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Abstract

Background: Connecting the dots between the protein sequence and its function is of fundamental interest for

protein engineers. In-silico methods are useful in this quest especially when structural information is not available.
In this study we propose a mutant library screening tool called iSAR (innovative Sequence Activity Relationship) that
relies on the physicochemical properties of the amino acids, digital signal processing and partial least squares regression
to uncover these sequence-function correlations.

Results: We show that the digitalized representation of the protein sequence in the form of a Fourier spectrum can be
used as an efficient descriptor to model the sequence-activity relationship of proteins. The iSAR methodology that we
have developed identifies high fitness mutants from mutant libraries relying on physicochemical properties of the amino
acids, digital signal processing and regression techniques. iSAR correlates variations caused by mutations in spectra with
biological activity/fitness. It takes into account the impact of mutations on the whole spectrum and does not focus on
local fitness alone. The utility of the method is illustrated on 4 datasets: cytochrome P450 for thermostability, TNF-alpha
for binding affinity, GLP-2 for potency and enterotoxins for thermostability. The choice of the datasets has been made

Statistical modelling

such as to illustrate the ability of the method to perform when limited training data is available and also when novel
mutations appear in the test set, that have not been featured in the training set.

Conclusion: The combination of Fast Fourier Transform and Partial Least Squares regression is efficient in capturing the
effects of mutations on the function of the protein. iSAR is a fast algorithm which can be implemented with limited
computational resources and can make effective predictions even if the training set is limited in size.
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Background

Humans have exploited biological systems to their ad-
vantage since the dawn of civilization for example do-
mestication of animals and crop cultivation, but it is not
until the second half of the twentieth century that we
have extended the sophistication to the molecular level.
More specifically this involves engineering proteins to per-
form novel bio-processes or improve their efficiency or in-
duce them to function in unnatural conditions or a
combination of the above. Early efforts involved introducing
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mutations randomly to the protein primary sequence and
then screening for the ones with desired quality [1], later site
directed mutagenesis enabled the modification of specific
residues [2]. With the advent of the more recent CRISPR/
Cas9 technology [3], the genome itself can be edited to pro-
duce a protein of desired interest with the context of a living
cell. Hence it becomes necessary to draw a correlation be-
tween an artificially introduced change to the protein and
the effect it has on its characteristics [4-7].

One of the approaches that uses in-silico methods to
decipher these correlations consists of converting the
primary structure of the protein into a string of values
corresponding to the physicochemical properties of the
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amino acids. The AAindex is a database that holds more
than 500 such physicochemical properties for the 20
standard amino acids and correlation between these in-
dices are also listed [8, 9]. When this study was con-
ducted 544 indices were described, currently the
database holds 566 indices. Veljkovi¢ et al. exploited one
such index, the electron-ion interaction potential (EIIP)
[10] to find the relationships between biological se-
quences and their functions using digital signal process-
ing [11]. The closely related method called Resonant
Recognition Model (RRM) [12] uses Discrete Fourier
Transform (DFT) to analyse the signals and attempts to
correlate them with function. RRM has been applied to
a variety of studies ranging from the electromagnetic na-
ture of biomolecular interactions [13] to predicting ‘hot
spots’ in the hormone prolactin [14] and more recently
for the analysis of tumour necrosis factor [15], however
this list is far from comprehensive.

Previous attempts have been made to study the effect of
amino acid substitutions on the activity, function and sta-
bility of proteins whose structures have been resolved.
This resulted in Quantitative Structure Function Relation-
ship (QSFR) and Quantitative Structure Stability Relation-
ship (QSSR) studies [16—18]. Particularly, the impact of
mutations on the stability of proteins is of specific indus-
trial interest and has been the subject of various studies.
These tools have also been made available as web servers
[19]. There are also web servers that integrate multiple
tools to provide the user with an option to perform a
wider gamut of analysis on the mutants of their interest
[19, 20]. Although these structure dependent methods are
effective in deriving the correlation between the mutation
and its effect on the protein activity, they are limited by
their requirement of the availability of the protein struc-
ture. Hence interest lies in deciphering the impact of mu-
tations irrespective of the availability of structural
information, purely based on physicochemical and other
molecular properties of the varying amino acids and stat-
istical analysis thereof.

In 2001, Lapinsh et al. [21] termed Proteochemometrics
a novel method for the analysis of drug receptor interac-
tions. This method uses descriptors of both the interacting
species, i.e. drug and protein receptor [21]. These descrip-
tors can be used independently or combined i.e. only
those of the protein receptor or/and of the drug (peptide
or small chemical compound). This approach refers to
chemometrics applied to proteins. Interactions between
amino-acids residues at intra-molecular positions of muta-
tions or mutated protein domains, independently or com-
bined for the interacting species, are taken into account
during the modelling. When either the protein receptor
or/and peptide is considered, Lapinsh’s approach is a pro-
tein engineering method for identifying amino acid resi-
dues for variation in a protein variant library in order to
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affect a desired biological activity/fitness. It is based on a
training set of a protein variant library, where the data are
sequence information and activity for each protein (or
peptide) variant. From the data, a sequence-activity model
is developed to predict activity as a function of amino acid
residue type and corresponding position in a protein se-
quence. The mathematical model is a regression model
such as a partial least squares model that includes at least
one non-linear terms, each representing an interaction be-
tween two or more amino acid residues in the protein se-
quence (or protein domains). The sequence-activity model
can distinguish amino acid residues that have a significant
impact on the desired activity from those that do not have.
The model allows thus to identify one or more amino acid
residues at specific positions, that are predicted to impact
the activity, for variation to impact (i.e. increase or de-
crease) the desired activity. A non-linear term is a
cross-product term comprising a product of one variable
representing the presence of one interacting residue and
another variable representing the presence of another
interacting residue (or interacting domain). During the
modelling, a selection of one or more cross-product terms,
from a group of potential cross-product terms, is done in
order to select those representing true structural interac-
tions that have a significant impact on the targeted activity.
This protein engineering approach has been successfully
applied in different cases such as: for the prediction of
MSH peptide binding to melanocortin receptors [22], or
the prediction of targets for anticancer drugs [23], for the
selectivity of serine protease [24] or more recently for the
prediction of Peptide Binding to HLA-DP Proteins [25].

QSAR methods applied to modelling peptide or pro-
tein activity [26—28] that consist in using sets of descrip-
tors derived from sequence information in essence,
implements this approach. This was also known as re-
cently termed as Protein Sequence Activity Relationship
or ProSAR [29]. In this last paper one implementation
of such methodology is presented and relied on the bin-
ary encoding of the amino acid sequences of the wild
type and a collection of few mutants whose activities are
known. A statistical model is built to represent the rela-
tionship between the mutation and the activity [29].
Subsequent mutant libraries are generated by favouring
those mutations that positively affect the activity. This
methodology has demonstrated to be able to obtain a
4000-fold improvement in the volumetric productivity of
the enzyme halohydrin dehalogenase [30]. An evaluation
of the methodology was recently described by [31].

Both ProSAR and the structure dependant QSFR meth-
odologies, as shown in Fig. 1, fall under the category of it-
erative mutant screening methods. The main assumption
in iterative mutant library screening methods is that the
effects of the mutations are additive in nature [32-34].
But this additivity is not absolute and this is reflected in
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Fig. 1 Principles of statistical methods used to model structure or sequence to activity relationship (Damborsky and Brezovsky [41] reproduced
with permissions). a Schema illustrating the principles behind Quantitative Structure to Function Relationship method whereby numerical descriptors
derived from structure are regressed on the activity data (yellow column). b Principles behind Protein Sequence to Activity Relationship methods
whereby numerical descriptors derived from sequence are regressed on the activity data

the challenges faced in model building. Experimentally
generating single substituted mutant libraries is much eas-
ier than combinatorial mutant libraries, especially due to
the exponential increase in the number of combinations
to explore with the increase in number of mutated posi-
tions. Hence this additive nature of the fitness property is
exploited to avoid exhaustively searching the vast se-
quence space.

Regression methods try to establish a regression function
that relates independent variables to a dependent variable.
Classical regression methods like linear regression and least
squares regressions cannot be used to find the regression

function in this case because the two assumptions that
the sample size is larger than the number of variables
and the non-correlation among the independent vari-
ables clearly does not hold well. In such cases a regres-
sion method called the Partial Least Squares (PLS)
method is used to overcome these limitations [35, 36].
Although PLS method was initially developed for appli-
cation in the economics domain, after 35 years of its
development, it has found applications in diverse fields
[21, 37-39]. PLS regression is ideally suited for datasets
with many collinear variables (linear and interaction
terms) and few observations (sequences) [40, 41].
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In this work we propose a novel method that com-
bines a digital signal processing technique and PLS re-
gression technique as a predictive tool for the screening
of protein mutant libraries. We call this method iSAR
for innovative Sequence Activity Relationship. iSAR con-
verts the amino acid sequence into a protein spectrum
after its numerical encoding using selected physico-
chemical properties of its constitutive amino acids and
subsequent treatment using Fast Fourier Transform
(FFT). It then finds a regression function that correlates
changes brought in the spectra due to mutations and ob-
served changes in the fitness of the protein variants as
measured experimentally. Here we use “fitness” as gen-
eric term to denote a desirable character of a protein like
catalytic efficacy, catalytic activity, K, binding affinity,
thermostability, solubility, aggregation, potency etc. Un-
like previously developed methods, we do not limit our-
selves to a single amino acid physicochemical property
but examine all those listed in the AAindex database
and choose the one that is most informative. The
spectrum that is calculated is the energy spectra ob-
tained after FFT. We have for the first time attempted to
use protein spectra for statistical modelling in order to
predict the effect of mutations on the fitness of protein
variants, i.e. to establish protein sequence to activity re-
lationship. Our method is independent of the availability
of structure information, does not confine itself to only
the local effects of the mutation and is computationally
less demanding. We demonstrate the utility of the
method to identify protein variants with better fitness on
four experimentally verified datasets.

Methods

Experimental datasets

The iSAR methodology requires experimental data to
bring to light correlations between mutated sequences
and their corresponding fitness. Based on these correla-
tions, statistical models are built which in turn enable us
to predict the fitness of novel mutants. We have used
four such datasets to demonstrate the robustness of the
iSAR methodology. The performance of iSAR on these
datasets have been evaluated and cross-validated, the
procedure is described below and the results obtained
are discussed in the subsequent sections. The datasets
chosen were diverse in both the fitness criteria being
tested for and the size of the mutant library.

The first dataset involves the potency of 31 alanine
variants of the Glucagon like peptide-2 (GLP-2) with re-
spect to the activation of its receptor [42]. GLP-2 is a
short 33 residues peptide whose increase in activity has
direct implication in the control of epithelial growth in
the intestine. The value for the corresponding receptor
activation for the 31 alanine variants of GLP-2 is defined
as the fold increase over basal cAMP production and are
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ranged from 0.7 to 10.4. The second dataset concerns the
thermostability of 242 chimeric cytochrome P450 se-
quences [43]. Cytochrome P450 are heme-containing
redox enzymes whose Tsq (temperature at which 50% of
the protein denatures after 10 min. of incubation) ranges
from 39.2 °C to 64.48 °C. The third dataset is for thermo-
stability as well but for staphylococcal enterotoxins E and
A (SEE and SEA) [44]. SEE and SEA are Super-antigens
(SAgs) that elicit a strong immune response by activating
T-cells. The denaturation temperatures (T,,) for the 10
mutants + WT SEE + WT SEA ranged from 55.1 °C to
73.3 °C. The fourth dataset from Mukai et al. is a collec-
tion of 20 mutants and one WT Tumour Necrosis Factor
(TNF) sequences [45]. TNF is an important cytokine that
suppresses carcinogenesis and excludes infectious patho-
gens to maintain homeostasis. The relative affinity (%K)
of TNF to its two receptors, TNFR1 and TNFR?2 is com-
puted as a single ratio of log;o(R1/R2) which ranges from
0 to 2.87, where R1 and R2 are affinities of TNF to TNFR1
and TNFR2 respectively as measured by ICs, assays in ng/
ml. The datasets are summarized in Table 1.

The list of all variants and their corresponding mea-
sured biological activity for all 4 datasets are further de-
tailed in Additional file 1: Tables S1-S4.

Statistical measures of correlation

We use the coefficient of determination (R?) and the Root
Mean Squared Error in Cross-Validation (cvRMSE) as
quantitative and qualitative measures of correlation be-
tween the measured and predicted values of the different
fitness criteria. The cvRMSE allows to construct and select
the best models. The predictive ability of these models re-
lies in the R* values. While R” is a measure of the extent
of agreement between the measured and predicted fitness,
cvRMSE represents the extent to which the predictions
vary when different training sets are used. R* and cvRMSE
are calculated as follows in Egs. 1 and 2 respectively:
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where, y; is the measured activity of the /™ sequence, ;
is the predicted activity of the /™ sequence, y is the aver-
age and S the number of sequences. Apart from using
them as evaluators of our predictions, they are also used to
identify the most informative AAindex from a collection
of 544 AAindices.
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Table 1 Characteristics of the experimental datasets. n is the number of mutated positions and k is the number of residues at each

position

Dataset Size of dataset  n k Theoretical size of sequence space  Length of protein sequence
Cyt P450 242 3 6561 464-466

GLP-2 31 31 2 2.147 billion 33

Enterotoxin 12 40 2 1099.5 billion 233

TNF 21 17 12,7,46,2,999992222687 2133 bilion 157

The theoretical size of sequence space S is calculated as the product all k values for all mutated positions

Prediction schema

The amino acid sequences of variants are converted into a
string of values corresponding to their physicochemical
properties. To this end, 544 models are constructed corre-
sponding to the 544 AAindices and the AAindex entry cor-
responding to the best performing model (highest R* and
the lowest cvRMSE) is chosen for numerical encoding.
iSAR evaluates each of the encoding indices to find the best
one for the construction of the model. For each index the
set of sequences is encoded and a FFT is performed. iSAR
uses the initial dataset (training set) to construct a predict-
ive model for each encoding index. Then a cross-validation
(leave-one-out or k-fold) for each computable component
(ncomp) is performed by training a PLSR model. For each
model, iSAR calculates the value of the performance pa-
rameters, cvRMSE and R2. The cvRMSE is the criterion
used to calculate the coefficients in the PLS and to select
the number of components of it. So, we use it also for the
selection of the best encoding index: the final choice of the
best index is therefore driven by the lowest value of
cvRMSE. For each of the 4 datasets, we used the best index
obtained through this procedure. PLS is used both to train
the models and to find the best index. The mean of the nu-
merical sequence is subtracted from itself. This procedure
aims to cancel the first point of the spectrum at the zero
frequency which is equal to the mean. Prior to the decom-
position of the numerical signals using Fast Fourier Trans-
form (FFT), the sequences have to satisfy the prerequisite
that their length must be an exponent of 2 (2"). In our case,
zeros are added at the end of the numerical sequences, to
obtain a sequence length of 1024 (2'°). This operation is
called zero-padding. Then the Fast Fourier Transform
(FFT) algorithm is run to transform the signal. The func-
tion “fft” implemented in R is used for this purpose (Eq. 3).

N-1 .
fi= me (3)
k=0

where, j is an index number of the Fourier transform, the
numerical sequence includes N values denoted by x; with
0<k<N-1and N>1 and i is the imaginary number such
that i* = -1. The module of the Fourier transform (|f}|) is
computed in order to generate a protein spectrum. We use
this protein spectrum (or spectral pattern of a protein)

issued from digital signal processing as a descriptor to
model the biological activity/fitness of protein from se-
quence data (Fig. 2).

Next, for the learning process, the aim is to set up a stat-
istical model to link the fitness to the mutations. Using the
protein spectra and the experimentally obtained fitness
values, a PLS regression is performed. The R package “pls”
is used for performing the regression [46]. For performing
the PLS regression, the latent components are calculated as
linear combinations of the original variables. The choice of
the number of latent components to be considered for the
PLS regression is based on the number of components that
yield the least cvRMSE. The statistical model obtained by
performing PLS regression on the training dataset is used
to predict the fitness of the test dataset. The efficiency of
the predictions is evaluated using the previously discussed
statistical parameters R* and cvRMSE. Both leave-one-out
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Fig. 2 Fourier spectra of a protein sequence and a single point
variant of the same protein. Shown are the Fourier spectra of wild
type GLP-1 peptide (in blue) and of its E3A variant (in red). The
spectra are obtained after numerically encoding the amino acid
sequence using one index from AAindex database and their
processing using Fast Fourier Transform (FFT) technique (see
Methods section for details). A single point mutation impacts the
whole spectrum. In the iSAR methodology, the variations caused by
the mutation in the spectra of variants are correlated with variations
observed in their corresponding biological activity using the PLS
regression technique (see Fig. 3)
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cross-validation (LOOCYV), 10-fold cross-validation and
80-20 partitioning (80% training set and 20% test set) are
performed on all the datasets. In LOOCYV, except for the
mutant for which the fitness is being predicted, the entire
dataset is used for training; this process is repeated for all
mutants. In 10-fold cross-validation the entire dataset is
divided in 10 subsets containing each 1/10 mutants, 9
subsets are used for training, the tenth subset is predicted;
this process is repeated for all subsets. In 80-20
cross-validation, the dataset is divided into 80% and 20%
(by number of mutants) and the 80% is used for training
and the remaining 20% for testing. Sequences in the test set
were randomly selected using a random sampling proced-
ure which preserves the class distribution of the result. A
balanced split 80/20% of the data is run. The random sam-
pling occurs within each class and should preserve the
overall class distribution of the data. Using such procedure,
when specifying 80—20%, it can be observed that the num-
bers of sequences in the test set does not fit exactly with
20% of the initial numbers of sequences, particularly when
the number of sequences is low. For comparison with
previous research works on cytochrome P450, a pre-
diction is performed on the whole training set to de-
termine the efficiency of the model thus built using a
10-fold cross-validation scheme.

Figure 3 is a schematic representation of the entire
workflow for making the predictions. It should be noted
that the blocks “Multivariate Analysis” and “Classifica-
tion (for rational screening)” on the right part of Fig. 3
are optional and have not been used to obtain the results
presented in this paper. The first part between the block
“Validation — Protein spectra” and the block “Classifica-
tion (for rational screening)” through the block “Multi-
variate Analysis” means that the protein spectra could
be used directly for classification. The dotted lines from
the block “Classification (for rational screening)” to the
block “Prediction” means that this block could be op-
tionally activated during the modelling and for the pre-
diction. Using multivariate analysis such as Factorial
Discriminant analysis, Principal Component Analysis,
Random Forest... a classification of protein sequences
according to their respective protein spectra could be
performed. The main idea behind is that, if for example 3
classes are identified, a predictive model could be built
for each of these classes in order to get a more specific
model and better prediction of the fitness. When a new
sequence has to be predicted, the prerequisite is that this
new sequence is assigned to a class based only on its se-
quence information.

Results

Quantitative evaluation of the iSAR method

Evidences that the relationship between sequence and ac-
tivity/fitness can be modelled using iSAR in an efficient
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way are given through four different examples. The results
for the evaluation of the predictions in terms of cvR?* and
cvRMSE are summarised in Table 2. The comparison of
the correlations between the predicted and measured
activities for the cytochrome P450 dataset in 10-fold and
80-20 cross-validations are depicted in Fig. 4. Plots using
LOOCV for the other three datasets are featured in
Additional file 2: Figures S1-S3. The high values for R*
and low values for RMSE suggest that in every case, se-
quence information linked to the fitness was captured
using our approach based on protein spectrum. Also, the
fact that the LOOCV R* and RMSE values for the entero-
toxins dataset are as good as for the cytochrome P450
dataset indicates that a limited size of the dataset does not
adversely affect the iSAR prediction abilities. Even by
training only on 11 mutated sequences, iSAR was efficient
in capturing the effect of mutations on thermostability.

Modelling of unlearned mutations

Interestingly, for the GLP-2 validation set (R* = 0.71), all
the four randomly chosen variants had mutations at po-
sitions not sampled in the training set. Likewise, for the
enterotoxins validation set (R?=0.99), two of the four
sequences also had novel mutations: one sequence with
seven new mutation positions and other with one new
mutation position. The results for these two datasets are
encouraging in the sense that the algorithm is demon-
strating its capability to predict new mutations at novel
positions that were not in the learning datasets. But we
have to keep in mind that these values are averages over
the entire dataset and individual mutants have to be ana-
lysed on a case by case basis.

It can be noted that for the GLP-2 validation set the
R2 value is significantly higher than the R2 value ob-
tained when a LOOCYV is applied on the entire dataset:
0.71 and 0.42 respectively. This indicates the model is
highly sensitive to the training set. Indeed, these specific
80% Train set and 20% validation set selected randomly
give a high R?, but if another 8020 partitioning would
have arisen randomly, the R* could be lower. Intuitively,
we understand that if we try all the possible 80—20 parti-
tions, the R* should converge to a value close to the one
obtained when a LOOCYV procedure is run on the entire
dataset i.e. close to 0.42. We did the experiment to ex-
emplify this statement and indeed, if we use a k-fold =8
(so as to get a train set with 27 sequences and a valid-
ation set with 4 sequences) the R? is 0.49, if we repeat
this k-fold 100 times R is 0.41.

iSAR is versatile with respect to the type of activity/fitness

Different types of biological activities or properties were
modelled using our iSAR algorithm. For the TNF data-
set, it was possible to model the preferential binding
with one type of receptor (ratio R1/R2). The results for



Cadet et al. BMC Bioinformatics (2018) 19:382 Page 7 of 11

Numerical encoding & ) .
choosing the best encoding 2:::: ; :z::;ic:;;:rf°d'"g
AAindex Step 3 Zero padding

( Learning data J(Learning sequences)( Validation/Test J DATA INPUT
sequences

Spectral transform )

DIGITAL SIGNAL PROCESSING

Learning Val.idation . Step 4: FFT
Protein spectra Protein spectra Step 5: Obtaining the

protein spectrum

" Multivariate
Modeling Analysis MODEL GENERATION
v

. . Classification
Prediction D COTTRTPP .
(for rational Step 6: Prediction

screening)

Prediction of Validation/Test
data

Fig. 3 General scheme for the iSAR methodology described in this paper. “Multivariate Analysis” and “Classification (for rational screening)” on the
right part of the figure are optional

Table 2 Summary of the different R? and RMSE values obtained through predictions for the full set of protein sequences and after
an 80/20 splitting in order to generate a training set and a validation set

Set Partition cvR? CVRMSE
Cyt P450 (thermostability) Full set (10-fold CV) 0.96 1.19
Train set (80%) (10-fold CV) 093 133
Validation set (20%) 092 172
Enterotoxins (thermostability) Full set (LOOCV) 0.95 1.58
Train set (80%) (LOOCV) 0.85 2.58
Validation set (20%) 0.99 0.59
TNF (relative binding affinities) Full set (LOOCV) 0.85 031
Train set (80%) (LOOCV) 0.86 033
Validation set (20%) 092 020
GLP-2 Potency (fold-increase in cAMP) Full set (LOOCV) 042 205
Train set (80%) (LOOCV) 0.75 139
Validation set (20%) 071 1.44

For the full set and train set (80%), cvR? and cvRMSE (same units as the activity for RMSE) values were evaluated after leave-one-out cross-validation (LOOCV) or
10-fold cross-validation scheme
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Fig. 4 Evaluation of iSAR for modelling the thermostability of cytochrome
P450 variants. Shown are the measured against predicted thermostability
values (melting temperature in °C) assessed under the 10-fold cross-
validation scheme for the full set of 242 waplavto (+), for a training set
composed of 80% of the dataset (o) and for a validation set comprising
20% of the variants (o)

the GLP-2 indicates that the method performs also ra-
ther well for receptor activation (potency) as measured
by experimental fold-increase in cAMP values. For en-
terotoxins and cytochrome P450, our results showed
that the method was also able to model efficiently the
thermostability of their variants. This versatility is ex-
plained by the fact that the algorithm finds the best en-
coding scheme that provides the best prediction
accuracy (see below).

Optimised numerical encoding scheme

The central dogma of protein biology is the strong inter-
dependence between the sequence, structure and function
of proteins. Since the iSAR methodology extrapolates the
function from sequence, eliminating the need for the pro-
tein structure in between, the numerical encoding that
captures this information further modelled by digital sig-
nal processing becomes an important step. The encoding
based on the AAindices is more informative than the bin-
ary encoding method adopted by ProSAR.

The best encoding AAindex for the cytochrome P450
dataset is the D Localized electrical effect [47], while for
the enterotoxins dataset it was the Normalized frequency
of isolated helix [48] index. The best encoding scheme
for modelling the relative binding affinity of TNF was
the AA composition of CYT2 of single-spanning proteins
[49]. As for the GLP-2 dataset, it was the Hydropathy
scale based on self-information values in the two-state
model (20% accessibility) [50] that best modelled the
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receptor activation. The fact that there are no two cases
with the same AAindex indicates that different AAin-
dices could be informative for different datasets: the best
encoding could be determined for each couple se-
quences/activity on a case by case basis.

The Additional file 1: Table S5, sums up the protein fea-
tures linked to the index found as the best one for each
dataset. For each set, we used the best index from the se-
lection of iSAR. Features linked to the index are: hydro-
phobicity (cytochrome P450), alpha and turn propensities
(enterotoxin, GLP-2), average composition of amino acid
composition of cytoplasmic region of transmembrane pro-
tein (TNF-alpha) and solvent accessibility of amino acid
residues (GLP-2). It should be noted that, the selection of
the Aaindex by the iSAR is done in a statistical approach.
iSAR selects an index without the comprehension of the
protein feature associated at this index.

Consequently:

e iSAR can associate a biological activity and one or
several protein features without the existence of an
obvious biochemistry link between the activity and
the protein features.

e For different datasets with the same biological
activity but different sequences, iSAR can select
different indices and different protein features, like
the case for the cytochrome P450 set and
enterotoxin datasets where the fitness is a
temperature.

e It is possible to have two indices selected by iSAR as
the 2 best indices, and these indices are linked to
two different protein features that does not have
evident biochemistry links between them.

Furthermore, it is a strong assumption that only one
physicochemical property governs the overall impact of the
mutations on the protein’s activity. Therefore, for the
GLP-2 dataset, for which the model has lower predictive
ability, we have increased the number of physicochemical
properties, by increasing the number of index, to try to im-
prove the predictive ability of the model. Preliminary re-
sults show that when the 2 best indices are cumulated
(Hydropathy scale based on self-information values in the
two-state model (20%) [50] + Information measure for coil
[51]), the cvR* are respectively 0.43, 0.53 and 0.71 and
cvRMSE 2.03, 1.90 and 1.44 for the full dataset, the 80%
Train set and the 20% validation set. We can observe, in
this case, a slight improvement for cvR? (from 0.42 to 0.43)
and cvRMSE (from 2.05 to 2.03) for the full dataset. Similar
results are observed for the validation set. Even if the
p-values associated to the calculation of cvR? for the re-
spective datasets (p-value = 8.35E-05, p-value = 6.08E-05)
allow to state that for each model the predicted values are
correlated to the measured ones, the Student’s t-test does
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not allow to conclude that the difference for the
quadratic errors between the two models is significant
(p-value = 0.92). Nevertheless, other combinations of
index should be tested.

Currently, we are investigating to better understand
why an index, or a combination of indices, is useful for
the prediction of a target biological activity for a specific
set of sequences.

Discussion

Comparison with other methods

The current method that we propose addresses some of
the limitations of the method developed by Fox et al.
[29, 52]: iSAR namely takes into account the effect of in-
teractions between the residues at variable positions and
the invariant residues. iSAR achieves this by considering
the effect of the mutation on the fitness as a global
phenomenon as opposed to a local phenomenon as con-
sidered by other methods implementing protein se-
quence to activity relationship (ProSAR). iSAR is also
not limited by the ability to only predict fitness of muta-
tion positions already explored in the training dataset.
Here we demonstrated that it could predict mutations at
new positions never learned in the training set.

For the thermostability of the cytochrome P450 dataset
we can compare the results (using a 10-fold cross-validation
scheme) with those obtained from Gaussian process models
[53]: the R? was 0.90, and with ProSAR using the PLSR-GA
approach [31] R* was equal to 0.94 and a RMSE equal to
1.52. In the iSAR approach we get an R? of 0.96 and RSME
of 1.19 using the same learning sequences. So, results ob-
tained by this new method are better than those obtained
using ProSAR for this cytochrome P450 example. Moreover,
using the PLSR-GA approach of [52] results were obtained
at the cost of integration of 45 interactions terms and much
higher calculation time and computing power [31].

As seen in the optimised numerical encoding scheme
section above, we have shown that the numerical encod-
ing scheme of iSAR is more informative to effectively
bring to light correlation that are not apparent otherwise.
Our assumption that the effect of a single point mutation
on the protein fitness is not purely local, but globally dis-
tributed over the linear sequence of the protein is corrob-
orated in Fig. 2. We see that a single point mutation to
the GLP-1 indeed impacts its entire protein spectrum.

Apart from these advantages, this method is also com-
putationally less demanding, hence eliminating the need
for protein engineers to handle specialised computa-
tional resources.

Parameters affecting the performance of iSAR

The performance of iSAR depends on various factors
namely the additivity of the mutations, quantitative and
qualitative aspects of the experimental datasets and the
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sequence space to be searched. The additivity of the fit-
ness upon mutations is the most important factor affect-
ing the quality of the model. The more additive is the
fitness upon mutations, the more the combinations of
mutations will be predictable and thus lesser number of
sequences will be needed in the training dataset. The
preliminary requirement for the use of this approach is
the availability of experimental data obtained through di-
rected evolution experiments. The more these measure-
ments are precise, accurate and reproducible, the better
the method will be able to perform with a smaller num-
ber of learning sequences.

The sequence search space is another parameter that
affects iSAR performance. The more the positions are
mutated, the more sequences will be needed to capture
the relative effect of each mutation. In this paper we
have gotten nice results using small training sets as for
enterotoxins or GLP-2. But it is obvious from a statis-
tical point of view that the larger the experimental data-
set, the better the prediction model will be.

One may therefore ask if the Fourier transformation
into protein spectrum makes a significant improvement
to the predictive ability of the models. If we consider the
smallest (TNF) and the biggest full datasets (cytochrome
P450), using a LOOCV procedure, the cvR* drops from
0.85 with FFT to 0.64 without FFT and cvRMSE raises
from 0.31 to 0.48. So, the Fourier transformation has a
significant effect on the quality of the model. We are
currently further deciphering the reasons for these ob-
servations. For cytochrome P450 it is simply not possible
to run without FFT as the sequences vary from 464 to
466 residues. In the present case, zeros were added at
the end of the numerical sequences to obtain a numer-
ical vector of length 1024 (2'°) in order to run the Fast
Fourier Transform (FFT) algorithm. Indeed, this acceler-
ates the FFT algorithm [54] and allows, in the case
where the sequences are of different lengths, to have
protein spectra of identical lengths.

The computational time for the predictions varies
based on the size of the learning and test datasets. iSAR
takes less than 2 min for a learning set of 242 sequences
on a single CPU. It has been shown that the computing
time may be the major limiting factor for the PLSR-GA
approach [52], especially when the number of inter-
action terms to take into account is high [31].

Conclusions

In this work, we have shown that the frequential repre-
sentation (protein spectra) after Fourier transform can
be used as descriptors in an efficient way in order to
predict the protein activity of an amino acids sequence:
the sequence-activity relationship can be modelled using
the protein spectra. An important advantage of using
frequential variables is that the comparison of amino
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acids sequences of different length becomes possible.
Moreover, the frequential representation takes into ac-
count the impact of mutations on the whole spectral
and does not focus on local. Our examples showed that
in some cases, small learning datasets can be used to
achieve good predictions and to obtain mutants with im-
proved fitness.
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