we applied the following
procedure. Let m be the number of orthologous groups
(among the 295 selected) for which A in both described
tests does not produce LBA while B at least once in the
two tests produces a tree with LBA. Then let n be the
number of orthologous groups with the opposite situa-
tion, namely A produces LBA at least once and B in both
tests does not make this error. Now comparem and nwith
the sign test.
This procedure shows that PQ outperforms other tested

methods with respect to susceptibility to LBA. Namely,
with PQ as A and other programs as B, the results of the
described procedure (m/n) are as follows:

• B=ME:m/n = 15/4, p = 0.01
• B=ML:m/n = 17/2, p = 3.6 · 10−4

• B=MP:m/n = 20/5, p = 2 · 10−3

• B=QP:m/n = 13/0, p = 1.2 · 10−4

Conclusion
PQ effectively reconstructs phylogenetic trees follow-
ing a new character-based criterion. Our tests indicate
that PQ, at least on alignments of 45 and less relatively
short sequences, is more accurate than methods that use
the maximum parsimony and maximum likelihood cri-
teria. For sets of 10 or 15 sequences, PQ outperforms
the FastME program, which is based on the minimum-
evolution criterion. A test on susceptibility to long branch
attraction shows that PQ may be the algorithm least sus-
ceptible to this problem. PQ, therefore, provides an effec-
tive alternative for phylogenetic reconstruction in some
situations.
Also, we confirmed the result of G. Gonnet that

distance-based methods (in our case FastME) outperform
maximum likelihood in accuracy on natural sequences.
This result is not supported by simulation studies that sug-
gest an unsatisfactory quality of the existing simulation
algorithms.

Availability and requirements
The datasets supporting the conclusions of this article are
included within the article and its additional files.
The described software is available online:

a b

Fig. 2 Putative long-branch attraction. a The correct tree for 18 fungal species; among Saccharomycetes and Sordariomycetes only species with the
most rapidly evolving proteins have been left. b The erroneous tree, which can be formed from long-branch attraction
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• Project name: PQ
• Project home page: http://mouse.belozersky.msu.ru/

software/pq/
• Operating systems: Platform independent
• Programming language: C
• License: GNU GPL

Additional files

Additional file 1: Organism sets. The MS-Excel file Organisms.xlsx
contains lists of organisms from three species sets, with the Uniprot
mnemonics that are used in Additional files 2 and 3. (XLSX 23 kb)

Additional file 2: Protein data. The archive Protein-data.tar.gz
contains nine folders that each hold data of one data set used in this work.
Each folder contains two subfolders called Alignments and Trees.
Subfolder Alignments contains sequence alignments in fasta format.
Names of the files are Pfam identifiers with additional figures, for example,
the file PF00012_3.fasta contains an alignment of the sequences of
protein domains from the third orthologous group of Pfam family PF00012.
Names of the sequences in alignments are Uniprot organism mnemonics.
Subfolder Trees contains five subfolders, PQ, MP, ML, ME, and QP with trees
in Newick format reconstructed from the alignments with five methods.
Names of the tree files correspond to names of alignment files. The
subfolder Trees of folders Metazoa-25, Fungi-45 and Proteobacteria-45 also
contains the three species trees used as reference, in Newick format and as
PNG images. On the metazoan tree image, all nontrivial branches are
labeled with taxon names. On the fungal tree image, branches
corresponding to phyla, subphyla, and classes of Pezizomycotina are
labeled. On the proteobacterial tree image, branches corresponding to
classes are labeled. (TAR 28,930 kb)

Additional file 3: Nucleic acid data. The archive
Nucleic-data.tar.gz contains two folders called Fungi and
Proteobacteria. Each folder contains two subfolders called Alignments and
Trees. Subfolder Alignments contains the alignment of small ribosomal
subunit RNA of corresponding organisms and 100 15-sequence
subalignments in fasta format. Names of the sequences in alignments are
Uniprot organism mnemonics. Subfolder Trees contains five subfolders,
PQ, MP, ML, ME, and QP with trees in Newick format reconstructed from
the alignments with five methods. Names of the tree files correspond to
names of alignment files. Also the subfolder Trees contains the species
trees used as reference, in Newick format and as PNG images. On the
fungal tree image, branches corresponding to phyla, subphyla, and classes
of Pezizomycotina are labeled. On the proteobacterial tree image,
branches corresponding to classes are labeled. (TAR 456 kb)

Additional file 4: Simulated data. The archive
Simulated-data.tar.gz contains two folders called Alignments
and Trees. Folder Alignments contains 500 simulated 15-sequence
nucleotide alignments in fasta format. Folder Trees contains six subfolders,
PQ, MP, ML, ME, QP and Reference with trees in Newick format
reconstructed from the alignments with five methods and with reference
trees used for simulations. Names of the tree files correspond to names of
alignment files. (TAR 1860 kb)

Additional file 5: Data for testing long branch attraction artifact. The
archive LBA.tar.gz contains two folders called Test1 and Test2. Each
folder contains two subfolders called Alignments and Trees. Their content
are similar to the content of the corresponding files in Additional file 2.
Alignments and trees in the folder Test1 each includes sequences from 18
fungal species: five Basidiomycota, 11 Eurotiomycetes, one from
Sordariomucetes and one from Saccharomycetes. Alignments and trees in
the folder Test2 each includes sequences from 19 fungal species: five
Basidiomycota, 12 Sordariomycetes, one from Eurotiomycetes and one
from Saccharomycetes. (TAR 1700 kb)

Additional file 6: Scripts. The archive Scripts.tar.gz contains Bash
and Python 2.7 scripts used for obtaininh results of the paper and the file
ReadMe.txt with their description. (TAR 19 kb)
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