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Abstract

Background: High-throughput expression profiling experiments with ordered conditions (e.g. time-course or
spatial-course) are becoming more common for studying detailed differentiation processes or spatial patterns.
Identifying dynamic changes at both the individual gene and whole transcriptome level can provide important
insights about genes, pathways, and critical time points.

Results: We present an R package, Trendy, which utilizes segmented regression models to simultaneously
characterize each gene’s expression pattern and summarize overall dynamic activity in ordered condition
experiments. For each gene, Trendy finds the optimal segmented regression model and provides the location and
direction of dynamic changes in expression. We demonstrate the utility of Trendy to provide biologically relevant
results on both microarray and RNA-sequencing (RNA-seq) datasets.

Conclusions: Trendy is a flexible R package which characterizes gene-specific expression patterns and summarizes
changes of global dynamics over ordered conditions. Trendy is freely available on Bioconductor with a full vignette at
https://bioconductor.org/packages/release/bioc/html/Trendy.html.
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Background
High-throughput, transcriptome-wide expression profil-
ing technologies such as microarrays and RNA-seq have
become essential tools for advancing insights into bio-
logical systems. The power of these technologies can be
further leveraged to study the dynamics of biological pro-
cesses by profiling over ordered conditions such as time
or space. In this article, we use the general term “time-
course” to refer to any dynamically ordered condition and
“gene” to any genomic feature (i.e. transcripts, exons).
Many methods for time-course experiments aim to

identify differentially expressed genes between multi-
series time-courses (e.g. two treatments monitored over
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time) [1–3]. A review of the statistical methods for multi-
series experiments can be found in [4], and an evaluation
of those methods is given in [5]. Alternatively, single-
series time-course experiments, those where a single
treatment is monitored over time, are also of biologi-
cal interest. In these experiments, genes with dynamic
expression patterns over time are identified, which can
provide insight on regulatory genes [6] and reveal key
transitional periods [7]. We focus our attention on single-
series time-courses in this article.
Statistical methods for analyzing single-series time-

course data have largely focused on clustering gene
expression [8, 9]. These types of methods typically do not
emphasize each gene’s individual expression path, instead
they use the expression of each gene over time to form
homogenous gene clusters which can then be used to
construct regulatory networks or infer functional enrich-
ment. FunPat [10] is one method focused on clustering
genes, and rather than post-hoc enrichment analysis, it
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incorporates functional gene annotations directly into a
model-based clustering framework.
EBSeq-HMM [11] was developed in part to address the

deficiency in characterizing genes individually. It employs
a hidden Markov model to classify each gene into distinct
expression paths. Despite its utility, differences between
time points may not be sufficiently detectable for exten-
sive or densely sampled time-course experiments with
subtle expression changes. Additionally, EBSeq-HMM is
not suitable for long time-courses as the number of pat-
terns it attempts to detect increases exponentially (the
total number of patterns is 3time points−1).
Here we propose an approach we call Trendy which

employs the method of segmented regression models to
simultaneously characterize each gene’s expression pat-
tern and summarize overall dynamic activity in single-
series time-course experiments. For each gene, we fit a
set of segmented regression models with varying numbers
of breakpoints. Each breakpoint represents a dynamic
change in the gene’s expression profile over time. A model
selection step then identifies the model with the optimal
number of breakpoints.
We define the top dynamic genes as those that are

well-profiled based on the fit of their optimal model. For
each top gene, the parameter estimates of their optimal
model are used to fully characterize the gene’s expression
dynamics across the time-course. A global summary of
the dynamic changes across all top genes is then repre-
sented by the distribution of breakpoints across all time
points. Our method does not require replicate time points
and although we focus on time-course of gene expres-
sion, it may be applied to alternative features (e.g. isoform
or micro-RNA expression) and/or other experiments with
ordered conditions (e.g. spatial course).

Implementation
Trendy is written in R and freely available on Bio-
conductor at https://bioconductor.org/packages/release/
bioc/html/Trendy.html
We include a detailed vignette with working examples

and an R/Shiny application to visualize and explore the
fitted trends. An overview of the Trendy framework is
given in Fig. 1 and details on the implementation are given
below.

Input
The input data should be a G - by - N matrix containing
the normalized expression values for each gene and each
sample. Between-sample normalization is required prior
to Trendy, and should be performed according to the type
of data (e.g. Median-Normalization [12] for RNA-seq data
or RMA [13] for microarray data). The samples should
be sorted following the time-course order. A time vector
should also be supplied to denote the relative timing of

each sample. This is used to specify the spacing of time
points and indicate any replicated time points. The user
should also specify the total number of breakpoints con-
sidered per gene. The default value is K = 3, but may be
specified via the parameter maxK.

Model fitting
We denote the normalized gene expression of gene g and
sample/time t as Yg,t for a total of G genes and N samples.
We directly model Yg,t as a function of time t, where t ∈
t1, . . . , tT , if time points are not replicated then N = T ,
otherwise for replicated experiments N ≥ T . The model
for gene g with k breakpoints is:

Mk
g : Yg ∼ βk

g,0+βk
g,1 ∗ t ∗ I

{
t : t ≥ t1, t ≤ bkg,1

}
+ . . .

+βk
g,k+1 ∗

(
t − bkg,k

)
∗ I

{
t : t ≥ bkg,k + 1, t ≤ tT

} (1)

We aim to estimate k breakpoints, bkg,1, b
k
g,2, . . . , b

k
g,k ,

occurring between t1 and tT . We also estimate k+2β ’s: βk
0

indicates the intercept and the remaining k+1β ’s indicate
slopes for the k + 1 segments separated by k breakpoints.
Estimation of the model parameters is done using the
iterative method in Muggeo, 2003, a key of which is lin-
earizing the segmented regression model in (1) [14]. The
method is available via the segmented R package [15].

Model selection
For each gene, we fit K + 1 models for k ∈ {0, 1, . . . ,K}
and select the model having the optimal number of break-
points by comparing the Bayesian information criterion
(BIC) [16] among all models:

k̃g = argmink=0,...,KBICg,k = argmink=0,...,K log(N)(2k + 3) − 2L̂Mk
g

where L̂Mk
g
denotes the log-likelihood for the segmented

regression model with k breakpoints for gene g. For a
model with k breakpoints, there are k estimated break-
points, k + 1 estimated segment slopes, and an estimated
intercept and error. The BIC of the linear model having no
breakpoints, k = 0, is also considered here.

Goodness of Fit
An optimal model will be found for every gene, how-
ever we only further consider those genes with a good fit.
We quantify the quality of the fit for each gene’s optimal
model as the adjusted R2, which also penalizes for model
complexity, as:

R̄2
g,k̃g

= 1 −
(
1 − R2

g,k̃g

)
N − 1

N −
(
k̃g + 1

)
− 1

where k̃g represents the optimally chosen k for gene g.
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Fig. 1 Trendy framework. The Trendy framework fits multiple segmented regression models to each feature/gene. The optimal model is selected as
the one with the smallest BIC. Trendy summarizes the expression pattern of each gene and provides a summary of global dynamics

Output
Trendy reports the following for each gene’s optimal
model:

• Gene specific adjusted R2: R̄2
g,k̃g

• Segment slopes: β k̃g
g,0, . . . ,β

k̃g
g,k̃g+1

• Breakpoint estimates: bk̃gg,1, . . . , b
k̃g
g,k̃g

To avoid overfitting, the optimal number of breakpoints
will be set as k̃g = k̃g − 1 if at least one segment contains
less than mNS data points. The threshold mNS can be
specified by the user via the minNumInSeg argument; the
default is five. Trendy characterizes expression patterns
for only the top dynamic genes, defined as those whose

optimal model has high R̄2
g,k̃g

. The default cutoff is .5, but
may be specified by the user.
Trendy also summarizes the fitted trend or expression

pattern of top genes. Once the optimal model for a gene
is selected, each segment is assigned a direction of ‘up’,
‘down’, or ‘no-change’ based on the sign and p-value of its

slope estimate β
k̃g
g,i. The p-value is obtained by compar-

ing the t-statistic calculated from the slope coefficient and
its standard error to the t-distribution with one degree of
freedom. If the p-value is greater than cpval the trend of
the segment will be defined as ‘no-change’, otherwise, if
the p-value is smaller than cpval the segment is set to ‘up’
or ‘down’ depending on the sign of the slope. The default
value of cpval is 0.1, but may be specified by the user.
Trendy represents the trends ‘up’, ‘down’, and ‘no-change’



Bacher et al. BMC Bioinformatics  (2018) 19:380 Page 4 of 10

as 1, -1, and 0, and genes fitted trends may be clustered
using an algorithm such as hierarchical clustering. Genes
in the same group may then be investigated using gene
enrichment analysis [17–19] to examine whether common
functional annotations exist.
A global view of expression changes is obtained by

computing the breakpoint distribution as the sum of all
breakpoints at each time point over all dynamic genes:

Dt =
∑

g=1,...,G

∑

i=1,...,k̃g

I
{
bk̃gg,i = t

}

Visualization
The Trendy package includes an R/Shiny application
which provides visualization of gene expression and the
segmented regression fit. The application also allows users
to extract a list of genes which follow particular expres-
sion patterns. The interface is shown in Additional file 1:
Figure S1.

Results
Simulation study
We performed a simulation study to illustrate the oper-
ating characteristics of Trendy using an RNA-seq dataset
with N = 96 samples. The data are technical replicates
collected and sequenced at the same time following the
protocol from Hou et al., 2015 [20], and thus have no
expected trend (this dataset is provided here as Additional
file 2). Data were simulated through repeatedly shuffling
the sample order of this dataset and assigning time points.

We investigated the effect of the following parameters
on the number of dynamic genes identified by Trendy:

• Total number of breakpoints: K = 1, 5, 10.
• Minimum number of time points required in a

segment: mNS = 2, 5.
• Total length of time course: T = 25, 50.
• Distribution of time points:

– Evenly spaced and short
(t = {1, 2, . . . , 24, 25}).

– Evenly spaced and long
(t = {1, 5, . . . , 120, 125}).

– Randomly spaced
(ti sampled from{1, 2, . . . , 124, 125} without
replacement).

Each combination of the parameter settings described
above were used to evaluate Trendy over 100 independent
simulations. After removing genes with zero expression in
all samples prior to the simulation, the number of genes
remaining was G = 16, 862. Trendy additionally filters
genes below a given mean expression, and here the default
cutoff of 5 was used, which left approximatelyG ∼ 10, 000
in each simulation, varying slightly depending on the sub-
set of samples included. For each scenario, the number of
false positives was defined as the number of top dynamic
genes in two ways: those with R̄2

g,k̃g
> .5 or R̄2

g,k̃g
> .8.

Ideally, Trendy should identify zero genes with dynamic
trends for these simulated datasets.
As shown in Fig. 2, Trendy generally identified few false

positives even with a threshold of .5. Over all scenarios,

Fig. 2 Simulation results. A set of replicate RNA-seq samples collected at the same time were shuffled and assigned a time-order. The number of top
dynamic genes identified by Trendy was determined using two adjusted R2 thresholds of R̄2

g,k̃g
> .5 and R̄2

g,k̃g
> .8. Shown in panel a are the number

of genes above the R̄2
g,k̃g

cutoffs for all combinations of settings for K ,N, and mNS (each combination was simulated 300 times over varying point

distributions). Panel b contains the number of genes above each cutoff over three various point distribution scenarios (each box contains 2400
simulations over all other varied parameters)
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an average of 30 genes (median = 3) had R̄2
g,k̃g

> .5,

while an average of 0 (median = 0) genes had R̄2
g,k̃g

> .8.
Figure 2a separates scenarios based on each combination
of N ,K , and mNS. Two scenarios produced the largest
number of dynamic genes identified, these were N =
25,K = 10,mNS = 2 and N = 25,K = 5,mNS = 2, with
an average of 163 and 149 identified genes with R̄2

g,k̃g
>

.5, respectively. These two settings only require two data
points separating potential breakpoints. Figure 2b demon-
strates that there was no difference in the number of genes
detected across variations of the time point distribution.
An additional simulation study was performed to illus-

trate the operating characteristics of Trendy when true
trends are present in the data. We simulated each gene
to have between zero and two breakpoints and the slope
of each segment was randomly simulated as ‘up’, ‘down’
or ‘no-change’. In order to evaluate Trendy’s performance
with differing variances, all genes are simulated to have
the same mean. Each time point was simulated to have
three replicates with biological variability matching that
of the Axolotl dataset (described below in Application to
RNA-seq data).
Specifically, the variability settings were:

• Low: Variances sampled from the 20–30th percentile
of variability.

• High: Variances sampled from the 70–80th percentile
of variability.

These two settings were simulated 100 times with G =
50 and N = 25. We used default settings when vari-
ance is low, and for high variance the p-value cutoff, cpval,
was set to .2. We evaluated the performance of Trendy
based on the average percentage of genes correctly classi-
fied in the number of breakpoints, trend, and the time of
breakpoints (when applicable). The full results are shown
in Table 1. Overall, Trendy identified the correct num-
ber of breakpoints for 97% of genes when variance is low
and 90% with high variance. The trend is correctly iden-
tified for 93% and 84% of genes when variance is low

Table 1 Results of simulation study for genes having a true
simulated trend

Low variance High variance

Average % correct: K Trend K Trend

K = 0 100% 99% 100% 94%

K = 1 97% 93% 92% 86%

K = 2 95% 88% 79% 72%

The average percent of genes over all simulations classified correctly in terms of K
and the trend direction when the true K is simulated as either 0, 1, or 2 and the
within-gene variance is either low or high

and high, respectively. Gene trends that were misclassi-
fied were largely ones initially simulated as either ‘up’ or
‘down’, but appeared closer to ‘no-change’ once the vari-
ability was added. This also accounts for the observed
decrease in trend classification as K increased for this
simulation.
For genes that Trendy correctly estimated the number

of breakpoints, we evaluated the estimation of breakpoint
time. Specifically, we calculated the deviation of the esti-
mated breakpoints to the true simulated value when K =
1 or K = 2. The estimated breakpoint time was highly
accurate, with an average difference of .01 when both K =
1 and K = 2 when variability was low and for the high
variability scenario, the average difference was zero when
K = 1 and -.01 when K = 2.

Time of computation
The computation time of Trendy scales approximately lin-
early in number of genes (G), number of samples (N),
and number of breakpoints considered (K ). On a Linux
machine using 10 cores, Trendy takes approximately 3.4 h
for a dataset with 10,000 genes, 30 time points, and with
K = 3.

Applications
Application tomicroarray data
We applied Trendy to a microarray time-course dataset
from Whitfield et al., 2002 [21]. In the Whitfield data,
HeLa cells were synchronized and collected periodically
for a total of 48 measured time points. Trendy identi-
fied a total of 118 top genes, defined as those having
R̄2
g,k̃g

> .8. Figure 3a shows the total number of break-
points over time for all top genes. The hours with the
most breaks/changes in gene expression directly corre-
spond to times of mitosis and completion of the cell cycle
as described in Fig. 1 of Whitfield et al., 2002. Figure 3b
shows two genes with fitted models from Trendy having
different dynamic patterns. Both genes have 5 estimated
breakpoints, however the first gene, MAPK13 peaks at
hours 9, 22, and 34. The second gene, CCNE1, peaks
at hours 14 and 28. These peak times also correspond
to the cell cycle stages since CCNE1 is active during
G1/S transition and MAPK13 is most active during the
M phase.
Further analysis by Trendy identified a total of 34 top

genes that have a cycling pattern defined as “up-down-
up-down” (Additional file 1: Figure S2). Of these genes,
20 are directly annotated to the Gene Ontology (GO) [22]
cell cycle pathway (GO:0007049), while others are linked
to related activities such as DNA replication and chromo-
some organization. All but two genes were annotated to
the cell cycle in the original publication; both genes (HBP
and L2DTL) are now supported in the literature as being
involved in the cell cycle.
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Fig. 3 Results of Trendy on the Whitfield dataset. Panel a is the breakpoint distribution for the 118 genes having R̄2
g,k̃g

> .8. Orange bars indicate the

S phase and black arrows indicate the time of mitosis as shown in Figures 1 and 2 in Whitfield et al., 2002. Panel b contains two genes identified by
Trendy with different expression dynamics over the time-course

Application to RNA-seq data
We applied Trendy to the full RNA-seq time-course
dataset from Jiang and Nelson et al., 2016 [7] which exam-
ined axolotl embryonic development. In the axolotl data,
embryos were collected at distinct developmental stages
representing specific development milestones. RNA-seq
was performed consecutively for Stage 1 through Stage
12, and then periodically until Stage 40 for a total of 17
stages measured. Trendy identified a total of 9535 genes
with R̄2

g,k̃g
> .8. Figure 4a shows the number of break-

points over the developmental stages and Fig. 4b shows
two genes with fittedmodels fromTrendy having different
dynamic patterns. In general, time periods where Trendy
discovered a high number of breakpoints correspond to
the waves of transcriptional upheaval as discovered by
Jiang and Nelson et al., 2016.
Further analysis by Trendy identified 807 genes

having a delayed peak pattern defined as “same-up-
down” with the first breakpoint occurring after Stage 8
(Additional file 1: Figure S3). Enrichment analysis of
the genes was performed based on gene-set overlaps
in MSigDB (v6.0 MSigDB, FDR q-value < .001, http://
software.broadinstitute.org/gsea/msigdb) [23, 24]. The

top 10 categories of enriched GO biological processes
(GO [22]) include embryo development (GO:0009790),
regulation of transcription (GO:0006357), organ/embryo
morphogenesis (GO:0009887), tissue development
(GO:0009888), regionalization (GO:0003002), and pat-
tern specification (GO:0007389). These categories closely
match those identified in the original publication [7].
Genes which contain at least two peaks and appear
to have cyclic activity contain enrichments for chro-
mosome organization (GO:0051276) and regulation of
gene expression (GO:0010629) within the top ten cat-
egories. The full set of enrichment results are given in
Additional file 3.
Trendy was also applied to two neural differentiation

time-course RNA-seq experiments in Barry et al. 2017
[6]. Breakpoints were estimated separately for the mouse
and human differentiation time-course experiments and
peaking genes were identified as those having the pattern
“up-down”. The authors there found that the relation-
ship between mouse and human peak-times estimated
using Trendy for top ranked neural genes closely matched
that expected by the gold-standard Carnegie stage
progressions [6].

http://software.broadinstitute.org/gsea/msigdb
http://software.broadinstitute.org/gsea/msigdb
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Fig. 4 Results of Trendy on the Axolotl dataset. Panel a contains the breakpoint distribution for all 9535 genes having R̄2
g,k̃g

> .8. The orange bars

indicate the times of major transcriptome changes identified in Figure 2 in Jiang and Nelson et al., 2016. Panel b shows two genes identified by
Trendy with different expression dynamics over the time-course. The first gene, NSD1, has three estimated breakpoints, while GDF9 has two
breakpoints

Comparison to other methods
To highlight the main differences between Trendy and
other tools such as EBSeq-HMM and FunPat, we per-
formed a comparative study using the Axolotl RNA-seq
dataset. The dataset has 17measured time points with 2 or
3 replicates at each time. Because EBSeq-HMM attempts
to classify genes into 3time points−1 patterns, it is not com-
putationally tractable for very long time-courses and we
were not able to run the method on this set of data.
FunPat is able to analyze datasets with a large number

of time points, however the output is different from that
of Trendy in a number of ways. Since there is no standard
annotation package in R for axolotl genes, we focus on the
output of the gene clustering. FunPat identified 411 total
patterns using the default settings. The patterns are rep-
resented visually for each group and a text file lists the
genes belonging to each cluster as well as standardized
expression values for each gene. Additional file 1: Figure
S4 contains an example of a gene cluster identified by
FunPat and the Trendy fit for a selected set of genes. We
find that individual gene patterns and times of expression
changes appear to vary noticeably within FunPat clusters.

Also, the total run time for FunPat was 11 h on an 8-core
Mac desktop with 16 GB RAM. In comparison, the total
run-time for Trendy was 1.5 h.
To illustrate an example of Trendy versus EBSeq-HMM

on a shorter time-course dataset, we demonstrate one
simulated gene example in Fig. 5. This gene is gener-
ated from the simulation study set-up with N = 10, high
variance, K = 1, and an increasing trend over the time-
course. In Fig. 5a, Trendy correctly characterizes this gene
as having pattern “up-up”. The two segments have differ-
ent “up”magnitudes and a breakpoint is correctly detected
between times 7 and 8. EBSeq-HMM was run with the
expected fold change value lowered to 1.5 and otherwise
default settings. Figure 5b shows that EBSeq-HMM clas-
sifies this gene’s pattern as “EE-EE-EE-EE-EE-EE-EE-EE-
Up” with posterior probability .5, where ‘EE’ is equivalent
to ‘no-change’.

Discussion
We developed an approach we call Trendy, which uti-
lizes segmented regression models to analyze data from
high-throughput expression profiling experiments with
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Fig. 5 Comparison to EBSeq-HMM. The reported expression trend for a single simulated gene analyzed using Trendy and EBSeq-HMM is shown. In a
Trendy reports two increasing segments separated by a breakpoint between times 7 and 8. In b EBSeq-HMM reports the expression path as
“EE-EE-EE-EE-EE-EE-EE-EE-Up”, where ‘EE’ is equivalent to ‘no-change’

ordered conditions. Trendy provides statistical analyses
and summaries of both feature-specific and global expres-
sion dynamics. In addition to the standard workflow in
Trendy, also included in the R package is an R/Shiny appli-
cation to visualize and explore expression dynamics for
specific genes and the ability to extract genes containing
user-defined patterns of expression.
Trendy characterizes genes more appropriately than

EBSeq-HMM for long time-courses when the expression
is noisy and changes are gradual over the time-course.
Although an alternative auto-regressive model for EBSeq-
HMMmight provide the flexibility to better classify genes
in such cases, we also stress that Trendy provides unique
information on dynamics including the time of signif-
icant changes via the breakpoint estimation. Trendy is
also able to handle much longer time-courses in a rea-
sonable amount of time compared to EBSeq-HMM and
FunPat. In addition, the output of Trendy is more flexible
than FunPat as genes can be clustered based on a variety
of summaries provided such as breakpoint location and
trends.
Trendy performed well in both simulation studies by

identifying few false positive genes when no trend was
present and correctly identifying breakpoints and trend
directions when true trends were simulated. As demon-
strated in the simulations, Trendy is robust at choos-
ing the true K. However, in practice, setting K much
larger than what is biologically reasonable is not advised
since it increases the computation time. We also note
that the number of data points in a segment separat-
ing breakpoints, mNS, is a critical parameter. The choice

of this parameter value is directly linked to the num-
ber of samples N. For example, if a time-course has
N = T = 10 then it is not possible to identify
any breakpoints if mNS = 10. Rather, a smaller num-
ber of data points separating the breakpoints would be
required, such as mNS = 4, which would allow a max-
imum of one breakpoint to be fit and require at least
4 data points in both segments surrounding the break-
point. Based on the simulations and case studies, mNS
around five is recommended, which also indicates that
Trendy is designed for experiments with T > 10. In
general, Trendy is intended for more densely sampled
biological processes, where multiple time points carry
evidence of a trend. If a significant change is expected
between two consecutive time points that is not supported
by the surrounding times and replicates are not available
then EBSeq-HMM ismore appropriate to assess statistical
significance.
In addition to characterizing each gene, Trendy also

calculates a global summary of dynamic changes. The
breakpoint distribution can be used to prioritize fol-
low up investigations or experiments into specific time
points.We recommend using the top dynamic gene break-
points to generate this by specifying those with a higher
value of R̄2

g,k̃g
.

Conclusion
We applied Trendy to two case study datasets (one
microarray and one RNA-seq) and demonstrated
the approach’s ability to capture biologically relevant
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information in individual gene estimates of breakpoints
and trends, as well as, information conveyed in global
summaries of trends across genes. Although Trendy was
applied only to single-series time course experiments
here, the breakpoints for Trendy can be compared across
experiments if measured on the same time or spatial scale
as we did in Barry et al., 2017. In experiments where
the number of time points is large and/or expression
between time points is consistent yet subtle, we expect
Trendy to be a valuable tool, especially as the prevalence
of such experiments is on the rise with an increase in
time-course sequencing experiments to study dynamic
biological processes and the proliferation of single-cell
snapshot sequencing experiments in which cells can be
computationally ordered and assigned a temporal (or
spatial) order [25–27].

Availability and requirements
Project name: Trendy
Project home page: https://bioconductor.org/packages/
release/bioc/html/Trendy.html
Operating system(s): all, specifically tested on Linux and
Mac
Programming language: R
Other requirements: R version ≥3.4
License: GPL-3
Any restrictions to use by non-acadecmics:No restrictions.
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