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Abstract

genomic diagnostic tests.

pathogenic CNVs from clinical samples.

Background: Targeted next-generation sequencing (NGS) is increasingly being adopted in clinical laboratories for

Results: We developed a new computational method, DeviCNV, intended for the detection of exon-level copy
number variants (CNVs) in targeted NGS data. DeviCNV builds linear regression models with bootstrapping for every
probe to capture the relationship between read depth of an individual probe and the median of read depth values
of all probes in the sample. From the regression models, it estimates the read depth ratio of the observed and
predicted read depth with confidence interval for each probe which is applied to a circular binary segmentation
(CBS) algorithm to obtain CNV candidates. Then, it assigns confidence scores to those candidates based on the
reliability and strength of the CNV signals inferred from the read depth ratios of the probes within them. Finally, it
also provides gene-centric plots with confidence levels of CNV candidates for visual inspection. We applied
DeviCNV to targeted NGS data generated for newborn screening and demonstrated its ability to detect novel

Conclusions: We propose a new pragmatic method for detecting CNVs in targeted NGS data with an intuitive
visualization and a systematic method to assign confidence scores for candidate CNVs. Since DeviCNV was
developed for use in clinical diagnosis, sensitivity is increased by the detection of exon-level CNVs.
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Background

Targeted next-generation sequencing (NGS) is increas-
ingly being adopted in clinical laboratories for genomic
diagnostic tests [1-6]. In addition to single-nucleotide
and short insertion/deletion variants (SNVs and
INDELSs), copy number variants (CNVs) have been im-
plicated as the cause of many human diseases [7, 8] such
as HIV [9], rheumatoid arthritis [10], Crohn’s disease
[11], psoriasis [12], cancers [13, 14], and inherited rare
diseases [15, 16]. However, accurately detecting CNVs in
targeted NGS data is challenging because the depth of
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coverage of targeted NGS data is highly variable over
target regions, and regions near breakpoints may not be
sequenced [7, 17-22].

For NGS-based CNV detection, there are two major
approaches: read-depth and paired-ends mapping
methods [1-3, 23-28]. Read-depth based methods de-
tect a CNV by comparing the observed number of
mapped reads with the expected number of mapped
reads in a genomic interval [29]. The calculation of the
expected number of mapped reads in a genomic interval
assumes a neutral copy number in that interval.
Paired-ends mapping based methods identify a CNV by
looking for concordantly mapped paired-ends reads
whose insert sizes are deviated significantly from the dis-
tribution of insert sizes in a sequencing library [19].
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In general, paired-ends based methods can predict CNV
breakpoints more precisely [19], but it is difficult to apply
these methods to targeted NGS data because genomic re-
gions near breakpoints are difficult to sequence.
Read-depth based methods are more frequently applied to
targeted NGS data because they are less affected by the
above limitation. However, currently available read-depth
based methods suffer from high false positive predictions,
especially on detection of small CNVs spanning only one
or a few exons, which may be a hurdle for the adoption of
these methods in clinical diagnosis [4]. Because small
CNVs have been casually implicated in many inherited
disorders [30], accurate detection of small CNVs is im-
portant in improving the diagnostic performance of tar-
geted NGS based clinical tests.

For the clinical use of targeted NGS, visual inspection of
the detected variants in the regions of genes suspected to
be responsible for the disease of a given patient is a crucial
step before clinical interpretation [1]. Visual inspection al-
lows for selection of variants that are worth further valid-
ation with orthogonal methods such as qPCR, and lowers
the risk of missing true pathogenic variants such as CNVs
that might be difficult to detect with conventional
methods. The latter is especially important for genes that
are clinically relevant to the phenotype of a given patient
or that have a pathogenic heterozygous sequence variant
in recessive Mendelian disorders.

Here, we developed a new method, DeviCNYV, to meet
the two clinical requirements for CNV detection using
targeted NGS data: 1) the detection of CNVs with
exon-level resolution, and 2) the support of intuitive
visualization for the assessment of CNVs. To meet the
first requirement, we attempted to fully exploit detailed
CNV signals from target capture probes for gene panels.
Probe level data, which even a single exon can have mul-
tiple, allow DeviCNV to assign confidence scores to the
CNV candidates based on the reliability and strength of
the CNV signals calculated from the multiple probes. It
also provides gene-centric view plots with confidence
levels of the CNV candidates of a gene. The gene-centric
view plots show the read-depth ratios of the probes
within the gene with their confidence intervals and the
probabilities of their read depth ratios being outside the
ranges of copy neutral.

Results

Dataset and parameter setting

We sequenced 27 cell lines with inherited genetic disor-
ders obtained from the NHGRI Sample Repository for
Human Genetic Research at the Coriell Institute for
Medical Research as targeted NGS data: lymphoblastoid
cell lines/DNA samples from adrenal hyperplasia pa-
tients (NA11781, NA12217, NA14734, GM14734), a ga-
lactosemia patient (GM17433), a type I gaucher disease
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patient (NA10874), glycogen storage disease II patients
(GM14011, GM14259, GM14603), a krabbe disease pa-
tient (NA06805), lesch-nyhan syndrome patients
(NA01899, NA06804), transcarbamylase deficiency pa-
tients (GM23431, GM23891, GM24007), phenylketon-
uria patients (NA02659, NA11195), propionic academia
patients (NA22208, NA22496, NA22555, GM23221) and
as a control sample (NA12878), and fibroblasts cell
lines/DNA samples from a galactosemia patient
(NA01741), a type I gaucher disease patient (NA00852),
a lesch-nyhan syndrome patient (NA02227) and phenyl-
ketonuria patients (NA00006, NA02406). Eight of them
are known to have pathogenic CNVs. We used those
pathogenic CNVs as a standard answer set for parameter
optimization of DeviCNV. These 27 cell lines were se-
quenced using target gene panels IMD_HYB, IMD_PCR,
or both (Table 1). Both IMD_HYB and IMD_PCR are
target gene panels for NGS designed for identifying gen-
etic variants responsible for newborn screening disor-
ders. IMD_HYB and IMD_PCR are developed with
hybridization-based and PCR-based target enrichment
technologies respectively. All the sequencing data for
these cell lines were submitted to the NCBI Short Read
Archive databank (SRA, http://www.ncbi.nlm.nih.gov/
sra) under accession number SRP103698 (SRA).

The average of mean target depths for these cell lines
were 174X for the IMD_HYB dataset and 301X for the
IMD_PCR dataset (Table 2). As for the minimum of
mean target depth of a sample eligible for CNV detec-
tion, we recommend 100X for the IMD_HYB dataset
and 150X for the IMD_PCR dataset (Additional file 1:
Note S1). Another aspect of the quality of targeted NGS
data of a sample is measured by coefficients of correl-
ation of read depth values of probes with the other sam-
ples within the same sequencing batch (described in the
Method section). We excluded a sample in CNV detec-
tion if the sample has low coefficients of correlation with
the other samples.

Because DeviCNV aims to detect exon level CNVs
with high sensitivity, it keeps every CNV candidates by
categorizing with their confidence score rather than hard
filtering of low confidence CNV candidates. To measure
the confidence score, we introduce the five criteria
which reflect the reliability and strength of CNV signals
of the candidates (Table 3): 1) ProbeCntinRegion, 2)
AverageOfReadDepthRatios, 3) STDOfReadDepthRatios,
4) AverageOfClIs, and 5) AverageOfR2vals. These criteria
consider the number of probes, the strength of CNV sig-
nals, the stability of read depth ratios, and reliability of
regression models among the probes within a CNV can-
didate region.

DeviCNV counts how many of the above criteria are
satisfied for each CNV candidate. For each criterion, we
selected the thresholds or conditions by minimizing the


http://www.ncbi.nlm.nih.gov/sra
http://www.ncbi.nlm.nih.gov/sra

Kang et al. BMC Bioinformatics (2018) 19:381 Page 3 of 13
Table 1 Summary of the dataset used for retrospective and clinical analyses
Gene panel name Capture method Number Probes (or amplicons) Probe coverage size Average number  Clinical use Number of
of target of probes per exon samples
genes
IMD_HYB Hybridization 259 19210 982,657 bps 57 Newborn screening 307 (cell line)
(HiSeq) 36 (clinical)
IMD_PCR PCR 259 9072 1,216,913 bps 27 Newborn screening 14 (cell line)
(lon S5) (3 pools) 20 (clinical)
IMD_V1 PCR 97 2054 338,961 bps 18 Newborn screening 178 (clinical)
(lon PGM) (2 pools)

IMD inherited metabolism disorder, HYB hybridization-based capture approach, PCR polymerase chain reaction-based capture approach, bps base pairs
27 unique cell line. Total 30 samples were sequenced because two cell lines were generated 3 times respectively

number of CNV candidates satisfying the criterion, while
all the known pathogenic CNVs are preserved. We ex-
cluded deletions in CYP21A2 because the deletions in
the gene is known to be challenging to detect with NGS
data due to its pseudogene and copy number polymor-
phisms [31]. The default thresholds and conditions for
those criteria are shown in Table 3. If a CNV candidate
satisfies all the above five criteria, it scores 5. The CNV
candidates with the highest score are considered as the
top priority for visual inspection.

Concordance with qPCR of CNV candidates detected from
DeviCNV

To evaluate the performance of DeviCNYV, we performed
qPCR on the subset of CNV candidates with confidence
score of 5 from the IMD_HYB dataset. The subset was
selected from 11 cell lines with the number of CNV can-
didates of score 5 less than 10, which resulted in a total
of 40 CNV candidates (27 duplications and 13 deletions).
Apart from four already known pathogenic CNVs, 36
CNV candidates were tested by qPCR (Additional file 1:
Note S2), and 11 out of the 27 duplications, and five out
of the nine deletions were confirmed by qPCR. In

Table 2 Summary of cell lines and clinical cohorts

addition, we randomly selected 25 of the 497 CNV can-
didates with confidence score of 4 from the above 11 cell
lines. Of these 25 CNVs, 6 out of the 16 duplicates and
3 out of the 9 deletions were also confirmed by qPCR
(Additional file 1: Note S2). As a summary, the concord-
ance rates of 5-score CNV candidates and 4-score CNV
candidates were 44% (16 out of 36) and 36% (9 out of
25) respectively.

Comparison with other tools

We compared DeviCNV’s germline exon-level CNV de-
tection performance with VisCap [1], XHMM [2], and
CODEX [27] using the IMD_HYB dataset and the
IMD_PCR dataset.

From the IMD_HYB dataset and the IMD_PCR data-
set, DeviCNV, VisCap, XHMM, and CODEX could each
detect 11, eight, eight, and eight out of 14 known CNVs
(eight known CNVs from the IMD_HYB dataset and six
known CNVs from the IMD_PCR dataset) respectively
(Table 4). Notably, DeviCNV is the only tool which
found all the small CNVs spanning over four or less
exons: the deletion of exon 18 of GAA from GM14603,
and the duplication of exon 2 and 3 of HPRTI from

Panels IMD_HYB
Batches 3
Samples 307 (cell line)
Average depth of coverage 174X
Samples passing QC 24
Failure rate 20%
Median number of raw duplications 52.5
Median number of raw deletions 225
Median number of raw CNVs 82
Median number of 5-score® duplications 45
Median number of 5-score deletions 2

Median number of 5-score CNVs 6.5

IMD_PCR IMD_V1
2 Unknown
36 (clinical) 14 (cell line) 20 (clinical) 178 (clinical)
345X 301X 349X 87X
35 14 19 172
2.8% 0% 5% 34%
8 355 29 225
3 37 23 9
13 855 67 34.5
1 12 5 6
0 55 2 1
1 24.5 7 7.5

QC quality control, CNV copy number variation, IMD inherited metabolism disorder, HYB hybridization-based capture approach, PCR polymerase chain reaction-

based capture approach

227 unique cell line. Total 30 samples were sequenced because two cell lines were generated 3 times respectively

PHigh-confidence CNVs received the highest score of 5
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Table 3 Description of the measures used in the DeviCNV scoring system

Abbreviation Description Calculation method Default parameter setting
ProbeCntInRegion How many Counting read depth 1 point for =2

signals support ratio signals

the CNV candidate? for a CNV candidate
AverageOfReadDepthRatios How strong is the Calculating an If deletion, 1

signal supporting average point for < l0g2(0.6);

the CNV candidate? log2-transformed If duplication, 1

STDOfReadDepthRatios How stable are the
signals supporting

the CNV candidate?

How small are the
confidence intervals

for the signals supporting
the CNV candidate?

AverageOfCls

How reliable is the
model that generated
the signals that support
the CNV candidate?

AverageOfR2vals

median predicted
probe-level read depth
ratio values for a CNV
candidate

point for > log2(1.4)

Calculating a standard
deviation for the
log2-transformed
median predicted
probe-level read depth
ratio values for a

CNV candidate

1 point for < 04

Calculating average
log2-transformed 95%
confidence interval
lengths for predicted
probe-level read-depth
ratios for a CNV candidate

1 point for <04

Calculating average mean
R-squared values per
probe for a CNV
candidate, with the
average R-squared value
per probe referring to

an average of the
R-squared values of N
models for one probe

1 point for 20.85

CNV copy number variant, C/ confidence interval

NA06804. As for the total number of CNV candidates,
DeviCNV was comparable with a median of 9.5 CNV
candidates per sample. The other tools VisCap, XHMM,
and CODEX generate a median of 15.5, 2.0, and 26.0
CNV candidates per sample, respectively.

We also evaluated how many of the 5-score CNVs
confirmed by qPCR could be detected with other
methods. Among 16 CNVs validated with qPCR, VisCap,
XHMM, and CODEX could detect two, two, and five
CNVs, respectively. (Table 5 and Additional file 1: Note
S3). Most of those 16 CNVs are consists of one or two
exons implying DeviCNV can detect CNVs that only
span over a length of one or two exons which the other
tools did not detect well.

Identification of pathogenic CNVs associated with inherited
metabolic disorders

We used DeviCNV to detect CNVs in clinical samples
suspected of having inherited metabolic disorders. We
collected clinical samples from three cohorts (Table 2
and Additional file 1: Note S4).

In total, we sequenced 45 clinical samples using either
IMD_HYB or IMD_PCR or both. Of these 45 samples,
36 samples were sequenced with IMD_HYB with an
average of mean target depths of 345X, while 20 samples
were sequenced with IMD_PCR with an average of mean
target depths of 349X. From the results of DeviCNV, our

clinical reviewers selected the five CNV candidates for
further validation by integrating the sequence variants
(SNVs and INDELSs) and clinical information of patients
(Additional file 1: Note S5). Among the five selected
CNV candidates, four CNVs were confirmed by qPCR
(Table 6 and Fig. 1).

We also analyzed 178 samples sequenced using
IMD_V1, previous version of IMD_PCR (Table 2), which
had an average of mean target depths of 87X. We ran
DeviCNV on 172 samples that passed the quality con-
trol, as an input set because lacking sequencing batch in-
formation. Our clinical reviewers chose two CNVs for
further validation, and these were all confirmed by
qPCR.

Discussion

DeviCNV was optimized with the known pathogenic
CNVs whose parameters are set to detect all the
known CNVs except for deletions of CYP21A2. It was
further evaluated by qPCR for the high confidence
CNV candidates generated with DeviCNV. We ob-
served that the quality of sequencing of samples are
critical to reduce the number of CNV candidates
while retaining the true CNVs. Thus, we suggest the
minimum requirement of the input samples for the
proper use of DeviCNV. We also used DeviCNV on
clinical samples, and successfully identified six
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Table 4 Comparison of the performances of DeviCNV and previous tools using cell lines with known CNVs
Sample Known CNV DeviCNV VisCap XHMM CODEX
Panel Cell line  Median read depth Gene NM CNV CNV Find?® #CNV® Find? #CNV Find? #CNV Find? #CNV
size
(kb)
IMD_HYB GM14603 81.99 GAA NM_000152 EX18 DEL  0.16 O 24 X 7 X 0 X 56
GM14734 2494 CYP21A2 NM_000500 30 KB DEL, 335 O 2 O 37 O 1 X 2
Entire gene
DEL
GM24007 142.84 oT1C NM_000531 Entire gene 6897 O 7 O 14 O 3 O 46
DEL
NAO1741 1644 GALT NM_000155 Entire gene 4.01 O 6 O 40 O 1 O 37
DEL
NA06804 261.98 HPRTT NM_000194 EX2-3 DUP 201 O 34 O 43 X 2 O 62
NA06805 80.13 GALC NM_000153 EX11-17 1773 O 44 O 8 O 1 O 86
DEL
NA12217  269.08 CYP21A2 NM_000500 30 KB DEL  1.14 X 1 X 7 X 3 X "
NA22208 199.64 PCCA NM_000282 EX13-20 14638 O 3 O 17 O 2 O 15
DEL
IMD_PCR NAOQ1741 Pool 1: 4080, Pool 2:  GALT NM_000155 Entire gene 4.01 O 10 O 9 X 0 O 1
556.0, Pool 3:271.0 DEL

NA12217 Pool 1: 192.0, Pool 2:

117.0, Pool 3: 99.0

GM14603 Pool 1: 2150, Pool 2:  GAA
141.0, Pool 3: 90.0

CYP21A2 NM_000500 30 KB DEL 1.14 X 37 X 22 X 8 X 71

NM_000152 EX18 DEL  0.16 0O 25 X 32 0] 6 ) 40

NA14734 Pool 1: 359.0, Pool 2:  CYP21A2 NM_000500 30 KB DEL, 3.35 O 9 O 12 O 4 X 12
2750, Pool 3: 335.0 Entire gene
DEL
NA22208 Pool 1: 2350, Pool 2:  PCCA NM_000282 EX13-20 14638 O 27 X 13 e} 4 O 12
99.0, Pool 3: 1580 DEL
GM24007 Pool 1: 37.0, Pool 2: oTrc NM_000531 Entire gene 6897 X 1 X 23 X 0 X 0
20.0, Pool 3:16.0 DEL

CNV copy number variation, IMD inherited metabolism disorder; HYB hybridization-based capture approach, PCR polymerase chain reaction-based capture

approach, EX exon, DEL deletion, DUP duplication

“Indicates whether a known CNV was found using each tool. “O” means all CNVs were found, and “X” means they were not found at all
Pindicates the number of CNV candidates found in the corresponding sample. For DeviCNV, the number of CNV candidates that received the highest score of 5

is indicated

disease-associated CNVs (Table 6) that leads to con-
clusive clinical diagnosis.

Conclusion

Although targeted NGS is becoming a major diagnos-
tic and screening method to detect genomic variants,
it still is challenging to detect CNVs in targeted NGS
data with confidence. Here, we propose a new prag-
matic method for detecting CNVs in targeted NGS
data that includes visualization functionality and con-
fidence scores for clinical interpretation. Since
DeviCNV was developed with the intention of use in
clinical diagnosis, sensitivity was emphasized for the
detection of exon-level CNVs. We developed two sub-
modules of DeviCNV to be used with two popular
targeted NGS approaches: hybridization- and
PCR-based capture approaches. DeviCNV provides
visualization  plots that support the clinical

interpretation of the clinical reviewer by offering con-
fidence levels that reflect the quality of the sequen-
cing data of a sample, the reliability of the regression
models for probes and their read depth ratios. By in-
tegrating sequence variants and novel CNVs detected
by DeviCNV, our clinical reviewers could make con-
clusive diagnosis for several patients.

Methods

Overview of DeviCNV

DeviCNV can be divided into three main compo-
nents: 1) calculation of the probe (or amplicon)-level
ratio of the observed and estimated read depth based
on linear regression models of the read depth of a
probe and the median read depth values of all
probes in a sample, 2) generation of CNV candidates
by applying a circular binary segmentation (CBS) al-
gorithm to the read depth ratios of probes, and
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Table 5 Comparison of the performances of DeviCNV and previous tools using 16 CNVs confirmed by gPCR
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Sample gPCR confirmed CNV DeviCNV  VisCap XHMM CODEX
Sample Median read depth Gene NM CNV CNV size (kb)
GM17433 8213 CPTIA NM_001876 EX10 DUP 020 o° X X X
CD3E NM_000733 EX4 DEL 0.01 o] X X 0
GATM NM_001482 EX9 DUP 1.10 O X X X
GM24007 142.84 PTPRC NM_002838 EX16-17 0.83 o] X X 0
LMBRD1 NM_018368 EX12 DUP 0.10 0 X X X
SLCOIB3 NM_019844 EX4 DUP 0.14 O X X O
PAH NM_000277 EX5 DEL 0.07 0 @) X X
NROB1 NM_000475 EX1 DEL 1.18 0 0 X 0
NAO00852 204.09 HBA2 NM_000517 EX2-3 DEL 0.59 O X O X
NAO1741 164.4 G NM_003235 EX20 DUP 022 o] X X X
G NM_003235 EX 21 DUP 0.15 0 X X X
NA02227 27898 CYP21A2 NM_000500 EX10 DUP 0.80 O X X X
NA02659 608.46 HBA2 NM_000517 EX3 DEL 0.24 0 X @) X
NA12217 269.08 GBA NM_001005741 EX12-11 DUP 0.86 O X X X
NA22496 13724 GUSB NM_000181 EX11 DUP 0.14 o} X X X
G6PC NM_000151 EX2 DUP 0.11 0 X X 0
CNV copy number variation, EX exon, DEL deletion, DUP duplication
“Indicates whether a known CNV was found using each tool. “O” means all CNVs were found, and “X” means they were not found at all
Table 6 Candidate pathogenic CNVs detected by clinical sample analysis using DeviCNV
Sample CNV candidates after scoring® Selected pathogenic CNVs®
Panel Sample  Median Raw Score Score Score Score Score Score Gene NM CNV CNV  Confirmed
read depth CNVP 5 4 3 2 1 size by gPCR
(kb)
IMD_HYB Case_01 2733 49 2 22 20 5 0 ACADVL NM_000018 EX2 DEL  0.08 Failed
(Score 4)
Case_02 3414 12 7 3 2 0 0 ASL NM_000048 EX15 DEL 0.08 Confirmed
(Score 5)
Case_03 2768 25 5 18 2 0 0 GYS2 NM_021957 EX6-11 5.15  Partially
DEL confirmed
(Score 5) (EX6-7, 10—
1)
IMD_PCR Case_04 Pool 1: 174.0 82 26 46 9 0 ETFDH ~ NM_004453 EX1-7 2351 Confirmed
Pool 2: 203.0 DEL
Pool 3:185.0 (Score 5)
Case_05 Pool 1: 2280 145 63 74 8 0 0 ETFDH  NM_004453 EX7-8 220  Confirmed
Pool 2:330.0 DEL
Pool 3: 185.0 (Score 5)
IMD_V1  Case_06 Pool 1: 69.0 106 37 40 26 3 0 oTC NM_000531 EX2 DEL  0.14 Confirmed
Pool 2: 56.0 (Score 5)
Case_07 Pool 1: 52.0 65 23 23 14 5 0 orc NM_000531 Entire 68.38 Confirmed
Pool 2: 51.0 gene DEL
(Score 5)

CNV copy number variation, IMD inherited metabolism disorder; HYB hybridization-based capture approach, PCR polymerase chain reaction-based capture

approach, EX exon, DEL deletion, DUP duplication, gPCR quantitative polymerase chain reaction

“Indicates the number of CNV candidates for each score
Pindicates the number of all CNV candidates before scoring
Sindicates the selected pathogenic CNVs identified in the clinical sample by one expert. The number in parentheses indicates the score of the selected CNV



Kang et al. BMC Bioinformatics (2018) 19:381 Page 7 of 13
P
A Case 02 (MQO) B Case 03 (MQo)
Pool1:341.35 Pool1:276.82
34 3
ASL (NM_000048) GYS2 (NM_021957)
chr7 chr12
24 24
:g;' Pool E‘ Pool
g W Pool1 (‘g MW Pool1
g i X Faulty g 14 X Faulty
2 ~+ LowMedRD & + LowMedRD
< U O LOWRVAI<0.8) & Lo o f oo oo < LowRval(<0.8)
9 9
;.?, o ww— - P-vaus % g - - - - - - gl g - P-va
5 ---------------------------------------- 0.75 g ---------------------------------------- 0.75
3 3 & pj o
g » [— 0.50 % ol 0.50
§ 0.25 § 0.25
g 0.00 S 0.00
s S
Y -2
Exons Exons
C D
Case_04 (MQO) Case_07 (MQO)
Pool1:174.0, Pool2:203.0, Pool3:185.0 Pool1:52.0, Pool2:51.0
34 34
ETFDH (NM_004453) OTC (NM_000531)
chr4 chrX
24 24
g Pool % Pool
-g)_ W Pool1 g W Pool1
g 14 : :::2 g 14 @ Pool2
o 9 X Faulty
§ X Faulty % + LowMedRD
O b o o o e e e e e e e e ~+ LowMedRD O L e e e e e e o
§ } E & LowRval(<08) § & LowRval(<0.8)
£ Lo _____ _&i _ ey o _ R ) e e e e e ——— — — -
§ Ei E;iih :§ s P-value
I S R S I L
b= § ! = E E 0.75
: 114 o2 ® & o7 % -1 E L) 050
R TvL 2
4 iil i n Ié x £ Z: g iiiiiiii [] T E ) 025
o~ .
e 8 3 ® 0.00
— 0.00 =
2 o Py
Exons Exons
Fig. 1 Gene-centric view plots for four selected clinical cases. Panels A-D contain four examples of gene-centric view plots for the pathogenic
CNVs detected in clinical samples shown in Table 6. a A single exon deletion within ASL, b a multi-exon deletion within GYS2 using the inherited
metabolic disorder panel and hybridization capture approach, ¢ a multi-exon deletion within ETFDH using the inherited metabolic disorder panel
and polymerase chain reaction-based capture approach, and d an entire gene deletion within OTC using the previous version of the inherited
metabolic disorder panel and polymerase chain reaction-based capture approach

assigning confidence scores for them with the five
scoring criteria based on the probe-level CNV signals
within candidates, and 3) visualization of the CNV
candidates with confidence information for easier
visual inspection.

To calculate the probe-level read depth ratios, we im-
plemented two submodules to be used in two popular
NGS target enrichment approaches: hybridization- and
polymerase chain reaction (PCR)-based capture ap-
proaches (Fig. 2). Hereafter, we use the terms “probe”
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Input:
Analysis ready BAM files

Hybridization-based PCR-based
capture capture

Read depth calculation Read depth calculation
per probe per amplicon

ChrX normalization
v

Low-quality sample filtering

A 4
Linear regression model building
with bootstrapping
v

Read depth ratio calculation

¥dd ANDIARQ

v
Large CNV calling
by circular binary segmentation
v

DeviCNV_HYB

Small CNV calling
by merging adjacent signals
v

CNV scoring
v

CNV visualization
v

Output:
Candidate CNV list, CNV plots

Fig. 2 DeviCNV workflow. Analysis-ready BAM files were used for
DeVviCNV input. After read-depth normalization for chromosome X,
DeviCNV filters low-quality samples from the input dataset. Then,
DeviCNV builds N (1,000 by default) linear regressions per probe (or
amplicon) to predict a read-depth ratio and confidence interval per
probe for each sample. By combining signals of probe-level read-
depth ratios, DeviCNV calls raw CNV candidates and evaluates them
using a new scoring system. Finally, DeviCNV provides a CNV
candidate list and visualization plots for each sample and gene

and “amplicon” interchangeably without the loss of gen-
erality with respect to the calculation of read depth ratio
for a target capture interval.

Input for DeviCNV

DeviCNV requires three inputs: 1) binary alignment/
map (BAM) formatted files for a set of samples, 2) a
tab delimited text file that contains the genomic pos-
ition of target capture probes or amplicons with their
primer/probe pool information, and 3) the genders of
the samples. Because DeviCNV uses linear regression
models to estimate probe-level read depth ratios, a
minimum number (> 6) of samples is recommended
to build the models properly (Additional file 1: Note
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S6). Using BAM files of samples from a batch of se-
quencing run is also recommended to rule out batch
effects (Additional file 1: Note S7).

Calculating probe level read depth

Many previous studies have used individual exons or
unified regions merged with overlapping probes as
units for calculating read depth. However, these ap-
proaches overlook the usefulness of the detailed
probe-level signals which may be helpful in determin-
ing the confidence of CNV candidates [23]. Our
premise of using probe-level signals for calling CNVs
is that if there are CNV signals from multiple probes
for a candidate, then we could give more confidence
to the candidate even in a single exon sized CNV.
Therefore, DeviCNV uses each individual probe as
units to detect CNV signals, rather than individual
exons or unified regions as units (Additional file 1:
Note S8).

To calculate probe-level read depth, DeviCNV counts
the number of sequencing reads mapped to a probe re-
gion with a mapping quality value (MQV) threshold.
However, we observed that there is no recognizable dif-
ference in terms of performance between the default
MQV =0 and the MQV = 20 (Additional file 1: Note S9).

The two submodules for calculating probe-level read
depth are described as followed:

PCR based capture-specific approach. Most
sequencing reads can be assigned to an amplicon from
which sequencing reads were generated from. For a
given sequencing read, DeviCNV selects the amplicon
that overlaps most with the aligned genomic interval. If
two or more amplicons have the same overlap ratio for
the sequencing read, the smallest amplicon among
them is assigned.

Hybridization based capture-specific approach. In
hybridization based targeted NGS, sequencing reads
captured by a target capture probe originated from
many physically different molecules, resulting in
different alignment for those sequencing reads.
Therefore, it is not trivial to determine which target
capture probe was a bait for a sequencing read. For this
reason, DeviCNV uses the average of per-base depth of
coverage within a target capture probe region as the
reads depth for that target capture probe.

X chromosome normalization

To adjust for the different number of X chromosomes in
males and females, DeviCNV normalizes the probe-level
read depth on the X chromosome by dividing by two in
case of females.
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Low-quality sample filtering

In addition to the mean target depth as a quality control
for a sample, we calculated coefficients of correlation of
its probe level reads depth with those of other samples.
To determine the threshold for low quality samples, we
investigated the relationship between the coefficients of
correlations of a sample with the other samples and the
number of segments generated during the CBS with the
read depth ratios for the sample (Additional file 1: Note
$10). Finally, we excluded a sample for CNV calling if its
top quadrant of coefficients of correlations are below 0.7.

Building linear regression models with bootstrapping
In principal, DeviCNV uses a linear regression model
to predict an expected read depth of a probe of a
sample with the median of read depth values of all
probes in the sample as a predictive variable. To gen-
erate empirical distribution of expected read depth of
a probe in each sample, DeviCNV builds N linear re-
gression models with N resampling with replacement.
Then, it calculates N read depth ratios between the
observed read depth and the N expected read depths.
Our rationale for using linear regression models is
that the read depth of a probe for a given sample
should be proportional to a representative quantity of
sequencing depth for the sample, if its copy number
is neutral. By default, the number of resampling N is
set to 1000. The 95% confidence interval of the ex-
pected read depth is obtained from this process.
During the building process of N linear regression
models, DeviCNV identifies low-quality probes that can-
not be used in calling CNV deletion which are catego-
rized into faulty probes, faulty sample of the probe, and
low R-squared value probe.

Faulty probe

Negative value among the slopes of regression models
for a probe during the bootstrapping indicates read
depth of the probe does not follow the assumption of
proportional relationship between read depth values of
the probe and sequencing depths of samples. The results
from faulty probes are not considered when calling
CNVs across all samples.

Faulty sample of the probe

Negative value among the expected read depth values of
a probe in a sample during the bootstrapping indicates
that the median of read depth values of all probes in a
sample is too low to calculate the read depth ratio reli-
ably in the regression models of the probe. Thus, for a
given sample, the results from those probes are not con-
sidered for CNV calling.
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Low R-squared value probe

Average R-squared value of the N regression models of a
probe under 0.8, indicates the computed linear regres-
sion models are not reliable enough to be used in CNV
calling. These results are not considered for CNV calling
across all samples.

Calculating read depth ratio per target capture probe

For a given target capture probe t, let Y, = (3¢, 1, %, 2 -+ >
¥¢, k) be the read depth of the probe t observed from the
targeted NGS data of the K samples. Median of read
depth values of all probes in each sample is denoted as
M = (my, my, ..., myg). Then, we build N linear regression
models between M (independent variable) and Y; (re-
sponse variable) by resampling with replacement. We
denote the N fitted linear regression models of the probe
tas F,=(fi, uf. 2 ---ft, n)- From each fitted linear regres-
sion model, we can estimate the read depth of a probe t
at sample k by the n™ model with the equation Vekn
= f..(mx). Then, we calculate the read depth ratio of

the observed read depth and the estimated read depth

by Fikn = ;t.k

. Finally, we can get N of read depth ratio

tkn
estimates which we denote as R, x=(ry, 1, 1, - e, &, N) -
To measure the significance of CNV signal from R, ,
probability of a CNV event is calculated from the frac-
tion of how many read-depth ratios among its N read
depth ratios are deviated from the range of copy neutral
defined as (TH.del, TH.dup) where TH.del and TH.dup
are the thresholds for deletion and duplication, respect-
ively. The default value is 0.7 for TH.del and 1.3 for
TH.dup (Additional file 1: Note S11). Finally, we selected
the probes whose probability of a CNV event is greater
than 0.5.

n(rt‘,k,,, > TH.dup)
N

p'dup(t,k) =
If p.dupa,k) > 0.5, then C(; 4y = duplication

n(rex, < TH.del)
N

P-del(t.k) =
If p.del(; ;) > 0.5,then C(;4) = deletion

(Otherwise,) C, x) = neutral
where C 4 is the copy number status (duplication/neu-
tral/deletion) for sample k with target capture probe t.

Calling CNVs

To segment a profile of sample’s read depth ratios for a
gene, we used a circular binary segmentation (CBS)
method [32]. The profile used in CBS was generated
with the medians of R, , of the probes within a gene.
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For computational convenience, we set the upper limit
of the read depth ratios of the profile as 16.

P(t,k) = median(th)
If P(nk) > 167then P(t,k) - 16

Thereafter, the profiles are partitioned into segments
of similar read depth ratios, and the copy number status
of a segment are determined by the average read depth
of probes within the segment. After that, adjacent seg-
ments are merged hierarchically to form a larger CNV
candidate if they have the same copy number status.

However, it is difficult to detect small size changes
using the above CBS. To address this issue, we added
duplication or deletion regions covered by two or more
consecutive strong probe-level CNV signals to increase
the sensitivity of our method. For each CNV candidate
generated from the above, its copy number and CNV
length are calculated. We estimated the copy number by
the average of the copy numbers of probes inferred from
their read-depth ratio. Because the exact breakpoints of
CNV candidates cannot be determined with DeviCNV,
the start/end genomic position or length of the CNV
candidates
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information provided by the wuser. Additionally,
DeviCNV annotates the CNV type, sample name, and
median of reads depth of each probe/primer pool, the
genomic position of the CNV candidate, and confidence
information for the predicted reads depth ratios support-
ing the candidate.

Scoring CNVs

To detect CNVs with high specificity, DeviCNV evalu-
ates all CNV candidates using the following five scoring
criteria (Table 3 and Additional file 1: Note S12) to de-
termine confidence levels. To define the thresholds or
condition for each criterion, we used the IMD_HYB
dataset and the IMD_PCR dataset from eight cell lines
with known CNVs. The five scoring criteria are as
followed: 1) ProbeCntlnRegion: the number of probes
within the CNV candidate, 2) AverageOfReadDepthRa-
tios: the average of reads depth ratios of probes within
the CNV candidate, 3) STDOfReadDepthRatios: the
standard deviation of the read depth ratio of the probes
within the CNV candidate, 4) AverageOfCIs: The average
length of 95% confidence interval of read-depth ratios of
the probes within the CNV candidate, and 5) Avera-

Pool

= Pool1

x  Faulty
LowMedRD
LowRval(<0.8)

+

o

P-value
1.

Log2(observed read depth/expected read depth)

All Genes

are annotated based on the probe geOfR2vals: the average of average R-squared values of
A B
GM14734 (MQO) GM14734 (MQO)
Pool1:249.4 Pool1:249.4

CYP21A2 (NM_000500)
chr6

Pool

W Pool1

1 X' Faulty

+ LowMedRD
<> LowRval(<0.8)

_____________________ Pvalue
1.00

Log2(observed read depth/expected read depth)
o

Exons

Fig. 3 Example of DeviCNV plots. Predicted read-depth ratios (observed read depth/predicted read depth) of probes on a panel plotted on a
log, scale for each sample: a the whole-genome view plot depicts all probes on a panel, and b the gene-centric view plot depicts the probes
within a gene. Each point represents the read-depth ratio for each probe, and its shape indicates the pool or an assessment of faulty or low-
quality types that are classified when building the linear regression models. The color of each point shows the p-value for duplications and
deletions (the thresholds are set at 1.3 and 0.7, thin black dotted lines). The whiskers represent the 95% confidence interval for the read-depth
ratio. This is an example of a multi-exon deletion within CYP21A2 found in a cell line using the inherited metabolic disorder panel and the
hybridization capture approach
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the linear regression models for probes within the CNV
candidate. If a CNV candidate passes each criterion, one
point is assigned; then, the CNV candidates that scored
5 points are designated as final CNV candidates. More
detailed descriptions of the threshold for each criterion
are provided in Additional file 1: Note S12.

Visualization

DeviCNV allows visualization of CNV results as graphical
plots with predicted read-depth ratios. There are two types
of plots: a whole-genome view plot for the whole gene
showing the overall result for one sample across whole
genes (Fig. 3a), and the gene-centric view plots containing
detailed information (Fig. 3b). In the plot, grey dotted lines
indicate duplication/deletion thresholds. The shape of
points in the plot indicates different primer/probe pool and
if the probes are faulty or low-quality. The red-white gradi-
ent indicates the p-value which is defined by 1 - p. dup, 1
or 1 - p. del y, for a given target probe t in the k sample. A
95% confidence interval for the predicted read-depth ratio
is also displayed that indicates the reliability of each result.
By displaying various parameters on this graph, users can
check the results directly and easily.

Generation of targeted NGS datasets

We evaluated DeviCNV using four targeted NGS datasets
sequenced for use in clinical research (Table 1). First, we
used our IMD (inherited metabolism disorders) gene
panels that were developed using two different capture ap-
proaches: hybridization-based capture (IMD_HYB) and
PCR-based capture (IMD_PCR) (Additional file 1: Note
S13). The IMD_HYB panel consisted of 19,210 probes.
The IMD_PCR panel consisted of 9072 amplicons sepa-
rated into three pools to prevent reactions between
primers. We sequenced targeted NGS data derived from
both IMD_HYB and IMD_PCR capture assays, followed
by sequencing using HiSeq (Illumina, San Diego, CA,
USA) and Ion S5 (Thermo Fisher Scientific, Waltham,
MA, USA) platforms. We sequenced a total of 96 targeted
NGS datasets from 72 unique samples (27 cell lines and
45 clinical samples). Secondly, we used our previous ver-
sion of the IMD panel, IMD_V1, developed using only for
the PCR-based capture method. This panel consists of
2054 amplicons in two pools, and a total of 178 clinical
datasets were sequenced using the Ion Torrent Personal
Genome Machine (PGM) system (Thermo Fisher Scien-
tific, Waltham, MA, USA).

For each sample data sequenced wusing the
hybridization-based method, the targeted NGS data were
aligned to the human reference genome (hs37d5) using
BWA 0.7.12 [33], Picard 1.139 tools (http://broadinstitu-
te.github.io/picard/) were applied to sort and mark du-
plicated reads, and the Genome Analysis Toolkit
(GATK) 3.4.46 [34] was applied for recalibration and
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indel realignment, according to the GATK Best Practices
guidelines [35]. The data sequenced using the
PCR-based approach were processed with standard Ion
Torrent Suite™ Software, and the Torrent Server was
used for alignment (Additional file 1: Note S14).

Running parameters of other tools for the performance
comparison
For VisCap, we set igr_multiplier at 1.1 and threshold.-
cnv_log2_cutoffs at (logy [0.7], log, [1.3]) to maximize
sensitivity because our DeviCNV parameters were set
for maximum sensitivity detection, whereas, for other
parameters, the default settings were used. In addition,
we ran VisCap with default parameters. We used ‘run_1’
results, which were analyzed without sample QC filter-
ing of VisCap because sample failure rates of ‘run_2’
were too large to analyze (Additional file 1: Note S15).

For the XHMM QC and filtering step, we set the pa-
rameters so that XHMM performed best for our data.
To remove the gender-specific effect of the X chromo-
some, we used the normalized depth of coverage data by
dividing the number of X chromosomes in samples from
females in half. During the Filters samples and targets
and then mean-centers the targets step, we set the
maxSdSampleRD to 400, the minMeanTargetRD to 50,
and the minMeanSampleRD to 50. For the Filters and
z-score centers (by sample) the PCA-normalized data
step, maxSdTargetRD was set to 400 instead of 30. Then,
in the Discovers CNVs in normalized data step, we set
mean number of targets in CNV to 2 and used default
settings for other parameters.

For CODEX, we ran targeted sequencing with default
parameter settings for the QC and CNV calling steps.

Additional file

Additional file 1: Note S1. Performance comparison based on the
mean target depth for a sample. Note S2. Performance evaluation of
DeviCNV by gPCR. Note S3. Performance comparison to VisCap, XHMM,
and CODEX. Note S4. Sample collection description of for the inherited
metabolic disorder panel. Note S5. Visual inspection process to find
pathogenic CNVs in patients. Note S6. Performance comparison based
on the number of input samples. Note S7. Performance comparison
based on the configuration of the sample set used as an input. Note S8.
Differences in the number of data points for each exon based on input
intervals. Note S9. Performance comparison based on MQV thresholds.
Note S10. Low-quality sample filter by using sample-to-sample correl-
ation. Note S11. Performance comparison based on duplication and de-
letion thresholds for read depth ratios. Note S12. Unique scoring system
for selecting high-confidence CNV candidates. Note S13. Inherited meta-
bolic disorder (IMD) panel description. Note S14. Generating targeted
NGS data. Note S15. Failure rate of DeviCNV, VisCap, XHMM, and CODEX.
Note S16. List of abbreviations. (PDF 908 kb)
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