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Abstract

Background: Relatively small changes to gene expression data dramatically affect co-expression networks inferred
from that data which, in tumn, can significantly alter the subsequent biological interpretation. This error propagation
is an underappreciated problem that, while hinted at in the literature, has not yet been thoroughly explored.
Resampling methods (e.g. bootstrap aggregation, random subspace method) are hypothesized to alleviate variability in
network inference methods by minimizing outlier effects and distilling persistent associations in the data. But
the efficacy of the approach assumes the generalization from statistical theory holds true in biological network inference
applications.

Results: We evaluated the effect of bootstrap aggregation on inferred networks using commonly applied network
inference methods in terms of stability, or resilience to perturbations in the underlying expression data, a metric
for accuracy, and functional enrichment of edge interactions.

Conclusion: Bootstrap aggregation results in improved stability and, depending on the size of the input dataset,
a marginal improvement to accuracy assessed by each method's ability to link genes in the same functional pathway.
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Background

Little is known about gene regulatory networks, even
among the simplest bacteria: Escherichia coli. E. coli has
4,377 genes and thus almost 10 million possible binary
edge interactions. If more complicated interaction motifs
(e.g. feed-forward, cascade, fan-in, fan-out) are consid-
ered, this number grows to 14 billion for 3-gene interac-
tions, and 15 trillion for 4-gene. In addition, few
interactions in E. coli have been confirmed through
experimentation [1], and even fewer in more complex
organisms, such as S. cerevisiae [2]. This results in an in-
ability to assess the performance of inferred networks in
all but the simplest organisms, and even then with a sig-
nificantly limited set of known interactions with which
to make a comparison. Synthetic networks have been
used to circumvent the absence of fully annotated inter-
action networks, but performance does not necessarily
generalize to real world applications [3].
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Still, extensive research has been performed to infer
such relationships from experimental gene expression
data through supervised and unsupervised learning
methods. This effort has yielded a number of algorithms
and computational techniques to tease apart network in-
teractions. The Dialogue for Reverse Engineering Assess-
ments and Methods (DREAM) challenge aims to
evaluate the success of gene regulatory network infer-
ence and has used standards for evaluation of network
accuracy based on known regulator-target relationships
[3]. However, inferred networks contain edges that vary
widely in their confidence, and our previous research
has shown that even small changes in the input data—
removing a few conditions in the expression data set, for
example—can result in large changes in the resulting
network (Fig. 1). Several studies, our own included, have
reported the use of resampling methods in conjunction
with network inference to achieve a.

higher level of stability in the resulting networks [4-7],
though it remains unclear how effective this approach is
for improving.

network inference results, despite success in other ap-
plications where “truth” is known [8-11].
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Fig. 1 Stability assessment. Stability of £. coli network inference by
CLR during condition removal, assessed in terms of MAE. Bands
indicate a 99% confidence interval constructed from the samples
taken at each data fraction

Other methods have been developed for statistical
aggregation in network inference [12-16]. Filosi et al.
2014 coined several indicators of stability through use
of resampling by cross validation (specifically: leave-
one-out, k-fold). These stability indicators offer quan-
titative metrics to assess the resilience of a given
method to the presence/absence of conditions, but
resampled networks were not aggregated in an attempt to
improve predictions [12]. In de Matos Simoes et al. 2012,
bootstrap aggregation was applied to the C3NET (Conser-
vative Causal Core network) algorithm, thus termed
bootstrapped-C3NET, or BC3NET, demonstrating im-
provement in terms of F1 score compared to C3NET.
Their approach additionally provided a statistical proced-
ure for determining an optimal confidence threshold
parameter, a nontrivial selection, using the networks gen-
erated during bootstrapping [13]. Guo et al. 2017
employed use of partial correlations (i.e. isolation of a sin-
gle gene pair at a time), extracting only the most highly
correlated relationships as edges in their RLowPC (Rele-
vance Low order Partial Correlation) method [17]. Fried-
man et al. 1999 applied bootstrapping to yield a successful
result, but by resampling genes, not conditions, and apply-
ing to small, synthetic datasets [14]. GENIE3 (GEne Net-
work Inference with Ensemble of trees) [15] and
ARCANE (Algorithm for the Reconstruction of Accurate
Cellular Networks) [16] implicitly perform subspace re-
sampling, but neither evaluate the associated effects expli-
citly. Our work expands on these previous efforts by
focusing on the relationship between the initial set of

Page 2 of 9

expression conditions used to infer the network and pa-
rameters of the resampling approaches to both stability
and accuracy of the resulting networks, applied to
real-world datasets.

We evaluate feature bootstrap aggregating as a po-
tential remedy to the observed variability in network
inference applications, in terms of both stability (i.e.
resistance to variability in inferred relationships) and
accuracy, as scored against the standards. We then ad-
dress the validity of the assumption that stability and
accuracy are correlated, as this has come up in net-
work inference problems in which direct evaluation is
not possible [4]. Finally, we show that bootstrapping
improves both stability and accuracy when inferring
networks from datasets, contingent on the underlying
inference method and the number of input conditions.

Results

Sensitivity to number of conditions

To examine the effects of removing data from the data-
set used for network inference we obtained a large set of
transcriptomics data representing > 800 conditions (dif-
ferences in growth conditions, genetic differences, time
points, etc.) for E. coli used by the DREAM5 competi-
tion [3]. We first applied a standard mutual-information
based method for network inference, the context-likeli-
hood of relatedness (CLR) algorithm [18], to the entire
dataset to generate a network. Sets of individual condi-
tions were removed randomly in successively larger
amounts and constituent networks were inferred based
on the subset of conditions, 10 times for each step.
Mean absolute error (MAE), or the average of the abso-
lute differences between two sets of observations, of
each constituent network was calculated relative to the
parent network. Figure 1 shows the effect of such pertur-
bations. As we previously observed with a much
smaller starting set of data in Symechoccocus [4], as
more conditions are removed, the resulting constitu-
ent networks generated by CLR increasingly differ
from the network generated with all conditions (the
parent network). Though approaches have been used
that purport to address this variability issue, the effi-
cacy of these approaches have not been rigorously
evaluated [4, 5, 13, 15, 16].

Accuracy
To replicate the bootstrapping approach commonly used
by us and others, we subsample a specific fraction of the
total dataset a number of times and then aggregate the
results by averaging edge weights. Using the CLR
method as the underlying network inference method, we
refer to this approach as BCLR.

We first examined the accuracy of the BCLR approach
on the entire E. coli dataset while varying the subsampling
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fraction used (Fig. 2). We found that 200 iterations were
sufficient for BCLR to converge (Additional file 1: Supple-
mental Results and Additional file 2: Figure S1). We evalu-
ated accuracy as area under the precision-recall (AUPR)
curve with known transcription factor-target relation-
ships that were used to evaluate the DREAM5 competi-
tion [3]. At a subsampling fraction of 5% (that is,
keeping random subsets of 5% of the ~ 800 conditions,
or ~40 conditions), a performance increase over CLR
of ~6% (p-value: 4.9E-9) is observed, meaning BCLR
was able to outperform CLR when subsampling from
the full set of conditions.

Stability

Network inference methods require data from a num-
ber of perturbations to be able to draw accurate infer-
ences of real relationships. Based on the premise of
bootstrapping, and results reported elsewhere [4, 12,
13], we hypothesized that bootstrapping would im-
prove the stability of the inferred network relative to
the parent network inferred with all the conditions.
We therefore assessed the stability of BCLR with 5%
subsampling fraction over a range of different initial
dataset sizes.

Figure 3 shows that when considering all the data, the
stochastic nature of BCLR with 5% subsampling fraction
causes the resulting networks to differ from the parent
network (inferred using all the data). However, with
smaller numbers of conditions—fewer than about 160—
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Fig. 2 Subsampling fraction sensitivity. A sweep across subsampling
fractions is performed to show performance of BCLR on the E. coli
dataset. The largest difference between methods, at 5% subsampling
fraction, was determined significant with p-value 4.9E-9
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BCLR demonstrates improved stability over CLR, and this
is particularly accentuated at small initial dataset sizes.

In terms of accuracy, Fig. 3 demonstrates the effect-
iveness of BCLR across the majority of condition set
sizes. With larger initial dataset sizes BCLR outper-
forms CLR in its ability to infer correct relationships
among transcription factor-gene interactions. For
smaller condition sets (i.e. >50% removed), CLR ap-
pears to be more robust to the loss of conditions.
However, 40% of the full set is 322 conditions, mean-
ing BCLR with 5% subsampling fraction only “sees” 16
conditions during each iteration.

Dataset size

While the E. coli dataset is informative from the stand-
point of having many conditions to infer relationships
from, the reality is that most experiments involve far
smaller datasets, but will still use network inference in
their analysis [4, 19, 20]. Accordingly, we looked at boot-
strapping effects when initial dataset sizes were 40 condi-
tions, which is closer to the size that might be obtained
from a single experiment, or combining multiple smaller
experiments for less-studied organisms. Examining the
performance of BCLR on such datasets with varying sub-
sampling fractions (Fig. 4) we found that CLR consistently
outperformed BCLR. This indicates that, in contrast to a
large initial dataset size (Fig. 1), there is no advantage to
bootstrapping with smaller initial dataset sizes.

Choice of inference method

The CLR method is based on a mutual information
metric, but many studies use simpler correlation metrics,
like Pearson correlation, to predict associations between
genes. We therefore used our bootstrapping approach,
but applied it with Pearson correlation as the underlying
inference method. We show performance of the method
when applied to the full initial dataset and to reasonably
sized (40 conditions) initial datasets in Fig. 5. The boot-
strapped Pearson method shows improvements over the
simple Pearson under most subsampling fractions, and
interestingly, with the reasonably sized initial datasets,
bootstrapped Pearson modestly outperforms CLR (sim-
ple or bootstrapped, see Fig. 4) with maximum AUPRs
of 0.053 versus 0.050 for bootstrapped Pearson and
bootstrapped CLR, respectively (p-value: 2.2E-4). This
may not be surprising given that mutual information re-
quires knowledge of the probability distribution, and so
with smaller sample sizes the probability estimate might
deviate from Gaussian distribution dramatically.

Functional overlap

A primary motivation for the DREAM5 competition and
for development of new network inference methods is to
determine gene regulatory networks, which connect
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Fig. 3 Dataset size sensitivity. Subsampling fraction held constant (5%) and number of conditions are varied to demonstrate stability in terms of
MAE (left) and effect on accuracy in terms of AUPR (right) on the E. coli dataset. Bands indicate a 99% confidence interval constructed from the
samples taken at each data fraction. For MAE, all differences were significant (p-value < 0.01) except for 0.9 data fraction remaining (p-value: 0.77).
For AUPR, all differences were significant (p-value < 0.01) except for 0.4 and 0.5 data fraction remaining (p-values of 0.63 and 0.04, respectively)
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Fig. 4 Realistically sized dataset. Number of conditions reduced to
40, and a sweep across subsampling fractions is performed to show
performance of BCLR on realistically sized data sets derived from the
greater E. coli dataset. Bands indicate a 99% confidence interval
constructed from the samples taken at each data fraction. Differences
were significant (p-value <0.01) for subsampling fractions 30%
and below

transcription factors with their regulated targets. Thus
far, we have focused on this application using a set of
known transcription factor-target pairs to assess per-
formance, as done in DREAMS5. However, network infer-
ence methods can also be used to determine functional
overlap from transcriptional (or other) data across many
conditions [4, 17, 21, 22]. Thus, we wanted to assess the
ability of bootstrapped inference methods to infer edges
between genes in the same pathways. Figure 6 shows the
results of this analysis. This indicates that BCLR pro-
vides a slight advantage over CLR when the initial data-
set size is small, but this advantage disappears when
using a large initial dataset size.

Discussion

Computational overhead

Due to the additional computational overhead intro-
duced by bootstrap iterations, applications must con-
sider whether the marginal gains to stability and
accuracy are justified. This is largely based on the size
of the dataset, the inference algorithm used, and the
availability of high-performance computing resources,
and will vary on a case-by-case basis.

Accuracy

Accuracy as evaluated by AUPR increased marginally
over non-bootstrapped inference methods for certain
dataset sizes and subsampling fractions. It must be
maintained that these results hold for the limited
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datasets evaluated in this work, and with incomplete
(silver) standards. Generalization to real-world data-
sets is assumed, but not guaranteed. Further, when
performing network inference using unlabeled data-
sets, accuracy cannot be assessed. We can only employ
the best-performing inference method, as assessed with
known interactions. We can, however, assess stability
without labeled data, but its use as a proxy for accuracy
may not be justified, as discussed in the next section.

Stability as a proxy for accuracy

Stability, that is, resilience to changes in the underlying
data, is not necessarily correlated with accuracy, despite
a general inverse relationship between AUPR and MAE
(see Additional file 3: Figures S2 and Additional file 4:
Figure S3). BCLR at 5% subsampling showed greatest
AUPR improvement where no conditions were removed,
which corresponds to the only point where BCLR was
less stable than CLR. Similarly, with smaller datasets (i.e.
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Fig. 6 Functional enrichment analysis. The ratio of the functional enrichment overlap (number of edges connected annotated genes in the same
category/number of edges connected any two annotated genes) is shown for E. coli networks made using BCLR and 40 datasets (green

bars), using CLR and 40 datasets (blue bars), using BCLR and all datasets (orange bars) and using CLR and all datasets (black bars). Large
(200000 edges), medium (10000 edges) and small (2000 edges) networks were examined
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>60% conditions removed), BCLR was more stable than
CLR, but CLR resulted in higher-accuracy networks.
That said, when between 10 and 60% of conditions were
removed, BCLR exceeded CLR in both metrics (Fig. 3).
But without prior knowledge of true interactions, and
therefore no standard by which to calculate AUPR, a
novel study cannot optimize by accuracy.

By pursuing stability as a proxy and making use of all
conditions, CLR would be selected over BCLR, despite
the improved accuracy of the latter. Thus, our recom-
mendation would be to optimize for the most stable
bootstrapped network. That is, (i) construct a parent net-
work at each subsampling fraction, (ii) for each sub-
sampling fraction, iteratively remove conditions and run
BCLR, comparing each result to the respective parent
network, (iii) select the subsampling fraction that results
in the most stable condition-removal curve, and finally
(iv) use the resulting subsampling fraction with all avail-
able data.

Functional edge overlap

Although AUPR is a measure of accuracy that has
been used in a number of studies, including this one,
we wanted to also include a more general measure-
ment of network accuracy in addition to AUPR. Rather
than focus only on regulator-target pairs we took ad-
vantage of the abundant functional annotation infor-
mation available for E. coli and determined how often
each network inference method could link genes in
the same functional category. This approach revealed
several strategies for inferring accurate networks, use
as much data as possible, smaller networks are more
accurate than larger ones and BCLR has a slight ad-
vantage over CLR with small networks but not with
large networks.

Conclusions

This work explored the effects of feature bootstrap aggre-
gation on the network inference algorithm in terms of sta-
bility and accuracy. With respect to stability, BCLR
improved over CLR at recreating its parent network
across condition set sizes for small subsampling fractions
(e.g. 5%). Larger subsampling fractions had little effect on
resulting networks, providing marginal improvements in
stability. In terms of accuracy, BCLR demonstrated a no-
ticeable improvement over CLR at low subsampling frac-
tions and for cases in which the initial pool of conditions
was sufficiently large. This is also supported by FEO ana-
lysis. In concert, these findings reveal several important
considerations when using CLR (or BCLR) to infer gene
regulatory networks in novel studies where true interac-
tions are unknown.
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Methods

Datasets

In order to evaluate the effects of data structure and
variability on network inference we chose to utilize a
large transcriptional compendium previously used for
the DREAMS5 network inference competition [3]. This
included gene expression data from 805 perturbations of
Escherichia coli. For this dataset, the underlying network
is not completely known, but we considered the set of
known transcription factor-target relationships used by
the DREAMS5 competition to be the ‘silver standard’ for
evaluation. This silver standard provides a reasonable
way to compare the performance of different network
inference approaches. In this study we focus on the use
of gene expression measurements on network inference
and so refer to each individual expression set arising
from an individual perturbation as a ‘condition’.

Network inference

Networks were inferred using the context likelihood of
relatedness (CLR) algorithm [18] or Pearson correlation
coefficient. For CLR, default parameters were used, ex-
cept for number of bins and order of the fitted splines,
which were set to 10 and 3, respectively. For each pos-
sible interaction, CLR produces a z-score that corre-
sponds to the significance of the interaction given its
contextual neighborhood. These values were used as-
generated in deciding the confidence of a given edge.

Evaluation

Network generation methods (e.g. with different boot-
strapping parameters) were evaluated against respective
parent networks and the silver standard to assess stabil-
ity and accuracy, respectively. We define a parent net-
work as the network inferred by a particular algorithm
(CLR, Pearson, or their bootstrapped variants) using the
entire set of conditions. We define stability as the simi-
larity, evaluated as mean absolute error (MAE), between
a network inferred from a subset of conditions and the
network inferred from the complete set of data (the par-
ent network). Accuracy is defined as how well a network
captures the set of known, experimentally defined tran-
scription factor-target relationships.

The provided standards contain edge information for
152,280 of approximately 10 million possible interac-
tions, 2,066 of which are positive. To account for this
sparsity when comparing to generated networks, the
standard was cast as a dense matrix wherein absent
edges were encoded as “not a number” (NaN), effectively
masking unknown edges in performance evaluations, a
practice generally accepted in the literature [3]. It is
worth noting that the generated standard is a directed
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graph (e.g. an edge between node A and node B does
not necessarily guarantee an edge between node B and
node A) whereas the networks generated by Pearson
correlation and CLR are undirected graphs (i.e. edges
between two nodes exist in both directions).

Stability was evaluated by MAE with the respective
parent network. Lower values indicate greater similarity
and, by extension and our definition, stability. Accuracy
was evaluated by area under the precision-recall curve
(AUPR). AUPR is parameterized by threshold selection
(here, a z-score cutoff) of a given test network bench-
marked against a standard. This enables performance as-
sessment without the need for explicit threshold
selection, a nontrivial decision with implications beyond
the scope of this work. There are other acceptable met-
rics to assess network similarity—root mean squared
error, Jaccard index, etc.—but AUPR was selected for its
wide use in biological network inference applications,
because thresholds need not be selected, and its better
performance compared to other classifiers (e.g. receiver
operating characteristic) when dealing with imbalanced
datasets [23].

We also determined accuracy by examining how many
edges in the network connected two genes that were in
the same functional category. Functional information for
E. coli genes was obtained from EcoCyc [24]. We use a
metric termed the functional edge overlap (FEO) ratio,
the number of edges linking annotated genes in the
same functional category divided by the number of all
edges linking annotated genes. If an edge links to a gene
that has no functional annotation that edge is ignored
for the FEO analysis. FEO ratios can range from 0 (no
edges link annotated genes in the same category) to 1.0
(all edges linked annotated genes in the same category).

Feature bootstrap aggregation

In light of the fact that varying the number of conditions
in biological network inference can have substantial im-
pact on the inferred network (Fig. 1), we explored use of
bootstrap aggregating of the conditions with the goal of
generating a stable network. That is, a network less sen-
sitive to the presence or absence of certain conditions.
Additionally, we hypothesized that bootstrap aggregation
would result in improved network inference perform-
ance (i.e. accuracy).

We implemented condition bootstrap aggregation by
randomly selecting a fraction of the full condition set
without replacement, then running CLR on this subset
to generate a constituent network. This process was
repeated n times until convergence (n=200; Add-
itional file 2: Figure S1). Convergence was demon-
strated by evaluating the addition of each constituent
network after each iteration in terms of AUPR with
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the silver standard, as well as MAE with the consensus
network from the previous iteration. Resulting con-
stituent networks were aggregated by averaging their
edge weights, yielding a consensus network. The
bootstrap-aggregated version of CLR is henceforth re-
ferred to as BCLR. Note also that we implemented a
bootstrap-aggregated variant of Pearson’s correlation
method for comparison purposes, but this algorithm
was not the primary focus of this work.

Subsampling fraction

Assuming CLR-specific parameters do not change, boot-
strap aggregation introduces two additional parameters:
number of bootstrap iterations and subsampling frac-
tion. Number of iterations is chosen to ensure conver-
gence (Additional file 2: Figure S1), so ultimately only
subsampling fraction introduces additional complexity.
A sweep of subsampling fractions was performed to as-
sess its effect on performance in terms of accuracy only,
as each network is itself the associated parent, barring
stability assessment (Fig. 2). This was achieved by run-
ning BCLR with subsampling fractions ranging from
0.01 to 1.0.

Limiting input conditions

Because we are assessing these methods on a very large
dataset of transcriptional data from E. coli (>800), we
were also interested to see the effects of limiting the
number of conditions considered to levels that would
be more reasonable to expect for other organisms that
have not been studied as extensively. We therefore
compared performance of the methods (CLR and
BCLR) on input data limited to randomly selected sub-
sets of the initial data, from 10 to 90% of initial data.
Because there is variability associated with which spe-
cific conditions are removed, this process was repeated
10 times for each fraction removed, from which a mean
and confidence interval was constructed for the rele-
vant plots. For information on how the confidence in-
tervals were constructed, see Additional file 1:
Supplemental Results.

Significance testing

Differences in mean AUPR and/or MAE were tested for
significance using a two-sided T-test with the null hy-
pothesis that sample means are equal. Unequal popula-
tion variances were assumed when conducting the
T-test, as sample variances were observed to differ be-
tween results for each algorithm (CLR, Pearson) and
their bootstrapped variants (BCLR, BPearson). P-values
are reported directly.



Colby et al. BMC Bioinformatics (2018) 19:376

Additional files

Additional file 1: Supplemental Information for Improving network
inference and functional module identification using resampling
methods. (DOCX 16 kb)

Additional file 2: Figure S1. Figure for bootstrap aggregation
convergence results. (PNG 44 kb)

Additional file 3: Figure S2. Figure showing AUPR versus MAE for
inferred networks. (PNG 72 kb)

Additional file 4: Figure S3. Figure showing effect of varying number
of conditions on stability and accuracy. (PNG 216 kb)

Abbreviations

(B)C3NET: (Bootstrapped) Conservative Causal Core (C3) Network;
(B)CLR: (Bootstrapped) Context Likelihood of Relatedness; ARCANE: Algorithm
for the Reconstruction of Accurate Cellular Networks; AUPR: Area under the
precision-recall curve; DREAM: Dialogue for Reverse Engineering Assessments
and Methods; FEO: Functional edge overlap; GENIE3: GEne Network Inference
with Ensemble of trees; MAE: Mean absolute error; NaN: Not a number;
RLowPC: Relevance Low order Partial Correlation

Acknowledgements
PNNL is operated for DOE by Battelle Memorial Institute under contract DE-
ACO5-76RL0O1830.

Funding

This research was supported by the Department of Energy Office of Biological
and Environmental Research (BER) and is a contribution of the Scientific Focus
Area "Phenotypic response of the soil microbiome to environmental
perturbations”. The funding body did not influence the design of the
study; the collection, analysis, and interpretation of data; or the writing
of this manuscript.

Availability of data and materials

Gene expression data used in this study are available from the DREAMS5 website
(https.//www.synapse.org/#!Synapse:syn2787209/wiki/70351). Code used
for network generation and evaluation is available from the corresponding
author upon reasonable request.

Authors’ contributions

SMC and CCO developed the software. SMC performed the majority of the
analysis, generated figures, and prepared the manuscript. RSM provided
transcriptomic data and carried out FEO analysis. RR provided guidance for
the approaches used. JEM conceived of and provided guidance and direction
for the project. The manuscript was written through contributions of all authors.
All authors have given approval to the final version of the manuscript.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

Author details

'Earth and Biological Sciences Directorate, Pacific Northwest National
Laboratory, Richland, Washington, USA. Present Address: Center for Brain
Immunology and Glia, University of Virginia, Charlottesville, Virginia, USA.

Page 8 of 9

Received: 21 May 2018 Accepted: 27 September 2018
Published online: 12 October 2018

References

1. Gama-Castro S, Salgado H, Santos-Zavaleta A, Ledezma-Tejeida D, Mufiz-
Rascado L, Garcfa-Sotelo JS, Alquicira-Hernandez K, Martinez-Flores I, Pannier
L, Castro-Mondragdn JA. RegulonDB version 9.0: high-level integration of
gene regulation, coexpression, motif clustering and beyond. Nucleic Acids
Res. 2015/44(D1):D133-43.

2. Maclsaac KD, Wang T, Gordon DB, Gifford DK, Stormo GD, Fraenkel E. An
improved map of conserved regulatory sites for Saccharomyces cerevisiae.
BMC Bioinf. 2006;7(1):113.

3. Marbach D, Prill RJ, Schaffter T, Mattiussi C, Floreano D, Stolovitzky G.
Revealing strengths and weaknesses of methods for gene network
inference. Proc Natl Acad Sci U S A. 2010;107(14):6286-91.

4. McClure RS, Overall CC, McDermott JE, Hill EA, Markillie LM, McCue LA,
Taylor RC, Ludwig M, Bryant DA, Beliaev AS. Network analysis of
transcriptomics expands regulatory landscapes in Synechococcus sp. PCC
7002. Nucleic Acids Res. 2016;44(18):8810-25.

5. Froehlich H, Fellmann M, Sueltmann H, Poustka A, Beissbarth T. Large scale
statistical inference of signaling pathways from RNAi and microarray data.
BMC Bioinf. 2007,8:386.

6. van Dam S, Vosa U, van der Graaf A, Franke L, de Magalhaes JP. Gene co-
expression analysis for functional classification and gene-disease predictions.
Brief Bioinform. 2017;19(4):575-92.

7. Xulvi-Brunet R, Li H. Co-expression networks: graph properties and
topological comparisons. Bioinformatics. 2010,26(2):205-14.

8. Bertoni A, Folgieri R, Valentini G. Bio-molecular cancer prediction with
random subspace ensembles of support vector machines. Neurocomputing.
2005;63:535-9.

9. Ho TK The random subspace method for constructing decision forests. IEEE
Trans Pattern Anal Mach Intell. 1998;20(8):832-44.

10. Zhang H, Singer BH. Recursive partitioning and applications. New York:
Springer-Verlag; 2010.

11. Breiman L. Bagging predictors. Mach Learn. 1996,24(2):123-40.

12. Filosi M, Visintainer R, Riccadonna S, Jurman G, Furlanello C. Stability
indicators in network reconstruction. PLoS One. 2014;9(2).e89815.

13. de Matos Simoes R, Emmert-Streib F. Bagging statistical network inference
from large-scale gene expression data. PLoS One. 2012;7(3):e33624.

14.  Friedman N, Goldszmidt M, Wyner A. Data analysis with Bayesian networks:
A bootstrap approach. In: Proceedings of the Fifteenth conference on
Uncertainty in artificial intelligence: Morgan Kaufmann Publishers Inc; 1999.
p. 196-205.

15. Irrthum A, Wehenkel L, Geurts P. Inferring regulatory networks from
expression data using tree-based methods. PLoS One. 2010;5(9):e12776.

16.  Margolin AA, Wang K, Lim WK, Kustagi M, Nemenman |, Califano A. Reverse
engineering cellular networks. Nat Protoc. 2006;1(2):662.

17. Guo W, Calixto CPG, Tzioutziou N, Lin P, Waugh R, Brown JWS, Zhang
R. Evaluation and improvement of the regulatory inference for large
co-expression networks with limited sample size. BMC Syst Biol. 2017;
11(1):62.

18.  Faith JJ, Hayete B, Thaden JT, Mogno |, Wierzbowski J, Cottarel G, Kasif S,
Collins JJ, Gardner TS. Large-scale mapping and validation of Escherichia
coli transcriptional regulation from a compendium of expression profiles.
PLoS Biol. 2007;5(1):e8.

19. Yoon H, McDermott JE, Porwollik S, McClelland M, Heffron F. Coordinated
regulation of virulence during systemic infection of Salmonella enterica
serovar typhimurium. PLoS Pathog. 2009;5(2):e1000306.

20. Bazil JN, Stamm KD, Li X, Thiagarajan R, Nelson TJ, Tomita-Mitchell A, Beard
DA. The inferred cardiogenic gene regulatory network in the mammalian
heart. PLoS One. 2014;9(6):2100842.

21. Wang J, Ma Z, Carr SA, Mertins P, Zhang H, Zhang Z, Chan DW, Ellis
MJ, Townsend RR, Smith RD, et al. Proteome profiling outperforms
transcriptome profiling for Coexpression based gene function
prediction. Mol Cell Proteomics. 2017;16(1):121-34.

22, Saris CG, Horvath S, van Vught PW, van Es MA, Blauw HM, Fuller TF,
Langfelder P, DeYoung J, Wokke JH, Veldink JH, et al. Weighted gene co-
expression network analysis of the peripheral blood from amyotrophic
lateral sclerosis patients. BMC Genomics. 2009;10:405.


https://doi.org/10.1186/s12859-018-2402-0
https://doi.org/10.1186/s12859-018-2402-0
https://doi.org/10.1186/s12859-018-2402-0
https://doi.org/10.1186/s12859-018-2402-0
https://www.synapse.org/#!Synapse:syn2787209/wiki/70351

Colby et al. BMC Bioinformatics (2018) 19:376 Page 9 of 9

23. Saito T, Rehmsmeier M. The precision-recall plot is more informative than
the ROC plot when evaluating binary classifiers on imbalanced datasets.
PLoS One. 2015;10(3):e0118432.

24.  Keseler IM, Mackie A, Santos-Zavaleta A, Billington R, Bonavides-Martinez C,
Caspi R, Fulcher C, Gama-Castro S, Kothari A, Krummenacker M, et al. The
EcoCyc database: reflecting new knowledge about Escherichia coli K-12.
Nucleic Acids Res. 2017;45(D1):D543-50.

Ready to submit your research? Choose BMC and benefit from:

e fast, convenient online submission

o thorough peer review by experienced researchers in your field

 rapid publication on acceptance

o support for research data, including large and complex data types

e gold Open Access which fosters wider collaboration and increased citations
e maximum visibility for your research: over 100M website views per year

At BMC, research is always in progress.

Learn more biomedcentral.com/submissions k BMC




	Abstract
	Background
	Results
	Conclusion

	Background
	Results
	Sensitivity to number of conditions
	Accuracy
	Stability
	Dataset size
	Choice of inference method
	Functional overlap

	Discussion
	Computational overhead
	Accuracy
	Stability as a proxy for accuracy
	Functional edge overlap

	Conclusions
	Methods
	Datasets
	Network inference
	Evaluation
	Feature bootstrap aggregation
	Subsampling fraction
	Limiting input conditions
	Significance testing

	Additional files
	Abbreviations
	Acknowledgements
	Funding
	Availability of data and materials
	Authors’ contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher’s Note
	Author details
	References

