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Abstract

Background: Using knowledge-based interpretation to analyze omics data can not only obtain essential information
regarding various biological processes, but also reflect the current physiological status of cells and tissue. The
major challenge to analyze gene expression data, with a large number of genes and small samples, is to extract
disease-related information from a massive amount of redundant data and noise. Gene selection, eliminating redundant
and irrelevant genes, has been a key step to address this problem.

Results: The modified method was tested on four benchmark datasets with either two-class phenotypes or multiclass
phenotypes, outperforming previous methods, with relatively higher accuracy, true positive rate, false positive rate and
reduced runtime.

Conclusions: This paper proposes an effective feature selection method, combining double RBF-kernels with weighted

analysis, to extract feature genes from gene expression data, by exploring its nonlinear mapping ability.
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Background

Gene expression data can reflect gene activities and
physiological status in a biological system at the tran-
scriptome level. Gene expression data typically in-
cludes small samples but with high dimensions and
noise [1]. A single gene chip or next generation
sequencing technology can detect at least tens of
thousands of genes for one sample, but when it comes
to some diseases or biological processes, only a few
groups of genes are related [2, 3]. Moreover, testing
these redundant genes not only demands tremendous
search space but also reduces the performance of data
mining due to the overfitting problem. Thus, extract-
ing the disease-mediated genes from the original gene
expression data has been a major problem for medi-
cine. Moreover, the identification of appropriate
disease-related genes will allow the design of relevant
therapeutic treatments [4, 5].
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So far, several feature selection methods have been
suggested to extract disease-mediated genes [6-8].
Zhou et al. [3] proposed a new measure, LS bound
measure, to address numerous redundant genes. Sev-
eral statistical theories (x%et al.) and classic classifiers
(Support Vector Machine et al.) have been used in fea-
ture selection [9]. In general, these methods can be
divided into three categories: filter, wrapper and em-
bedded methods [9, 10]. The filter method is based on
the structural information of the dataset itself, which
is independent of the classifier, and it selects a feature
subset from the original dataset using a certain evalu-
ation rule based on statistical methods [11]. The wrap-
per method [12] is based on the performance of the
classifier to evaluate the significance of feature sub-
sets, while the embedded method [13] combines the
advantage of filter and wrapper methods, selecting fea-
ture genes using a pre-determined classification
algorithm [14, 15]. Since the filter methods are inde-
pendent of the classifier, the computational complexity
of these methods is relatively low, hence, they are suit-
able for massive data processing [16]. Yet, wrapper
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methods can reach a higher accuracy, but they also
have a higher risk of over-fitting.

Kernel methods have been one of the central methods
in machine learning in recent years. They have widely
been applied to the area of classification and regression.
A kernel method has the capability of mapping the data
(non-linearly) to a higher dimensional space [17]. Hence,
by using the kernel method, the dimension of the
observed data such as gene expression data can be sig-
nificantly reduced, that is, the irrelevant genes can be
filtered by kernel method, thus revealing the hidden
inherent law in the biological system [18]. Characteris-
tically, kernels have a great impact on learning and pre-
dictive results of machine learning methods [5, 19].

Although a great number of kernels exist and it is
intricate to explain their distinctive characteristics, ker-
nels used by feature extraction can be divided into two
classes: global and local kernels, such as polynomial and
radial basis function (RBF) kernels. The influence of
different types of kernels on the interpolation and
extrapolation capabilities has been investigated. In global
kernels, data points far away from the test point have a
profound effect on kernel values, while, by using local
kernels, only those close to the test point have a great
effect on kernel values. The polynomial kernel shows better
extrapolation abilities at lower orders of the degrees, but re-
quires higher orders of degrees for good interpolation,
while the RBF-kernel has good interpolation abilities, but
fails to provide longer range extrapolation [17, 20].

KBCGS [20] is a new filter method based on the
RBEF-kernel using weighted gene measures in cluster-
ing. This supervised learning algorithm applied global
adaptive distance to avoid falling in local minima. The
RBF kernel function has been proven useful when it
comes to show a satisfactory global classification perform-
ance for gene selection. Yet, exploring this problem in
depth definitely needs further research. A typical mixture
kernel is to construct a convex combination of basis ker-
nels. Based on the characteristics of the original kernel
function, linear fusion of a local kernel function and a glo-
bal kernel function can constitutes a new mixed kernel
function. Several mixture kernels have been introduced in
[21-23] to overcome limitations of single-kernel, which
can enhance the interpretability of the decision, function
and improve performance. Phienthrakul et al. proposed
Multi-scale RBF Kernels in Support Vector Machines and
demonstrated that the use of Multi-scale RBF Kernels
could result in better performance than that of a single
RBF on benchmarks [23].

In this paper, we modified KBCGS based on double
RBF-kernels, and applied the proposed method to fea-
ture selection of gene expression. We introduced the
double RBF-kernel to both SVM and KNN, and eval-
uated their performance in the area of gene selection.
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This mixture describes varying degrees of local and
global characteristics of kernels only by choosing dif-
ferent values of yjand y,. We combined the double
RBF-kernel with a weighted method to overcome the
limitations of single and local kernel. As an applica-
tion, we provided a feature extraction method which
uses this kernel, applying our method to several
benchmark datasets: diffuse large B-cell lymphoma
(DCBL) [24], colon [2], lymphoma [1], gastric cancer
[25], and mixed tumors [26] to evaluate its perform-
ance. The results demonstrate that this method allows
better discrimination in gene selection. In addition,
the method is superior when it comes to accuracy
and efficiency if we compare this technique with trad-
itional gene selection methods.

This paper provides a brief overview of the gene selec-
tion method for expression data analysis, then, the im-
proved KBCGS method called DKBCGS (Double-kernel
KBCGS), in which the two classification methods were
used for the clustering analysis was compared to six
popular gene selection methods. The last section of the
paper provides a comprehensive evaluation of the pro-
posed method using four benchmark gene expression
datasets.

Methods
Gene expression data with / genes and # samples can be
represented by the following matrix:

X=|: s (1)

Xiis a row vector that represents the total gene expres-
sion levels of sample i and x;; is the expression level of
gene j of sample i.

Cluster center

In this paper, we used Z-score to normalize the ori-
ginal data. The standard score Z used for a gene is as
follows:

—

x—H)
. (2)

7 =

where, x is the expression level of a gene in a sample,
¢ is the mean value of the gene across all samples,
and o is its standard deviation of the gene across all
samples.

The cancer classification was formulated as a super-
vised learning problem, defining the cluster center as:
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Vik =

|C| Z Xk (3)

In this equation, I=1, 2..., C, j=12...,n, k=12,...,],
C; is the number of samples contained in class C; re-
spectively. Hence, V; = [v;5,...,v;] is the cluster center of
class C;.

Double RBF-kernels

The kernel function acts as a similarity measure between
samples in a feature space. A simple form of similarity
measure is the dot product between two samples. The
most frequently used kernel is a positive definite Gauss-
ian kernel [27]. The classic Gaussian kernel on two sam-
ples x and x;, represented as feature vectors in an input
space, is defined by:

Kt (x,x;) = e™M [lx=x;]|? W

where, y; >0 is a free parameter.

It is a positive definite kernel representing local fea-
tures, therefore, it can also be used as the kernel func-
tion to weight genes for the gene selection method.
Kernel methods have already been applied to many areas
due to their effectiveness in feature selection and dimen-
sionality reduction [27]. However, for the purposes of
these methods, the focus is on creating a more general
unified mixture kernel that has capabilities of both local
and global kernels.

This work utilizes a double RBF-kernel as a simila-
rity measure. The number choice of kernels could
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typically depend on the level of heterogeneity of the
datasets. Increasing numbers of kernels helps to im-
prove accuracy, but increase the computational cost.
Therefore, we have to find a compromise between
multiple kernels learning and double RBF-kernel
learning, based on the performance and computa-
tional complexity. In most case, two RBF kernels are
enough to handle most data with reasonable accuracy
and computational cost. It should be emphasized that
the proposed nonlinear kernel method is based on the
combination of two RBF-kernels that has few limita-
tions when calculating the distance among genes as
follows:

Ky, (%,%)) = ce 7wl 4 (1-¢)ealel’ )
(YI > Oa )/2 > 0)

To further illustrate Eq. (5), the mapping relation-
ships were plotted between the formula Eq. 5 and
RBF-kernel by Figs. 1 and 2. Figures 1 and 2 clearly
show the fat-tailed shape of the mapping changes with
Y1, Y2 and compared to the RBF mapping parameter y;.
Figure 2 shows changing parameters y; , Yo, the lower
graph varies more slightly than the upper one. There-
fore, the double-kernel can fit data better with less im-
pact by outliers, indicating that the double-kernel has
better flexibility than the single-kernel. The fat- tail
characteristics make the double RBF kernels have better
learning ability and better generalization ability than a
RBF-kernel.
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Fig. 1 RBF kernel mapping with different y; for Eq. 13. Horizontal axis is Ilx — x||°. The vertical axis is KX, x)
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Fig. 2 The mapping with different y; and v, for Eq. (5). The first figure is for y; only, and the second figure is for the combination of y, and v;.
The horizontal axis is given by llx—x/I* and the vertical axis is given by Ky, (X,X7)

1 2 3

Kernels as measures of similarity

Suppose @ :X — F is a nonlinear mapping from the
space X to a higher dimensional space F, By applying
the mapping @, then the dot product x{x in the in-
put space X is mapped to ®(x,) ®(x) in the new
feature space. The key idea in kernel algorithms is
that the non-linear mapping ® doesn’t need to be
explicitly specified because each Mercer kernel can
be expressed as:

K(xz, 1) = O () T D(x7) (6)

that is usually referred to as kernel trick [22]. Then, the
Euclidean distances in F yields:

19 (1) =@ (1) [[* = (D 1) ~D(x2)) " (D) ~D(x1)

=(
= K(xk,xk)—ZI((xk7x1) + I((xhxl) (7>

Then, a dissimilarity function between an sample and
a cluster centroid could be defined as:

l
¢2 (xj, Vi) = Zk:l Hq)(xjk)_q)(vik) H2
= Zizl (K (i, 25 ) —2K (35, vie ) + K(vix, vi))
(8)
Gene ranking and selection

The most used gene selection methods belong to the
so-called filter approach. Filter-based feature ranking



Liu et al. BMC Bioinformatics (2018) 19:396

methods rank genes independently without any learning
algorithm. Feature ranking consists of weighting each fea-
ture according to a particular method, then selecting
genes based on their weights.

In this paper, our method DKBCGS is based on a KBCGS
method improved to achieve higher accuracy and converge
faster.

The KBCGS method adopted global distance, assign-
ing different weights to different genes. The clustering
objective function is given by:

J= 3D, BV + 8y, W
= ZiC:IinECiZ:(:lwk Hq)(xik) -O(Vi) H2

1
+8 Wi
where w = (w1, W»,..,w)) are the weight of genes.

wie[0,1], k =1,2, ..., 1
(10)

1
Zk:lwk =1

As shown in Eq. (1), the first part is the sum of
weighted dissimilarity distance among samples and the
cluster they belong to evaluated by the kernel method.
This part will reach its minimum value only when there
is one gene that is completely relevant and the others
are irrelevant. The second part is the sum of squared
weights of genes, which will only reach its minimum
value when all genes are equally weighted. Therefore, by
combining these two parts, the optimal gene weights are
obtained, then the feature genes can be selected.

To minimize ] with respect to the restriction Eq. (10),
the Lagrange multipliers methods were applied as
follows:

J(wi, \) = Z;leeg‘w (oxj,vi) + 62L:1W§7A(21<:1wk71>
(11)

So, the partial derivative of J(wy, \) is given by:

a](wk,)\) o 1
A D]

k
dJ(wi, \) ¢
a\AlIk = Zi:lejeCin)(Xik) _(D(Vik)”2 + 28wi-A

(12)

The J(wi, \) reaches its minimum when the value of the
partial derivative is zero. So, w is calculated as follows:
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1 1 ¢
Wk =1+ %Zi:leieQ
2
(ZiC:IineCi H(D(Xik)_q)(vik) H
1

-l (x56) - (va) ||)
(13)

Based on Eq. (13), the KBCGS method chooses 1 as
the initial weight of wy. In the second part of Eq. (9), the
choice of § is quite important since it represents the dis-
tance of genes. The value of § should ensure that both
parts are of the same order of magnitude, so according
to SCAD algorithm [28], the § is calculated iteratively as
follows:

Ziczl Exjeci Zi(:lwl((t_l) HQD (Xjk) _CD(Vik) H2

8¢ =«
ZL—I (Wl(t_l))z

(14)

Where o is a constant which influences the value of §,
with a default value of 0.0S5. The Gaussian kernel is
employed in this algorithm:

Krbf(xv Xi) = e_Yle_XiHZ (15)

Where, y; >0 is a free parameter and the distance can
be expressed as:

1@ (x) ~@(via) |* = 2(1-K (x5, vi) (16)

The max number of iteration is 100, and 6 = 10~ °.

The features of the improved method are outlined
below. Similar to KBCGS algorithm [20], the clustering
objective function is defined:

J= Ziczsz,ecﬁz(x;» Vi) + 834
where w = (W, w,,...,w;) are the weight of genes.

The DKBCGS method calculates § iteratively accord-
ing to Chen’s approach [20], however, it is improved the
iterative method to calculate w by deriving the following
formula:

Ziczl ijec,. Zi:l Wl(fil) ||CD (x/’k> ~O(vix) H2

50 —
211:1 (Wg(til)) ’

(17)

and instead of Gaussian kernel, the double RBF-kernel is
used as mentioned in Eq. (5).

The initial value of § in Eq. (13) is important in our algo-
rithm since it reflects the importance of the second term
relative to the first term. If § is too small, the only one fea-
ture in cluster i will be relevant and assigned a weight of
one. All other feature will be assigned zero weights. On the
other hand, if § is too large, then all feature in cluster I will
be relevant, and assigned equal weights of 1/n. The values
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of & should be chosen such that both terms are of same
order of magnitude. In all examples described in this paper,
we compute § iteratively using Eq. (17) as SCAD method,
see [28].

Through improving the iteration method, we achieve
less iteration, therefore an improvement toward conver-
gence compared to the KBCGS method. As previously
mentioned, gene expression datasets are often linearly
non-separable, so choosing an appropriate nonlinear
kernel to map the data to a higher dimensional space
has been proven efficient.

Implementation
The algorithm can be stated using the following pseudocode:

Input: Gene expression dataset X and class label vec-
tor y;

Output: weights vector w of genes;

Use Z-score to normalize the original data X;

Use Eq. (3) to calculate the cluster center of different
class of genes in the input space, respectively;

Use Eq. (8) to calculate the dissimilarity between the
genes and their cluster center of class;

Initial value: wy ={;

Repeat:

Use Eq. (14) to find the (¢ + I)th distance parameter se+ D,

Use Eq. (13) to calculate (¢ + 1)th weights wt D of genes;

Use Eq. (11) to calculate (¢ + 1)th objective function Je+ .

Until: ]+ D-J© < g,

Return w* Y,

We constructed SVM and KNN classifiers for each
dataset. These methods have been introduced in the
Additional file 2. A 10-fold cross validation was used as
the validation strategy to reduce the error and obtain
classification accuracy.

The whole experiment was performed using MATLAB.
To determine the value of hyperparameters, we use the
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grid search method. Figure 3 shows the change of in the
average error rate with the change in the number of se-
lected feature genes by employing DKBCGS. It is obvious
that there is a great improvement in the results when the
selected feature genes number increases from 1 to 20. In
order to identify the optimal performance of all datasets,
the number was restricted from 1 to 50.

Results

To validate the performance of DKBCGS method, it
was compared with some commonly used filter-based
feature ranking methods namelyy?-Statistic, Maximum
relevance and minimum redundancy (MRMR), Relief-F,
Information Gain and Fisher Score. These methods
have been introduced in the Additional file 1. Also, the
improved approach was compared with KBCGS [20].

Dataset description

The four datasets used as benchmark examples in this
work are shown in Table 1. The specifics of these datasets
are outlined in the Additional file 3.

Discussion
By using the two-class datasets, the performance of pro-
posed method, in comparison to the other six methods,
was evaluated by calculating the accuracy (ACC), the true
positive rate (TPR) and the true negative rate (TNR).

Table 2 and Table S1 shows the results of the two-class
datasets. These results indicate that the proposed method
has high accuracy and short runtime in both the SVM and
KNN classifier, while MRMR also performs well in the
KNN classifier. Fig. S1 tell us that the expression of the
characteristic genes selected by the proposed algorithm
has significant differences in the expression level of nor-
mal/diseased samples.

Gene-set enrichment analysis is used to identify coherent
gene-sets. Fig. 5 show us that the genes (dataset: colon
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Fig. 3 Average error rate versus different number of selected feature genes
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Table 1 Summary of the four gene expression datasets TP, TN, FP, FN are the True Negatives, True Posi-

Samples  Classes  Genes  References tives, False Negatives and False Positives, respectively.
DLBCL 77 P 7129 Shipp et al. [24] As the number of positive samples and negative sam-
Gastric cancer 40 1519 Boussioutas et al. [25] ples using the two-class datasets are not equal, the true

positive rate (TPR) and the true negative rate (TNR) were
used as another strategy for measuring the performance,
considering both the precision and the recall of the ex-
periment under test. Precision represents the number of
correct positive results divided by the number of all posi-
tive results. Recall is the number of correct positive results
divided by the number of positive results that should have
been returned. Therefore, the TPR and false positive rate
(FPR) are calculated as follows:

Yuan et al. [26]
4026 Alizadeh et al. [1]

Multi-cancer 152

w U N
(o)}
>l
Ul
N
N

Lymphoma 62

cancer), selected by DKBCGS, enriched in strongly con-
nected gene-gene interaction networks and in highly sig-
nificant biological processes. Furthermore, the significant
difference between the expression profiles for the
top-ranked genes selected by DKBCGS in the form of a
color map in Fig. 6 (a) and the expression profiles for eight

True positive rate
genes chosen randomly from the base is presented in Fig. 6 P

(b) confirms the good performance of the proposed selec- TP
tion procedure. TPR = TP+ IN (19)
Classification accuracy True negative rate
Accuracy = T 17-";13)—7—_ Yj:g—l— N 0<ACC<1  (18) TNR = H)j_;iNm (20)

Table 2 Performance of gene feature selection methods with KNN classifier (high) and SVM classifier (low) in two-class datasets
Dataset: Gastric cancer

DKBCGS GINI X?-Statistic Info.Gain KW RF MRMR KBCGS
ACC 0.9821 0.9664 0.9875 09779 0.9038 0.9548 0.9986 09716
TNR 1.0000 0.9500 0.9367 1.0000 0.9500 0.9800 1.0000 0.9755
TPR 0.9818 09677 0.9969 0.9759 08771 0.9498 1.0000 0.9826
TIME(s) 0.0846 0.7349 14736 0.7542 9.7452 4.2604 0.9007 06518
Dataset: DLBCL

DKBCGS GINI X?-Statistic Info.Gain KW RF MRMR KBCGS
ACC 0.9833 0.9615 0.9865 09712 09123 0.9245 0.9341 0.9795
TNR 0.9943 0.9456 0.9422 0.9854 0.9457 0.9456 0.9654 1.0000
TPR 0.9863 09513 0.9645 0.9541 0.9024 0.9234 0.9432 09712
TIME(s) 0.1215 0.2257 0.1954 0.1857 0.1678 05111 0.0931 02148
Dataset: Gastric cancer

DKBCGS GINI X?-Statistic Info.Gain KW RF MRMR KBCGS
ACC 1.0000 0.9768 0.9855 0.9623 09168 0.973 0.9988 0.9822
TNR 1.0000 09611 0.95 09158 09316 0.9433 1.0000 1.0000
TPR 1.0000 0.9929 0.9971 09776 09121 0.9827 1.0000 0.9755
TIME(s) 0.0846 0.7349 14736 0.7542 9.7452 4.2604 0.9007 0.7418
Dataset: DLBCL

DKBCGS GINI X?-Statistic Info.Gain KW RF MRMR KBCGS
ACC 1.0000 1 0.9975 1.0000 0.9975 0.9750 0.9975 0.9845
TNR 1.0000 1.0000 1.0000 1.0000 0.9683 09733 0.9571 0.9579
TPR 1.0000 1.0000 1.0000 1.0000 0.8383 0.9437 0.9917 0.9931

TIME(s) 0.1215 0.2257 0.1954 0.1857 16478 0.5111 0.0931 0.2148
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Fig. 4 The distribution of the two-class samples mapped on the two most important principal components at representation of vectors x by 50 most
significant genes (a) and at application of all genes (b). The horizontal axis is the first principal component and the vertical axis is the second principal
component. Black marks represent different categories of the centers

Table 2 shows the results of the two-class datasets.
The runtime of DKBCGS, being less than 0.1 s, is
much shorter than others, except for runtime of
MRMR-SVM in the DLBCL dataset, that is, the pro-
posed double-kernel model can efficiently reduce
computation complexity. Regarding accuracy, the
proposed method also performs well, reaching 100%
in SVM classifier and slightly less than that of
MRMR in KNN classifier. Taken together, these re-
sults indicate that the proposed method has high

accuracy and short runtime in both the SVM and
KNN classifier, while MRMR also performs well in
the KNN classifier. Also, the average ROC (Receiver
Operating Characteristic) curve was plotted for fur-
ther evaluation in Fig. 4. A further comparison with
KBCGS in four datasets, calculating average results
of KNN and SVM, is shown in Additional file 4: Table
S1. The results clearly demonstrate that the improved ap-
proach DKBCGS performs better in both runtime and
accuracy.
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Fig. 5 GO Enrichment Mapping the cluster-specific genes for the DLBCL dataset (P-value < 0.001). We firstly identified significant GO terms on the g:
profiler web interface. Then we used the enrichment map plug-in in Cytoscape [29] to visualize these significant GO terms. Each node represents a GO
term and each edge represents the degree of gene overlap (Jaccard similarity) that exists between two gene sets corresponding to the two GO terms
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Regarding the gastric cancer dataset, we have mapped the
multidimensional observations into 2-dimensional space
formed by the two most important principal components.

Two cases have been investigated. The first approach
deals with using the original vectors only containing 50
genes selected by the fusion procedure. Fig. 5(a) depicts
this case in which only the best representative genes in
the vector x are used. For comparison, the Principal com-
ponent analysis (PCA) was repeated for the full-size ori-
ginal 2000 element vectors containing all genes. The
graphical results of the sample distribution are presented
in Fig. 5(b). Large bold symbols of the circle and x repre-
sent the centroids of the data belong to two classes.

Furthermore, the first fifty top-ranked gene expression
levels were analyzed in the gastric cancer dataset using the
various methods as shown in Additional file 5: Figure S1.
It can be clearly seen that the expression of the characte-
ristic genes selected by the proposed algorithm has signifi-
cant differences in the expression level of normal/diseased
samples, therefore has some research value.

Gene-set enrichment analysis

Gene-set enrichment analysis is useful to identify coher-
ent gene-sets, such as pathways, that are statistically
overrepresented in a given gene list. Ideally, the number
of resulting sets is smaller than the number of genes in
the list, thus simplifying interpretation. However, the
increasing number and redundancy of gene-sets used by
many current enrichment analysis resources work against
this ideal. Gene-sets are organized in a network, where
each set is a node and links the representative gene over-
lap between sets [26]. So, as to dataset DLBCL, the genes
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selected by DKBCGS enriched in strongly connected
gene-gene interaction networks and in highly significant
biological processes (Fig. 6).

To illustrate the results in a graphical form, the
expression levels of the selected genes (dataset: colon can-
cer) are presented in Fig. 7(a). This figure shows the image
of the expression profiles for the top-ranked genes se-
lected by DKBCGS in the form of a colormap. The vertical
axis represents observations and the horizontal axis repre-
sents the genes arranged according to their importance.
There is a visible border between the cancer group and
the normal group. For comparison purposes, the image of
the expression profiles for eight genes chosen randomly
from the base is presented in Fig. 7(b). There is a signifi-
cant difference between both images, which confirms the
good performance of the proposed selection procedure.

Both Table 3 and Table S2 show the results of the multi-
class datasets. Both tables clearly show that the KBCGS can
reduce runtime with high accuracy in other multiclass data-
sets. When using the lung cancer gene expression data, there
is a substantial improvement in the accuracy of the classifica-
tion using the double RBF-kernel algorithm for each of the
feature subsets, which demonstrates that the KBCGS
method can select the appropriate genes efficiently compared
to other methods. For lung cancers, the feature genes se-
lected by the double RBF-kernel algorithm also result in a
higher accuracy. It not only improves the accuracy of the
classification of gene expression data, but also identifies in-
formative genes that are responsible for causing diseases.
Therefore, the double RBF-kernel method is better than the
X2-Statistics, MRMR, Relief-F, Information Gain, and Krus-
kal-Wallis test. Also, the significant difference between the

Observations

Selected feature genes
a

red line distinguishes between cancer samples and normal samples

Fig. 6 The colormap of the expression profiles for nine most significant genes selected by DKBCGS (a) and for 9 randomly chosen genes (b). The

N

Observations

Selected feature genes
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Table 3 Performance of gene feature selection methods with KNN classifier (high) and SVM classifier (low) in multiclass datasets

Dataset: Lymphoma

ACC

Gene content
TPR

TIME(s)

Dataset: Lung cancer

ACC

Gene content

TPR

TIME(s)

Dataset: Lymphoma

ACC

Gene content
TPR

TIME(s)

Dataset: Lung cancer

ACC

Gene content
TPR

TIME(s)

DKBCGS
1.0000
25
1.0000
0.3412

DKBCGS
0.9554
32
0.9243
0.1215

DKBCGS
1.0000
35
1.0000
0.3412

DKBCGS
09151
64
09172
0.5736

GINI
1.0000
70
1.0000
0.8944

GINI
0.9443
82
0.9033
0.2250

GINI
0994
34
0994
0.8944

GINI
0.9041
87
0.9005
1.8912

X2-Statistic
1.0000
26

1.0000
23579

X?-Statistic
09499

97

09185
0.1954

X?-Statistic
1.0000

34

1.0000
23579

X2-Statistic
09115

75

09124
34551

Info.Gain
1.0000
49
1.0000
1.2561

Info.Gain
0.9641
65
0.9012
0.1857

Info.Gain
1.0000
16
1.0000
1.2561

Info.Gain
0.9229
89
0.9285
24972

KW
0.8617
22
0.8617
74577

09273
39

0.9210
1.6478

0.9283
28

0.9283
74577

KW
09102
71
0.9089
6.9322

RF
0.9756

0.9756
33144

RF
0.9472
88
09123
0.5111

RF
0.9963

0.9963
33144

RF
0.9087
60
09114
4.1978

MRMR
1.0000
29
1.0000
1.5922

MRMR
0.9291
50

0.9042
0.2931

MRMR
1.0000
27

1.0000
1.5922

MRMR
0.9199
77

0.9207
2.1207

KBCGS
1.0000
35
1.0000
0.7541

KBCGS
0.9514
40

0.9155
03171

KBCGS
1.0000
40

1.0000
07541

KBCGS
0.9100
74

09122
1.0044




Liu et al. BMC Bioinformatics (2018) 19:396 Page 11 of 14

Observations
Observations

_—
f==
=1
|
==
=
_—
=
==
_—
=
-—
—
—
=
=
==
=1
=
==
—
—
—
==

2 Kl 6 8 10 12 14 16 18 20 2 4 6 8 10 12 14 16 18 20
Selected feature genes Selected feature genes

Fig. 8 The colormap of the expression profiles for 20 most significant genes selected by the proposed method (left) and for 20 randomly chosen
genes (right). The red line distinguishes between different classes
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expression profiles for the top-ranked genes (dataset: ~Comparison of multiclass datasets

Lymphoma) selected by DKBCGS in the form of a color For the multiclass datasets, the performance of all
map in Fig. 8 (a) and the expression profiles for 20 genes methods was evaluated by computing accuracy (ACC)
chosen randomly from the base is presented in Fig. 8 (b) and run time (Time). The results are shown in Table 3.
demonstrates the good performance of the proposed selec-  Also, further comparisons were made with KBCGS in

tion procedure. other multiclass datasets, see Additional file 4: Table S2.
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Both tables clearly show that the proposed method can
reduce runtime with high accuracy.

When using the lung cancer gene expression data,
there is a substantial improvement in the accuracy of
the classification using the double RBF-kernel algo-
rithm for each of the feature subsets, which demon-
strates that the double RBF-kernel method can select
the appropriate genes efficiently compared to other
methods. For lung cancers, the feature genes selected
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by the double RBF-kernel algorithm also result in a
higher accuracy. It not only improves the accuracy of
the classification of gene expression data, but also
identifies informative genes that are responsible for
causing diseases. Therefore, the double RBF-kernel
method is better than the XZ>-Statistics, MRMR,
Relief-F, Information Gain, and Kruskal-Wallis test.
Also, the Information Gain method turns out to be
highly competitive.
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Fig. 10 The t-score plot and the p-value plot of the top ranked 50 genes (bottom 2 graphs) and all genes (upper 2 graphs). The horizontal axis is
the t-score/p-value, the vertical axis is the number of genes in each interval
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In the second part of the experiment, the expres-
sion level of the selected genes (dataset: Lymphoma)
was represented as before in Fig. 8(a). It shows the
expression profiles for the top-ranked genes selected
by fusion in the form of the colormap. There is a
visible border between the different groups. Note
that the images of the expression profiles for 20
genes are chosen randomly, see Fig. 8(b). There is a
significant difference between both images, which
demonstrates the performance of the proposed selec-
tion procedure.

Differential gene expression analysis

The top 50 genes of Gastric cancer dataset were ana-
lyzed by applying the paired ¢-test method to obtain the
t-score, p-value plot and the quantile-quantile plot of
these genes. The quantile-quantile plot is mainly for iden-
tifying the gene expression levels of two classes. The
results, as shown in Figs. 9 and 10, clearly show the differ-
ence between the feature genes obtained by DKBCGS and
the original data. All the genes were divided into genes
with significant attributes, and have a low p-value (average
p-value = 0.023). Finally, this proves that DKBCGS has a
certain statistical significance.

The t-score plot shows the normality of the data and the
rationality of using the paired t-test. We can also conclude
from the histogram of p-value that the paired t-test is sig-
nificant because of the vast majority of p-value falls in the
very end of the group of the histogram.

Between two groups of variables, a t-test is performed
on each gene to identify significant differences in all genes
and feature genes selected by our method, and a normal
quantile map can be obtained by t-scores. A histogram of
t-scores and p-values was used to study the test results.

Conclusion

The number choice of kernels could typically depend on
the level of heterogeneity of the datasets. Experiments
on gene expression datasets show that double RBF-
kernel outperforms all other used feature selection
methods in terms of classification accuracies for both
two-class datasets and multiclass datasets, especially in
those datasets with small samples. The performances of
double RBF-kernel learning in classification make it well
suited alternatives to one RBF-kernel learning.

The use of known performance measures, such as accur-
acy, TNR, and TPR, clearly showed the high potential of
the proposed method for performing classification tasks in
bioinformatics and related disciplines. The initial value of §
as a ranking criterion was a key issue here for performing
feature gene selection. In this paper, a flexible model for
cancer gene expression classification and feature gene selec-
tion was proposed, which can adjust the parameters when
using different datasets through cross validation to achieve
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the best result. The performance of the proposed method
was compared to six classical methods, demonstrating that
it could outperform existing methods in the identification
of feature cancer genes. In conclusion, the proposed
method is superior in accuracy and run-time for both
two-class datasets and multiclass datasets, especially for
those datasets with small samples. Furthermore, the re-
sults show that our method is computationally efficient.
Also, the double-kernel learning may not be good at hand-
ling a super large scale of data. Future work could investi-
gate computational aspects more in-depth on a large scale
and use graph-based kernels to process gene networks.
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