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Background: To integrate molecular features from multiple high-throughput platforms in prediction, a regression
model that penalizes features from all platforms equally is commonly used. However, data from different platforms
are likely to differ in effect sizes, the proportion of predictive features, and correlations structures. Subtle but
important features may be missed by shrinking all features equally.

Results: We propose an Elastic net (EN) model with separate tuning parameter penalties for each platform that is fit
using standard software. In a comprehensive simulation study, we evaluated the performance of EN logistic regression
with multiple tuning penalties. We found that when the number of informative features differs among the platforms,
and when there is no notable correlation between the features from different platforms, the multi-tuning parameter
EN yields more predictive models. Moreover, the multi-tuning parameter EN is robust, in the sense that there is no loss
of predictivity relative to a single tuning parameter EN when features across all platforms have similar effects. We also
investigated the performance of multi-tuning parameter EN using real cancer datasets.

Conclusion: The proposed multi-tuning parameter EN model, fit using standard penalized regression software,
can achieve better prediction in sample classification when integrating multiple genomic platforms, compared
to the traditional method where a single penalty parameter is used for all features in different platforms.

Background

As multi-platform profiling of tissues enabled by advances
in high-throughput ‘omic’ technologies becomes routine,
efficient statistical methods to integrate multi-omic data is
becoming increasingly important. Multi-omic profiling
has been used to successfully investigate prognostic bio-
markers and identify aberrant pathways in cancer [1, 2],
enhance clustering and subclassification [3, 4], and
improve prediction of cancer prognosis and therapeutic
response [5-7]. Multi-omic data integration can be chal-
lenging for several reasons. First, different data types will
typically have different scales of measurement. To mean-
ingfully integrate data sets with diverse scales, proper
standardization and/or data transformation is required. A
second challenge is the increasingly high-dimensionality
of multi-platform ‘omic’ data. This could be addressed by
feature pre-screening methods such as sure independence
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screening [8], or by dimensional reduction techniques
such as principal component analysis [9] or partial least
squares [10]. The third challenge, which to the best of our
knowledge has not been yet fully addressed, is the poten-
tially different contributions of individual data types in the
final prediction models.

Regularized regression with a sparsity inducing penalty
(e.g. LASSO [11], Elastic Net [12], SCAD [13]) is a com-
mon approach to feature selection for building predict-
ive models based on high-dimensional data, and can be
effectively used for a joint analysis of multi-omic profiles
measured on the same samples. For example, Taskesen
et al. used the standard LASSO for classification of sam-
ples measured on methylation and expression platforms
[14] by including all the features from both platforms. In
regularized regression, a tuning parameter controls the
degree of shrinkage applied to the regression coeffi-
cients, and penalties that induce sparsity shrink many
coefficients to exactly zero, performing in effect model
selection. However, typical regularized regression ap-
proaches, would apply the same degree of shrinkage to

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to

the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.


http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-018-2401-1&domain=pdf
http://orcid.org/0000-0002-2119-1438
mailto:liu485@usc.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Liu et al. BMC Bioinformatics (2018) 19:369

all features regardless of their omic type, which can be
suboptimal if the number and effect sizes of predictive
features differ between data types. If for example, there
were fewer predictive gene expression features than
DNA methylation features, but the predictive expression
features had larger effects than the predictive methyla-
tion features, forcing a common degree of shrinkage
could result in all methylation feature coefficients
shrunk to zero, and a final model containing only
expression features. Independently predictive methyla-
tion features with subtler effects would be missed. Ap-
proaches that account for these differences may offer
improved predictive performance.

A natural question of interest is whether allowing for
differential shrinkage across features from different omic
types by using a separate tuning parameter for each type,
can yield better predictive models. Taskesen et al. ad-
dressed this to some extent in a stage-wise analysis, per-
forming separate analysis of omic platforms prior to
creating a single classifier from the posterior probabil-
ities of each model fit [14]. In this approach, individual
features from the separate platforms were not combined
in their final classifier but only used to pick the more
predictive data type. Even if the selected features from
multiple platforms were combined, such a two-stage ap-
proach would likely result in a different set of selected fea-
tures having different prediction potential. It is this joint
analysis using features from multiple platforms that is our
goal. Note that allowing differential shrinkage across dif-
ferent platforms is a distinct issue from how to deal with
subgroups of features, such as co-regulated genes within a
cluster structure, that one may have reason to believe
a-priori are either all predictive or not as a group, and
which has been addressed by methods such as the group
LASSO [15-17] that encourage the selection of either all
or none of the features in each subgroup.

In this paper, we investigate the performance of a
multi-tuning parameter elastic net regression (MTP EN)
with separate tuning parameters for each omic type.
Through simulations with a range of scenarios differing in
number of predictive features, effect sizes, and correlation
structures between omic types, we show that MTP EN can
yield models with better prediction performance. We apply
the MTP EN to publically available prostate cancer and
acute myeloid leukemia data sets from the Cancer Genome
Atlas (TCGA) and Gene Expression Omnibus (GEO).

Methods

Setup and notation

We assume we have training data consisting of high-di-
mensional features from multiple omic types (e.g. gene ex-
pression, DNA methylation, somatic mutations, etc.),
measured on # samples, and an outcome of interest (e.g.
cancer vs. normal tissue). The goal is to use the training
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data to build a model that can be used to predict the out-
come for new samples based on their corresponding
multi-omic profiles. This is a standard supervised learning
setting with the particularity that the features are from
multiple omic types.

For simplicity, we focus our presentation on a binary out-
come and omic features of two types, but the multi-tuning
parameter regression framework can be applied to other
outcomes (e.g. multinomial, continuous, time to event, etc.)
and more than two data types. For sample i, i =1, ..., n, we
denote the binary outcome by y; € {0, 1} and its correspond-
() )

y Vi )

ing omic profile as the partitioned vector a;=(«;

where xfl) and xl(.2> represent the features from the first and

second omic type, respectively. The number of features of
each type is usually much larger than the sample size n,
and is in the hundreds or thousands in typical studies. For
example, gene expression is measured for thousands of
genes/features, DNA methylation for hundreds of thou-
sands of CpGs, and genotypes for millions of SNPs. We let
p1 and p, be the number of features of the first and second
omic type respectively, and p = p; + p, be the total number
of features. In typical applications, there is also a
low-dimensional vector of personal and/or clinical fea-
tures (e.g. age, gender, etc.), that may also be predictive and
included in the feature set, but for simplicity we omit here
any additional non-omic features.

We denote by y = (1, ...,¥,,) the vector of outcomes and
by X and X® the design matrices whose rows are the /™

sample vector xl(l) and xl@ defined above. We denote by
X= [X?| X?] the matrix containing the full set of fea-
tures obtained by row-wise concatenation of X" and X®.

In addition to constructing a model that generalizes well,
i.e. accurately predicts y based on X in new subjects, a parsi-
monious prediction model based on a small subset of the full
feature set is generally preferred. A model with fewer fea-
tures is more interpretable and more easily translated into a
custom assay deployable in a clinical setting.

Regularized regression with a sparsity inducing penalty
is an effective way to simultaneously perform feature selec-
tion and parameter estimation to build a predictive model
with a small subset of features. The simplest and most
commonly used sparsity inducing penalty is the L; norm,
which gives rise to LASSO regression [11]. Regularization
with a combination of the L; and L, norms, i.e. elastic net
regression, typically outperforms feature selection with the
LASSO in settings with correlated features [18]. Many
additional extensions and variations of the LASSO have
been proposed to, for example, reduce over-shrinkage of
larger coefficients (adaptive LASSO [19]) or to handle fea-
tures with additional structure (e.g. group LASSO [15],
fused LASSO [20], group LASSO with overlap [21], graph
LASSO [22]). For definiteness, in this paper we focus on
the elastic net, which includes the LASSO as a special
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case. However, customized tuning parameters for each
omic type can be used with any type of regularized
regression.

The elastic net regularization penalty is a weighted
mixture of the LASSO (L; norm) and ridge (square of L,
norm) penalties given by: N(B) = (l—a)%HﬁHiZ +a Bl
= (1-a)y 1;:1[?? +a’_ |B,l, where a, 0<a<1, is the
weight given to the LASSO penalty and 1 - a the weight
given to the ridge penalty. Both the LASSO (a=1) and
the ridge (a = 0) penalties are particular cases of the elas-
tic net penalty.

Standard elastic-net logistic regression solves the pe-
nalized regression problem given by:

minﬁey;\p—l(y,X; ﬁO,XB) +AN(B) (1)

where  I(y,X; B, B) = 371, log(1+ exp(B, +x/B))-
S 19:(By +«IB) is the standard logistic log-likelihood
function and the regularization parameter A >0 controls
the degree of penalization applied to the vector of re-
gression coefficients 8 (except the intercept 3, which is
typically not penalized). The single regularization param-
eter \ is common to all features and is usually tuned by
cross-validation.

In this paper, we propose using separate tuning param-
eters for each omic type by solving the penalized regres-
sion problem given by,

minﬁeRp_l(yv‘X?/))O;ﬁ) + )\IN(/))(I))
LN (ﬁ(z)) (2)

where the vector of regression coefficients g = (8, %)
is partitioned according to the omic type conformably to
X = [XY| X®]. The regularization parameters \; >0 and
A2 >0 are now specific to each omic type. Our hypoth-
esis is that a ‘custom’ degree of regularization for each
type can account for intrinsic differences between the
data types and lead to a selected model with better pre-
diction performance.

Model fitting and parameter tuning
Although the two-tuning parameter model (2) is non-
standard, it can be fitted using elastic-net regression
software provided it has an option to use a weighted
elastic-net penalty of the form

Nw(B)=a 1]7':1W/|ﬁj| + (1_“)2?:1”’1‘;%? .
weighted penalty, the multi-tuning parameter elastic-net
penalty in (2) can be equivalently written as

MN(BY) + 0N () = MN,(B)

Using a

N
IOVEDW

) with 1 in its first p; entries (corresponding to the p;

with a p-dimensional weight vector w = (1,1, ...,1
%)
’ )\]
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features of the first omic type and the dimension of )
and a k = ;‘\—f in the next p, entries (corresponding to the

P features of the second omic type and the dimension
of B?). Thus, the two-penalty model can be alternatively
specified using the tuning parameters A=\;, x :;‘% ,
where A controls the overall shrinkage on both types of
omic features, and x controls the shrinkage ratio be-
tween the two types. For x = 1, the model reduces to the
standard elastic net with a single tuning parameter.

To investigate the performance of the multi-tuning
parameter elastic net regression (MTP EN) for building
predictive models based on multi-omic features we con-
duct a series of simulations under a range of scenarios.
To fit the MTP EN we use the efficient and widely used
elastic-net implementation in the glmnet R package [23],
which allows for a user-specified weighted penalty via
the “penalty.factor” argument. Additional file 1 contains
an R script implementing a complete and self-contained
analysis example using MTP EN.

We set the elastic net penalty @ to % and tune the
overall shrinkage, A, and shrinkage ratio parameter, x,by
k-fold cross-validation (CV), with the area under the
ROC curve, AUC, as the performance metric. The train-
ing data is randomly split into k equally-sized folds, each
with (approximately) the same proportion of positive (y
= 1) and negative (y = 0) samples as the full training data.
The MTP EN is trained on k-1 folds for all values of
(A, k) in a grid of possible tuning parameter values and
the AUC is computed based on the validation held-off
fold. This is repeated, using in turn each of the folds as
validation held-off fold. The ‘optimal’ tuning parameters
are the values x =«x,,,, and A\ =},,,, that maximize the
average AUC across all folds. The optimal tuning param-
eter values are then applied to a fully independent test
set to unbiasedly assess the model AUC. For model tun-
ing we utilized both 5-fold and 10-fold CV, 5-fold for
the analysis of real data because of a small sample size
in one class and 10-fold for the simulation study.

Simulation study
We evaluate the MTP elastic-net through simulation,
exploring varying proportions and effect sizes of the
relevant features in each omic type, varying dimensional-
ities of the feature sets, and a range of correlation struc-
tures. Specifically, the binary outcome was generated
based on a logistic regression model of the form:

1) (2

Ji |x§ ,x;

~ Bernoulli(P;)

o exp(n)
"1+ exp(n)

ur 2T
1; = Bo +x§ ) B +xl(- ) B2
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where we set g; features among the p; in omic type j=1,
2 (g; < pj) to be predictive by arranging the vector of re-
gression coefficients f(; to be sparse, with g; non-zero
and p; - g; zero entries. We set the effect size of the pre-
dictive features, i.e. the non-zero entries in omic type j =
1, 2 to a common value §;.

We generated feature data X = [X"| X®] by sampling
from a multivariate normal distribution X~N(0, X),
where X is a population covariance matrix with the fol-
lowing structure: i) dia(X) =1, i.e. the X’s are already
standardized and have marginal variances equal to one;
ii) r; features among the g; informative ones in omic type
j=1, 2 have a common pairwise correlation p; and cor-
relation p;, with the counterpart set of features in the
other platform iii) all remaining correlations are zero.
The simulation scenarios are summarized in Table 1. For
each scenario, we simulated 400 replicate data sets, 200
training and 200 test sets. Every data set included 500
features on 200 samples, with an expected 100 samples
in each class (Sy = 0).

Model tuning parameters (A, k) were selected using the
training data, and applied to the test data set for estimat-
ing prediction performance. To further reduce the di-
mensionality of the selected features beyond what is
achieved by maximizing the training data prediction per-
formance, we set A to Ai,, the largest value of X such
that the AUC is within one standard error of the max-
imum (achieved at A =\,,,,,). This strategy by Friedman
et al. [12] yields predictive performance similar to that
achieved by setting A =,,,,, but with a more parsimoni-
ous model. Thus, the parameters « =K, and X = Ajg,
are used to estimate AUC from the independent test
data set.

Table 1 Summary of simulation scenarios

Independent Features: p; =p,=p1,=0

Scenario # B B> a q> Optimal penalty ratio (k")
1 0.6 0.8 5 20 0.55
2 06 06 5 20 0.70
3 08 06 5 20 0.75
4 08 0.8 5 5 1
5 08 06 5 5 1

Correlated Features: 3, =08, 8,=06,9,=5,G,=20,r,=r,=3
01 0> 012 Optimal penalty ratio (k*)
6 04 02 0 0.85

7 04 0.2 04 09

Two hundred samples per data set, 250 features per omic type, 2 omic types.
The performance of MTP EN is evaluated by varying effect sizes, number of
informative features, and correlation structures between omic types.
Specifically, p; is the correlation between informative features in platform 1,
p> is the correlation between informative features in platform 2, p,; is the
correlation between informative features from the different platforms, 8, and
B, are the effect sizes of informative features in platforms 1 and 2,
respectively, while g; and g, are the numbers of informative features
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In addition to the AUC, we also report accuracy (1-mis-
classification error) and sensitivity and specificity of feature
selection. The accuracy was calculated as the number of
samples correctly classified in testing dataset divided by the
total number of samples. The sensitivity (specificity) was
calculated as the number of informative (uninformative)
features correctly selected in the final model divided by the
total number of informative (uninformative) features.

Real data applications

Acute myeloid leukemia data

The Acute myeloid leukemia data for 344 samples were
obtained from NCBI Gene Expression Omnibus, with
accession numbers for gene expression and methylation
data as GSE14468 (HOVON-SAKK cohort) and GSE187
00, respectively. The data was also used and described
by Taskensen et al. [14]. Briefly, for each patient sample,
Affymetrix HGU133 plus2.0 (Santa Clara, CA, USA) and
HELP-assay [24] was used to measure the gene expres-
sion and DNA methylation data, respectively. We fil-
tered the gene features with fewer than 10 unique
expression values, resulting in 46,083 gene features. All
of the 25,626 DNA methylation features were considered
in this study. Groups of AML patients that are charac-
terized by common cytogenetic or molecular abnormal-
ity are denoted as subtypes. From the 15 subtypes
studied by Taskesen et al. [14], we focus on the 7q¢ AML
subtype, characterized by partial or complete deletion of
the genome fragments on the long arm of chromosome
7. In the 344 patients, 35 have 7q AML, and the rest can
be characterized as non-7q. The multi-tuning parameter
Elastic net was used to build classifiers by combining
gene expression and DNA methylation data to differenti-
ate 7q AML from the rest of the subtypes.

Prostate cancer

The prostate adenocarcinoma data was obtained from the
Genomic Data Commons (GDC) Data Portal (Project ID
TCGA-PRAD) and assembled by our collaborators at
USC. In total 444 samples with both RNA-Seq gene ex-
pression and HumanMethylation450 (HM450) array data
available were considered. The goal is to classify tumor ag-
gressiveness, defined by both grade and stage of prostate
cancer. We defined the tumor samples with Gleason score
7 and below, and T category of T1 or T2 (T2a, T2b and
T2c) as non-aggressive, and those with Gleason score 7 or
higher and T category of T3 (T3a, T3b) and T4 as aggres-
sive. This resulted in 143 samples defined as
non-aggressive and 265 defined as aggressive. Thirty-six
samples (8%) were omitted for being high grade/low stage
(25) or low grade/high stage (11) and unknown aggres-
siveness. After filtering gene features with zero variance
across all samples 20,216 gene features remained. For the
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HM450 DNA methylation array, we excluded probes tar-
geting SNPs, mapped to the X and Y chromosomes, in
cross-reactive regions, and having missing values in at
least one sample. This resulted in 371,513 remaining fea-
tures. As customary, the gene expression data were log2
transformed to reduce the skewness of the gene expres-
sion distribution in its original scale.

Data analysis

We split the data into training and test sets to build a pre-
diction model and assess its performance. Training was
performed using a random 80% of the samples, stratified by
outcome to preserve the original proportion of positive and
negative cases in the full data. The remaining 20% of sam-
ples were used to compute the test AUC. In order to obtain
stable estimates, the data splitting, model training and test-
ing was repeated 50 times with the average performance
from the independent test sets reported. In the training
step, MTP EN penalties were tuned by 5-fold cross-valid-
ation over a grid of values ranging from 0.1 to 1.5 for the
penalty ratio parameter «, and a large grid of values for the
overall penalty parameter A. The 5-fold CV was repeated
10 times and the optimal A for each ratio value x was se-
lected as the one yielding the largest mean AUC across the
10 CV repeats.

Results

Simulation studies

The main finding (see Figure 1) is that when the number
of informative features differs between the two omic
types (41 < q»), differential penalization can yield a model
with better prediction performance in terms of AUC.
Specifically, the optimal parameter tuning favors a lar-
ger penalty on the omic type with fewer informative
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features (k< 1) (Table 1, scenarios 1-3). Differential
penalization increased AUC the most when the effect
sizes are smaller in the omic type with fewer informative
features (Figure 1). By contrast, when the two omic types
have the same number of informative features (q; = ¢,),
the optimal penalty ratio parameter « is close to 1, indicat-
ing that the standard EN yields the best predictive
performance. For Scenarios 1-3 we also evaluated the
performance of MTP-EN in terms of accuracy and sensi-
tivity and specificity of feature selection (Additional file 2).
Consistent with Figure 1, MTP-EN achieves higher rates
of correct classification and better sensitivity in Scenarios
1-3. In terms of specificity, MTP-EN outperforms
standard EN in Scenario 1. In Scenario 2 and 3, however,
standard EN shows slightly higher specificity.

We explored the change of the optimal penalty ratio
parameter as we varied characteristics of the true regres-
sion model one at a time. For the scenario with different
numbers of informative features, g; < g», the optimal pen-
alty ratio parameter « is smallest (i.e. there is maximal dif-
ferential penalization) when the effect sizes are smaller in
the omic type with fewer informative features (B; < f5,),
and it increases monotonically to 1 (ie. less differential
penalization) as the effect size, 1, in the first omic type in-
creases (Figure 2a). For fixed effect sizes 5; and f3,, the op-
timal penalty ratio parameter x becomes smaller (more
differential penalization) as the number of informative fea-
tures in the second omic type, ¢», increases (Figure 2b). In
this case, it is advantageous to penalize the omic with

more noise features more highly. As the overall propor-
it+4q,

p )
relative to the total number of features, the optimal pen-
alty ratio parameter x approaches 1, ie. less differential

penalization is required to maximize the AUC (Figure 2c).

decreases

tion of informative features of both types,

0.75
Il

AUC

0.65
1

0.6

B1<B2, 91<9q

B1=PB2 91<q:
B1>B2 91<q:

B1=B2 91=9q:

B1>B2 91=9q2

T T T T T
0.2 04 06 08 1

T T T T
1.2 14 16 1.8
Penalty Ratio Parameter (k)
Fig. 1 Mean testing AUC as a function of the penalty ratio parameter « for different simulation settings. The effect sizes and numbers of informative
features are given in Table 1, Scenarios 1-5. Dots indicate the k resulting in the maximum of mean testing AUC. Each analysis includes 200 samples
per data set with 250 features per data type (N =200 simulation replicates). When the number of informative features differs among the platforms

(Scenarios 1-3), the multi-tuning parameter EN yields more predictive models comparing with the standard EN where k=1. Differential penalization
increased AUC the most when the effect sizes are smaller in the omic type with fewer informative features (Scenario 1)
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With the decrease of q‘;qz, the AUC for both the standard

and MTP EN decreases and also the difference in AUC
between the two approaches decreases (results not shown).

Because correlation among features both within- and be-
tween- omic types is common, we also investigated the ef-
fects of correlations on the performance of MTP EN.
Across all settings we fixed the effect sizes and number of
informative features as described in the third scenario in
Figure 1 (51 > 2, g1 < 42). We compare the situations where
the correlations are only between informative features
within the individual platforms (Table 1, scenario 6), and
correlations both within- and between- platforms (scenario
7). We find that the higher the correlations between in-
formative features, the higher the AUC for a given weight
parameter, and the closer the optimal weight is to 1. This
can be explained by the fact that the higher correlations in-
crease the chance the set of correlated informative features
are selected by standard EN, improving prediction perform-
ance without requiring the help of weight parameters. As a
matter of fact, the advantage of MTP EN comparing with
the standard EN is more obvious when there are fewer cor-
related features (Additional file 3A), or the correlation coef-
ficients are smaller (Additional file 3B and C). Further, the
correlations between the informative features from different
platforms have an even larger impact on the performance
of MTP EN than the correlations between the features
from a single platform (Additional file 3B and C).

Real data analysis
We also applied the MTP EN to two real cancer data
sets, combining gene expression and DNA methylation
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data for outcome prediction. For the AML data, the goal
is to discriminate the 7q subtype from the rest. Classify-
ing patients as 7q is clinical significance as the subtype
is characterized susceptibility to infection, quick aggrava-
tion, treatment resistance and poor prognosis [25, 26].
We found that the MTP EN achieved the best perform-
ance at the weight of 0.7 (solid line in Figure 3), indicat-
ing that by penalizing less the methylation features, we
can obtain a better classifier than using standard
elastic-net. This is consistent with previous finding that
the molecular subtypes involving chromosomal abnor-
malities such as — 7/7q- could not be correctly predicted
using gene expression profiling alone [27], while DNA
methylation signatures have been shown predictive in
classifying 7q subtype [28, 29]. Using MTP-EN we have
a better chance to keep informative methylation features
in the final model, which in turn yields improved predic-
tion performance over using a standard single EN
penalty regression.

For the prostate cancer data, the goal is to classify
tumor aggressiveness, defined by both grade and stage
of prostate cancer. In contrast to the AML data, in
prostate cancer data the MTP EN achieved the best
performance at the weight of 1.1 (dashed line in
Figure 3), indicating MTP-EN yields almost equivalent
prediction performance over standard EN. In fact,
either DNA methylation or gene expression data
alone achieve good prediction, which is consistent
with previous findings [30, 31]. Given that the two
platforms have similar prediction performance, the
observation of little difference between MTP-EN and
standard EN is within expectation.
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Fig. 2 Factors associated with the change of optimal penalty ratio parameter . a For the scenario with different numbers of informative features, g; <
g, K increases monotonically to 1 (i.e. less differential penalization) as the effect size in the first omic type increases. b For fixed effect sizes 8; and B, k
becomes smaller (more differential penalization) as the number of informative features in the second omic type increases. ¢ As the overall proportion
of informative features of both types, q‘;%, decreases relative to the total number of features, k approaches 1, i.e. less differential penalization is
required to maximize the AUC. Dots represent the optimal weights and caps represent the standard error of the mean; N = 200 simulated data sets
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We also investigated the difference in feature selection
between MTP EN and standard EN for the two cancer
data sets. Differential feature selection was defined by
the numbers of times a variable was selected across the
50 repetitions of cross-validation. Since the optimal
weight parameter in AML data is less than 1, we expect
the MTP EN model to select more methylation features
than the standard EN. Indeed, six methylation loci, sel-
dom selected by standard EN, were often selected by
MTP EN. Furthermore, the majority of those six features
are associated with blood cancer (Additional file 4).
Moreover, the genes that were selected by standard EN
were also selected by MTP EN. In the PRAD data the
opposite occurred. The optimal weight parameter was
slightly larger than 1 and MTP EN selected more gene
expression features than standard EN (Additional file 4).
Four of the five genes, which were not selected by stand-
ard EN, have previously been identified as associated
with cancer.

Discussion

We propose a multi-tuning parameter elastic net
(MTP EN) for the classification of samples with data
from multiple —omic platforms. The MTP EN yields
more predictive models in several scenarios, including
when the proportion of predictive features is larger in
one omic type. In all other scenarios, the predictive

performance of MTP EN matches that of the stand-
ard single penalty EN, so there is no performance
downside for using MTP EN. Importantly, MTP EN
can be fitted using standard EN software like the
‘elmnet’ R package.

However, the MTP EN requires the tuning of one
penalty parameter per omic type, and the computa-
tional effort for penalty-parameter-tuning using cross-
validation grows exponentially in the number of tuning
parameters when using a grid search. This should not
prove a limitation for the majority of current studies
that collect data on a few omic types only. Alterna-
tively, much less costly parameter tuning using a ran-
dom search of the tuning parameter space has been
shown to be effective [32].

As is the case with penalized regression approaches
in general, the benefit of MTP EN decreases with the
increase of the number of noise features, so it is
important to consider feature pre-selection before
applying MTP EN. Excluding noise features and ap-
propriately reducing dimensionality can maximize the
performance of MTP EN.

The acute myeloid leukemia (AML) data set we used to
illustrate the MTP EN has been previously analyzed by
Taskesen et al. [14] using logistic regression with Lasso
regularization to predict AML subtypes in 344 samples.
They evaluated three different classification strategies,
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including early, late and no integration. In early integra-
tion, they combined gene expression profile (GEP) and
DNA methylation profile (DMP) features first and then
applied Lasso regression on all features to predict AML
subtypes (‘concatenation-based’ integration). In late inte-
gration, they first used Lasso regression on GEP and DMP
individually, and then trained a nearest mean classifier
with the posterior probabilities of the GEP and DMP lo-
gistic regression as predictors (a two-layer classifier). They
showed that early integration improved the predictive
power compared to classifiers trained on GEP or DMP
alone, and that in turn late integration outperformed early
integration. Our results are consistent with Taskesen et al.
regarding the performance of combined data versus the
individual data; we observed that the maximum AUC was
obtained at the weight of 0.7 (combined data) rather using
methylation data only (equivalent to using a small weight
in the MTP EN; left tail of the solid line in Figure 3) or
using gene expression data only (equivalent to using a
large weight; right tail of the solid line in Figure 3). More
importantly, however, we noticed that the mean AUC for
MTP EN is 0.82 for the optimal weight parameter, which
is higher than the AUC of 0.80 obtained from the best
method in Taskesen et al. These results further support
the view that when we consider the inter-correlations be-
tween different platforms when setting up the prediction
model, we can better utilize the complementary informa-
tion across different platforms and obtain a model with
better prediction performance.

We also applied our method on prostate adenocarcin-
oma (PRAD) TCGA data, which utilized the HM450
DNA methylation array and contained many more fea-
tures than the AML data set. The change of the mean
testing AUCs with the change of weight parameter was
very slight in the PRAD data. Still, we identified several
genes that had a much larger chance to be selected in
MTP EN (under the weight parameter of 1.1) than in
standard EN (weight = 1). Specifically, ABCC5 has been
reported to support osteoclast formation and promote
breast cancer metastasis to bone [33], ITGA1I has been
identified to regulate cancer stromal stiffness and pro-
mote metastasis in non-small cell lung cancer [34], and
ZNF706 has been associated with tumor progression in
head and neck cancer [35].

Although we only investigated the simple convex EN
penalty, using multiple penalties is likely to be beneficial
for more sophisticated convex penalties such as group-
and fused-LASSO penalties but it remains an open ques-
tion whether this would extend to non-convex penalties
such as SCAD, or the minimax concave penalty [36].

Conclusions
We proposed a multi-tuning parameter elastic net (MTP
EN) model for the classification of samples with data from
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multiple —omic platforms, with separate tuning parame-
ters for each omic type that can be fitted using existing
software. We found that MTP EN yields a more predictive
model than ordinary EN where a single penalty parameter
is used for all features in different platforms, particularly
when the proportion of informative features differs be-
tween platforms and when there is no notable correlation
between the informative features.

Additional files

Additional file 1: Self-contained R script for MTP-EN with full example.
(R 5 kb)

Additional file 2: The accuracy in testing dataset, sensitivity and
specificity of feature selection from Standard EN and MTP-EN for different
simulation settings. MTP-EN achieves better classification and sensitivity
in Scenarios 1-3. (PNG 214 kb)

Additional file 3: The optimal penalty ratio parameters versus the
change of (A) number of correlated features in the second data type; (B)
correlations among features in the second data type; and (C) correlations
among features between different platforms. Dots represent the mean of
optimal weights and caps represent the standard error of the mean; N =
200 simulation replicates. (PNG 100 kb)

Additional file 4: Listing of features that have more chance to be
selected by MTP EN in AML and PRAD datasets. (DOCX 29 kb)
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