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Abstract

Background: Somatic copy number alternation (SCNA) is a common feature of the cancer genome and is
associated with cancer etiology and prognosis. The allele-specific SCNA analysis of a tumor sample aims to identify
the allele-specific copy numbers of both alleles, adjusting for the ploidy and the tumor purity. Next generation
sequencing platforms produce abundant read counts at the base-pair resolution across the exome or whole genome
which is susceptible to hypersegmentation, a phenomenon where numerous regions with very short length are
falsely identified as SCNA.

Results: We propose hsegHMM, a hidden Markov model approach that accounts for hypersegmentation for
allele-specific SCNA analysis. hsegHMM provides statistical inference of copy number profiles by using an efficient E-M
algorithm procedure. Through simulation and application studies, we found that hsegHMM handles hypersegmentation
effectively with a t-distribution as a part of the emission probability distribution structure and a carefully defined state
space. We also compared hsegHMM with FACETS which is a current method for allele-specific SCNA analysis. For the
application, we use a renal cell carcinoma sample from The Cancer Genome Atlas (TCGA) study.

Conclusions: We demonstrate the robustness of hsegHMM to hypersegmentation. Furthermore, hsegHMM provides
the quantification of uncertainty in identifying allele-specific SCNAs over the entire chromosomes. hsegHMM
performs better than FACETS when read depth (coverage) is uneven across the genome.

Keywords: Allele-specific somatic copy number alteration, Hidden Markov model, Hypersegmentation,
Next-generation sequencing, The cancer genome Atlas study

Background
Characterizing somatic copy number alterations (SCNAs)
is important for understanding tumorgenesis [1], cancer
etiology and prognosis [2]. In normal cells, two copies
of chromosome are inherited from both parents. In con-
trast, tumor cells frequently contain alterations in copy
numbers across the chromosomes, such as deletions,
insertions, or amplifications among others [3, 4]. In addi-
tion, tumor tissues always contain normal cells (reduced
tumor purity) and frequently show an abnormal num-
ber of chromosomes (aneuploidy). These characteristics
of the cancer genome and tissue heterogeneity complicate
the estimation of SCNAs, in contrast to germline copy
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number variations (CNVs) analysis where neither should
be considered [5, 6]. Allele-specific SCNA analysis esti-
mates the integer copy number for each allele instead of
the total copy number, and is essential to identify the
copy-neutral loss of heterozygosity (NLOH) [7, 8]. Based
on the total copy numbers only, NLOH will be misidenti-
fied as normal regions with the copy number two, when
one chromosome is duplicated but the corresponding
homologous region is deleted [9].
In this paper, we consider next-generation sequencing

(NGS) platform-based whole exome sequencing (WES)
data for studying SCNAs. The NGS technology provides
high resolution at the single base-pair, which comes with
mapping bias and the tendency for hypersegmentation.
Mapping bias occurs from higher mapping rates for the
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reference allele than those for the variant allele at het-
erozygous loci [10]. This bias leads to incorrect inter-
pretations of allele-specific SCNAs. Hypersegmentation
is also a major challenge in NGS-based allele-specific
SCNA. The quality of such data depends on the sam-
ple preparation, the library preparation, and polymerase
chain reaction (PCR) techniques from applying NGS tech-
nology, and the exome enrichment platforms from WES.
It has been reported that capture efficiency could vary
across the percentage of guanine or cytosine contained
in DNA [11]. These technical procedures have a limit
of accurate quantification of sequences, which poten-
tially increase measurement errors that in turn result in
excessive segmentations.
A number of papers have been proposed to address

these challenges and complexities. While PennCNV [12]
and QuantiSNP [13] are based on the assumption of 100%
tumor purity, ASCAT [14], GPHMM [5], and MixHMM
[15] account for both the tumor purity and the ploidy.
However, these methods do not explicitly characterize
the genotype at each allelic location. Furthermore, these
methods use a B-allele frequency (BAF), which is sensitive
tomapping bias. Shen and Seshan [16] developed FACETS
that uses log Odds Ratio (logOR) instead of BAF, since
the logOR of tumor versus normal cells provides unbi-
ased allelic information. FACETS uses a genotype mixture
model, providing an allele-specific tumor copy number
profile adjusted for the tumor purity and ploidy. However,
since the segmentation and genotype mixture modeling
are conducted by separate algorithms, it is not possible
to assess uncertainty in the estimation of allele-specific
SCNA.
In this paper, we propose a novel hidden Markov mod-

eling approach (hsegHMM) for allele-specific SCNA anal-
ysis accounting for the hypersegmentation. hsegHMM
embeds logOR and logR (log R ratio) into a hidden
Markov model (HMM) framework, and simultaneously
conducts the segmentation and genotype mixture mod-
eling required to identify SCNAs across chromosomes.
Similar to FACETS, the logOR is applied instead of the
BAF to adjust for mapping bias. Hypersegmentation,
which may result from logR outliers, is accounted for
by assuming a t-distribution for the distribution of logR.
hsegHMM makes inference about allele-specific SCNAs
using the E-M algorithm where we iterate between the E-
and the M- step until convergence. The E-step is made
tractable by using a recursive forward-backward algo-
rithm that evaluates functions of the hidden locus-specific
genotype states given the observed logR and logOR. Given
a genotype state, the tumor purity and the ploidy are
obtained in the M-step by maximizing the expectation of
the conditional log-likelihood function.
We apply hsegHMM to a renal carcinoma cell dataset

(TCGA-KL-8331) from TCGA (the Cancer Genome

Atlas) project (https://cancergenome.nih.gov) to show
the effectiveness of the proposed HMM framework. We
also provide various simulation studies to show that
hsegHMM is able to accurately detect genotype sta-
tus across chromosomes that exhibit hypersegmentation.
Further, through analysis and simulations, we compare
hsegHMMwith FACETS.

Methods
HiddenMarkov model:hsegHMM
Modeling with logRatio and logOdds ratio as outcomes
Let Zk be the unknown genotype as the hidden state of the
kth genomic location and Wk and Xk be the correspond-
ing logR and logOR, respectively. We specify 12 different
states of Zk , given in Table 1. The index for hidden states,
j is from 1 to J (in this paper, J = 12) and the index for
genomic locations, k is from 1 to N. The expectations of
logR and logOR are given in Van Loo et al. [14] and Shen
and Seshan [16], respectively. Specifically, we can write

E
(
Wk|Zk = j

) = μj = log2
[

(1 − α)CN + αCT ,j

ψ

]
,

(1)

where CN is the copy number of normal cells prespecified
as CN = 2; CT ,j is the copy number of tumor cells at the jth
state; α is the tumor purity proportion of the tumor tissue
over a range of 0 to 1; ψ is the ploidy. For example, if a
tumor sample contains 100% tumor cells and is diploidy,
then μ3, the expectation of logR at the state j = 3 is 0
along with CT ,3 = 2, ψ = 2, and α = 1.

Table 1 Description of tumor genotype states and
corresponding genotype of total copy number: homozygous
deletion (HOMD), hemizygous deletion LOH (DLOH), copy
neutral LOH (NLOH), diploid heterozygous (HET), gain of 1 allele
(GAIN), amplified LOH (ALOH), allele-specific copy number
amplification (ASCNA), balanced copy number amplification
(BCNA), and unbalanced copy number amplification (UBCNA)

State (j) Genotype Copy number (CT ) Allelic information

1 0 0 HOMD

2 A 1 DLOH

3 AA 2 NLOH

4 AB 2 HET

5 AAB 3 GAIN

6 AAA 3 ALOH

7 AAAB 4 ASCNA

8 AABB 4 BCNA

9 AAAA 4 ALOH

10 AAAAB 5 ASCNA

11 AAABB 5 UBCNA

12 AAAAA 5 ALOH

https://cancergenome.nih.gov
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The expectation of logOR is given by

E
(
Xk|Zk = j

) = ζj = log
[

(1 − α) + αmj

(1 − α) + αpj

]
, (2)

wheremj and pj are the maternal and paternal copy num-
bers of the tumor at the kth genomic location, respectively.
We assume that Z = {Z1, Z2, Z3, · · · , ZN }, the genotype
sequence across chromosomes follows a Markov chain
with a transition probability, Pij = P(Zk = j|Zk−1 = i)
and an initial probability, r0j = P(Z1 = j). Pij indicates the
probability that the jth genotype state occurs conditionally
on the ith genotype state at the previous location.

Joint emission probability with conditional distributions of
logR and logOR
We consider a t-distribution for logR in order to
account for outliers that are apparent in NGS data and
potentially lead to hypersegmentation. Following Peel and
McLachlan [17], we specify a t-distribution for Wk with a
degree of freedom v by a mixture of a normal distribution
N

(
Wk|μj, κ2/uk

)
with a gamma distribution G

(
uk , v2 ,

v
2
)
,

tv
(
Wk|Zk = j

) =
∫

uk
N

(
Wk|μj, κ2/uk

)
G

(
uk ,

v
2
,
v
2

)
duk .

(3)

We also specify a normal distribution for logR, Wk|Zk =
j ∼ N(μj, σ 2) to examine how differently these two
distributions of logR behave in terms of handling hyper-
segmentation.
We use the square of logOR due to the lack of the hap-

lotype information [16]. The squared logOR
(
X2
k
)
follows

a chi-square distribution, χ2
1

(
X2
k/τ

2|Zk = j, δj
)
, with one

degree of freedom and a non-centrality parameter δj =
ζ 2
j /τ 2, with the mean and variance ζj and τ 2, respectively.
Finally, our joint emission probability with a t-distribution
of logR at the kth location given the state j is

p
(
Wk ,X2

k |Zk = j
)= tv

(
Wk|Zk = j

)×χ2
1

(
X2
k/τ

2|Zk = j, δj
)
.

(4)

When logR follows a normal distribution, the first
part on the right-hand side in Eq. 4 is replaced by
N

(
Wk|Zk = j,μj, σ 2). Since logOR cannot be obtained in

homozygous loci, the emission probability from Eq. 4 is
re-formulated, depending on the existence of logOR at the
kth location (Eq. 5).

p
(
Wk ,X2

k |Zk = j
) =

{
tv

(
Wk |Zk = j

)
,Xk = NA

tv
(
Wk |Zk = j

) × χ2
1

(
X2
k /τ

2|Zk = j, δj
)
,Xk �= NA

(5)

Here, Xk = NA indicates that the kth location is
homozygous, and heterozygous otherwise.

Estimation with E-M algorithm
The E-M (expectation-maximization) algorithm [18] is
used to estimate the parameters of hsegHMM. In the
E-step, the goal is to calculate the posterior probability,
P(Zk = j | W , X2) and the joint probability, P(Zk =
j, Zk−1 = i|W , X2), where W and X2 indicate the sets
of the logR and squared logOR values over chromosomes,
respectively . These probabilities are evaluated by apply-
ing the forward-backward algorithm [19] resulting in the
following conditional probabilities,

P
(
Zk = j | W , X2) = γk = aj(k)bj(k)

∑J
l=1 al(N)

, (6)

P
(
Zk = j,Zk−1 = i|W , X2)=η

i,j
k = aj(k − 1)bj(k)Pijp

(
Wk ,X2

k |Zk = j
)

∑J
l=1 al(N)

,

(7)

where aj(k) = P(W 1:k ,X2
1:k ,Zk = j) and bj(k) =

P
(
Wk+1:N ,X2

k+1:N |Zk = j
)
; Wl:m and X2

l:m indicate the
observed values of logR and squared logOR from the lth
locus to mth locus. aj(k) is evaluated by a forward recur-
sion up to the kth observation and the bj(k) by a backward
recursion from the last to the (k + 1)th observation. The
recursion equations are

aj(k) =
J∑

i=1
ai(k − 1)Pijp

(
Wk ,X2

k |Zk = j
)

and

bj(k) =
J∑

i=1
bi(k + 1)Pjip

(
Wk+1,X2

k+1|Zk+1 = i
)
.

Then, the loglikelihood is simply computed as
log

[ ∑J
l=1 al(N)

]
. The calculation of aj(k) and bj(k) may

result in extremely small values that cause an underflow
issue, particularly with large N as in our application.
Therefore, the scaled HMM [20] is implemented for all
the analyses in this paper.
In the M-step, given the hidden state values obtained

from Eqs. 6 and 7, we maximize the expectation of the
conditional log-likelihood function with respect to all
the parameters. The expectation of the complete log-
likelihood function is given by,

Q =
J∑

j=1
γ1 × logr0j +

N∑

k=2

J∑

j=1

J∑

i=1
η
i,j
k × logPij

+
N∑

k=1

J∑

j=1
γk × logp

(
Wk ,X2

k |Zk = j
)

= Q0 + Qη + Qθ , (8)
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where θ is a set of global parameters: θ = {α, ψ , κ2, τ 2, v}.
Given γk and η

i,j
k in Eq. 8, we can estimate all the param-

eters by maximizing Q in the M-step. For estimating the
initial probability r0j, we maximize Q0 under the constrai
nt that

∑J
j=1 P(Z1 = j) = 1, which is r̂0j = P̂(Z1 = j) =

γ1j
∑J

l=1 γ1l
. Similarily, for estimating Pij under the constraint

∑J
j=1 P(Zk = j|Zk−1 = i) = 1, we obtain the closed form

as

P̂ij =
∑N

k=2 η
i,j
k∑N

k=2
∑J

l=1 η
i,l
k
.

For estimating all the global parameters, we maximize
Qθ in terms of them by using the L-BFGS-B optimization
algorithm in the R function optim.

Simulations
Initially, we perform two simulation studies for assess-
ing how accurately our proposed model identifies true
genotype states when hypersegmentation occurs.
For these two studies, we generate 500 datasets with

true genotype sequences of size N = 10, 000 based on
a Markov chain with a given transition probability, using
the R- package markovchain. We consider four genotypes
as true states: A, AA, AAAB, and AAAAB. The first two
genotypes are chosen for hemizygous deletion and neutral
LOH (loss of heterozygosity), while the last two are cho-
sen for the amplification events. Moreover, AAAB (j = 7)
and AAAAB (j = 10) give similar expectations for both
logR and logOR,making itmore challenging to distinguish
between these two genotypes. In this study whereψ = 1.6
and α = 0.9, μ7 and μ10 are 1.25 and 1.55 for logR; ζ7 and
ζ10 are 1.03 and 1.31 for positive values of logOR. For each
simulation study, the hsegHMM-N and the hsegHMM-T
models are applied; The observed logORj is generated by
Xk = ζj + εk where εk is normally distributed in these two
simulation studies.

t-distribution-based logR
In this simulation, we simulate hypersegmentation using
a t-distribution for logR and examine both hsegHMM-N
and hsegHMM-T models. We start with generating logR
values from the t-distributions with v(= 4) degrees of
freedom. The squared values of logOR are generated from
the chi-square distribution with one degree of freedom.
Similar to the TCGA-KL-8331 dataset used in the TCGA
study section, we assign 90% of loci to be homozygous.
For each locus, the allele-specific SCNA is identified by

choosing the genotype with the largest posterior proba-
bility. In order to evaluate the accuracy of our models,
we estimate the probability of a correct identification
across the genome. First, we create the classification index
variable which is set to be 1 if the estimated genotype is

correctly assigned for each locus in one simulation, and
zero otherwise. We then calculate the probability of iden-
tification of each genotype across locus by averaging the
index across 500 datasets. Figure 1 shows the probability
of identification for all genotype states. It is obvious that
the red lines (by the hsegHMM-T model) are significantly
closer to the true signal (black line) than the blue lines
(by the hsegHMM-N model) for all genotypes. In par-
ticular, the accuracy plot for the genotype AAAB shows
much lower blue lines, compared with the red ones. For
instance, the 5909th locus is truly assigned to genotype
AAAB, and the probability of identification for AAAB
at the location is 0.488 with the hsegHMM-N model
but 0.940 with the hsegHMM-T model. This indicates
that AAAB is harder to correctly identify when we use
hsegHMM-N model rather than the correct hsegHMM-T
model.
We examine the statistical properties of the global

parameter estimates in Table 2. SEs are empirical standard
errors and SEH are computed by averaging 500 asymp-
totic standard errors based on the Hessian matrices. The
Hessianmatrix for each dataset is numerically obtained by
hessian in R package numDeriv. The estimates are unbi-
ased even under themisspecified normalmodel. However,
the asymptotic standard error estimates are sensitive to
misspecification of the logR distribution (SEH is different
from SEs under the misspecified hsegHMM-N model).

Amixture of normals-base logR
We examine the robustness of the t-distribution to alter-
native distributions that exhibit long tails. Specifically,
we simulate under a mixture of normal distributions
and examine the robustness of the hsegHMM-T model.
Errors are generated by εk ∼ π1 × N

(
με1, σ 2

ε1
) + π2 ×

N
(
με2, σ 2

ε2
)
, where π1 and π2 indicate the mixture pro-

portions of the first and the second distributions, respec-
tively. The means and variances for those two normal
distributions are chosen under the condition of E(εk) = 0
andV (εk) = σ 2

ε . In this simulation, π1 and π2 are set as 0.7
and 0.3 withμε1 = με2 = 0, σ 2

ε1 = 0.5, and σ 2
ε2 = 0.5×32.

Then, the total error variance σ 2
ε is 2.25.

Both the probability of identification (Fig. 2) and
the summary of estimators with corresponding stan-
dard errors, SEs and SEH (Simulation 2 in Table 2) are
shown in the same way as described in the previous
“t-distribution-based logR” section. Figure 2 shows that
all the red lines based on the hsegHMM-T model appear
noticeably closer to the black lines than the blue lines
based on the hsegHMM-N model for all the genotype
states. In particular, detecting both AAAB and AAAAB
with the hsegHMM-T model performs much better than
the hsegHMM-N model.
The results indicate that under mild amounts of

misspecification (t-distribution rather than a mixture of
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Fig. 1 Probability of identification for all the genotype states from 500 simulated datasets with logR generated from the t-distribution blue lines and
red lines indicate the probabilities of identification based on the hsegHMM-N and hsegHMM-T models, respectively; Each dataset consists of 10,000
observations of logR and logOR

normals) of the log R distribution, estimates of global
parameters and their standard errors are both unbiased,
and the accuracy of classifications are very good. Conse-
quently, hsegHMM-T provides more accurate estimates
of genotype status by managing hypersegmentation more
effectively than hsegHMM-N.
A single dataset-based result is provided to investigate

more closely how much more robust the hsegHMM-
T model is than the hsegHMM-N model to cope with
hypersegmentation (Additional files 1–4). The first two
figures (Additional files 1 and 2) and the last two figures
(Additional files 3 and 4) show the copy number profiles
of a particular dataset from the first and second simula-
tion scenarios, respectively. Similar to the analysis results,
hsegHMM-T appears to handle hypersegmentation much

better than hsegHMM-N. This same pattern was observed
for all simulated datasets (data not shown).
We also perform additional simulation studies for dif-

ferent values of purity (α = 0.3, 0.5, 0.7) and different
numbers of reads (half and double related to the origi-
nal from Fig. 3). Based on 500 simulated datasets, our
proposed model performs better as the purity increases
in terms of a higher probabilities of correct genotype
identification (Additional file 5).

A read counts-based simulation for the comparison of
hsegHMM and FACETS
In this simulation, we compare our method, hsegHMM
with FACETS which also constructs its model based on
logR and logOR but with a segmentaion-based approach
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Table 2 Summary of simulation studies with hsegHMM-N and
hsegHMM-T models based on 500 simulated datasets

hsegHMM-N hsegHMM-T

Simulation 1

True Est SEs SE∗
H Est SEs SEH

ψ 1.6 1.61 0.018� 0.009 1.60 0.014 0.007

α 0.9 0.90 0.004 0.003 0.90 0.003 0.003

κ2 0.3 N/A 0.30 0.007 0.007

V(W) 0.6 0.55 0.039 0.008 0.61a 0.017 0.020b

τ 2 0.5 0.50 0.033 0.025 0.50 0.028 0.024

v 4 N/A 3.91 0.150 0.159

Simulation 2

True Est SEs SEH Est SEs SEH

ψ 1.6 1.62 0.028 0.015 1.60 0.013 0.011

α 0.9 0.90 0.003 0.003 0.90 0.003 0.003

κ2 N/A N/A 0.64 0.017 0.018

V(W) 0.65 1.46 0.055 0.023 2.28a 0.133 0.159b

τ 2 0.5 0.48 0.026 0.024 0.49 0.025 0.024

v N/A N/A 2.79 0.076 0.093

Simulation 1 and Simulation 2 are the t-distribution-based and the
normal-mixture-based studies. Each dataset consists of 10,000 observations of logR
and logOR. Est is average estimates from 500 datasets;ψ is the ploidy, α is the tumor
purity; κ2 is the variance component of logR in hsegHMM-T; V(W) and τ 2 are the
variance of logR and logOR in both models, respectively; SEs indicates the
Monte-Carlo standard errors calculated from 500 datasets; SEH indicates the average
asymptotic standard errors of estimates based on the Hessian matrices
∗the average asymptotic standard errors based on the hsegHMM-N model are
reported based on 486 datasets where 2.8% of 500 datasets cannot produce
invertable Hessian matrices due to numerical problems
aV(W)=E(V(W|u))+V(E(W|u))= κ2 × v

v−2
bthe asymptotic standard error of V(W) with the hsegHMM-T is calculated by using
the Delta method
�The distribution of the ploidy estimates is skewed so the SEs of the ploidy appears
to be larger than SEH. Using the scaled MAD (median absolute deviation) gives a
closer value (0.008) to SEH;MAD = 1.4826 × med(|θ̂m − θ̂med|), where θ̂m is the
estimate for themth dataset and θ̂med is the median calculated from 500 simulated
datasets

for allele-specific SCNA analysis. In order to make a
fair comparison between these two methods, we gener-
ate datasets from read counts and read depth (coverage)
in the beginning without relying on model assumptions
of hsegHMM or FACETS. In this study, we choose the
true profile of genotypes as A, AB, and AA orderly with
different lengths over the entire chromosomes.
First, we consider the fact that the total coverages for

normal cells and tumor cells are different. Thus, we assign
different read depths for tumor and normal cells as 160
and 40 in this study. Then, for normal cells, the read depth
is 40 and the read count of A allele is either 20 for AB
(heterozygosity) or 40 for AA (homozygosity) regardless
of the true genotypes for tumor. On the other hand, for
tumor cells, both read depth and read counts are assigned
depending on different genotypes. For the genotype AB,

the read count and depth are set to be 80 and 160, respec-
tively. For the genotype AA, the read count and depth are
the same as 160. For the genotype A, the read count and
depth are both 80 as the same number with a half of the
total coverage since B allele is lost.
In order to generate read counts and depths, we use

a uniform distribution with different intervals for nor-
mal and tumor samples. The intervals provide the varia-
tion occuring from measurement errors. For normal, read
counts and depths are generated from a uniform distribu-
tion with the range of ±15 intervals for both the genotype
AA and AB, and the range of ±20 for the genotype A. For
tumor, read counts and depths are generated from either
of these two uniform distributions with the range of ±30
and ±15 with probability of 70% and 30%, respectively.
This setting provides logR and logOR values with differ-
ent variances and asymmetric ranges between genotype A
and the others, which makes more challenging to analyze.
Finally, we round the decimal values of read counts and
depths from these continuous uniform distributions to the
nearest intergers.
Through the preprocedure of FACETS, we obtain total

4942 values of logR and logOR based on the integer values
of read counts and depths, for which both hsegHMM and
FACETS are applied. Figure 3 shows how different these
two methods behave through the probability of identifi-
cation plots for all the different genotype states. These
plots are based on 500 simulated datasets. hsegHMM-N
(red lines) and hsegHMM-T (blue lines) have almost the
exact patterns of the identification plots with FACETS
(green lines) for all the genotypes. On the other hand,
when the read depth distribution was skewed (a rescaled
beta distribution with shape parameter values of 1 and 6),
FACETS did poorly in region identification as compared
to hsegHMM. Specifically, we consider both the cases of
short and wide region length. Additional file 6 shows the
probabilities of correct identification for a short region
based on 500 simulated datasets. hsegHMM-T identified
themutation in approximately 96% of the datasets as com-
pared with 5% using FACETS (the left panel in Additional
file 6). For the wider region, FACETS improved relative to
hsegHMM, but there was still a marked improvements of
our approach (the right panel in Additional file 6): 83% and
99% identification for FACETS and hsegHMM, respec-
tively. These results show the advantage of hsegHMM as
compared with FACETS for uneven coverage.
We also examine our method with different numbers of

reads for read counts and depths by reducing half size and
increasing double size of them (Additional files 7 and 8).
For both the half and double read size cases, our model
shows similar results to those from the original size of
reads (Additional files 7 and 8). FACETS showed similar
behavior when the read counts were altered (Additional
files 7 and 8).
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Fig. 2 Probability of identification for all the genotype states from 500 simulated datasets with logR generated from the normal-mixture distribution
blue lines and red lines indicate the probabilities of identification based on the hsegHMM-N and hsegHMM-T models, respectively; Each dataset
consists of 10,000 observations of logR and logOR

Results
TCGA-KL-8331 renal cell carcinoma dataset
TCGA project (https://cancergenome.nih.gov) is a cancer
genomic collaboration between the National Cancer Insti-
tute (NCI) and the National Human Genome Research
Institute (NHGRI). This project includes critical genomic
information of 33 types of cancers with more than two
petabytes of TCGA genomic dataset to contribute can-
cer etiology, treatment, and diagnosis. In this research,
we apply hsegHMM to whole-exome sequencing data
from a chromophobe renal cell carcinoma (RCC) sample
(TCGA-KL-8331).
TCGA-KL-8331 dataset consists of read counts and

total depths for both normal and tumor paired tissues
from the same patient over the entire chromosomes.

This dataset contains 1,217,407 single nucleotide variants
(SNVs). Through FACETS pre-processing step, these 1.2
MB SNVs were reduced to 369,131 SNVs, which are lim-
ited to the germline polymorphic sites and filtered by low
quality including lower depth coverage positions (see the
details in the Data pre-processing section in [16]). Thus,
observed logR and logOR are calculated for N = 369, 131
loci. In this RCC sample, we find that approximately
13% (47,660) of loci are heterozygous with the corre-
sponding logOR available. For computational feasibility,
we perform a thinning process which keeps every 10th
observation. This also reduces auto-correlations between
observations, which helps alleviate hypersegmentation.
We apply the hsegHMM procedure to the final dataset
N = 36, 914.

https://cancergenome.nih.gov
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Fig. 3 Probability of identification for all the genotype states from 500 simulated datasets based on creating read counts for normal and tumor cells
green lines, blue lines, and red lines indicate the probabilities of identification based on the FACETS, hsegHMM-N, and hsegHMM-T models,
respectively; Each dataset consists of 4,942 observations of logR and logOR
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Figures 4 and 5 show the results based on an assumed
normal and t-distribution for the logR values given the
hidden state (genotype state), respectively. We denote
these two models as hsegHMM-N and hsegHMM-T,
respectively. Each figure includes four panels correspond-
ing to the estimated values of logR, logOR, copy num-
bers, and genotype status. With the hsegHMM-N model
(Fig. 4), estimated lines (brown color) show not only
the main signals (longer bars) but also numerous dots
across the chromosomes. These small dots occur due
to the sensitivity of the hsegHMM-N model to extreme

observations. The hsegHMM-T model reduces hyperseg-
mentation with fewer short subsequences (Fig. 5a). How-
ever, a few numbers of short sequences still occur in using
the hsegHMM-T model. Thus, instead of using the 12
genotype-state space, we consider only two major geno-
types, A and AB identified by the hsegHMM-T with the
12 genotype states. It turns out that all the short dots
are removed across the entire chromosomes (Fig. 5b).
Thus, the hsegHMM-T model with the two major geno-
type states manages hypersegmentation most efficiently
among those three different model fits. Furthermore,

Fig. 4 Allele-specific SCNA analysis based on the hsegHMM-N model of a renal cell carcinoma from a TCGA project (TCGA-KL-1883). The blue dots
are observed values and red bars are estimates; The first two panels show the profiles of logR and logOR over the entire chromosomes; The last two
panels indicate estimated copy numbers and genotype for each sequence over the entire chromosomes
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a b

Fig. 5 Allele-specific SCNA analysis based on the hsegHMM-T model a and the same model with the A and AB state space b of a renal cell
carcinoma sample from a TCGA project (TCGA-KL-1883). The blue dots are observed values and red bars are estimates; The first two panels show the
profiles of logR and logOR over the entire chromosomes; The last two panels indicate estimated copy numbers and genotype for each sequence
over the entire chromosomes

according to the model fitting criteria, the hsegHMM-T
model with A and AB genotype states (hsegHMM-TA/AB)
fits data best with the smallest AIC (62923.90) and BIC
(62992.03). We also apply the FACETS method to com-
pare the result with our method. The hsegHMM-T with
the twomajor genotype states have almost the same allele-
specific copy number profiles with FACETS in Fig. 6.
Table 3 presents estimates of the model parameters. The

tumor sample purity α is estimated to be about 87–88%
for all the methods, which indicates a high proportion
of the tumor cells in the tumor tissue. The estimated
ploidy, ψ̂ (≈ 1.6) appears to be different from 2 in all
the methods, which provides evidence for aneuploidy in
this sequence. Note that the tumor purity, ploidy and
variances of logR (V (W )) are similar in all the three
hsegHMMmodels. This suggests that estimation of global
parameters are robust to the distribution of logR and to an
expanded genotype state space. This is in contrast to the
allele specific genotype status that does appear to be sen-
sitive to the distribution of logR and to the specification
of an appropriate state space of genotypes, and hence to
hypersegmentation.

Discussion
We have shown that the hidden Markov modeling
approach provides an effective way to identify allele-
specific copy number alternations along the genome. As
compared with FACETS, a segmentation-based approach,
the hsegHMM provides an assessment of the uncer-
tainty in parameter estimate (i.e. ploidy and purity), using
likelihood-based estimate of variances as well as the ability
to assess variability in copy number identification by com-
puting posterior estimates of the genotype at each locus.
It is also important to mention that hsegHMM is based
on the output of WES, which in turn relies on the exome
enrichment platforms where capture efficiency may still
affect SCNA estimation.
A major focus of the paper was demonstrating that

hypersegmentation in allele-specific SCNA data can be
substantially reduced by incorporating a long-tailed emis-
sion distribution (hsegHMM-T model) into a HMM
framework. We also found that hypersegmentation could
occur by choosing a state space (possible genotypes) that
is more expansive than necessary. Thus, we recommend
that the most parsimonious model with a limited number
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Fig. 6 Allele-specific SCNA analysis based on the FACETS model of a renal cell carcinoma sample from a TCGA project (TCGA-KL-1883). The first two
panels show the profiles of logR and logOR over the entire chromosomes; The last panel indicates estimated copy numbers of total and minor
alleles (black and red lines, respectively) for each sequence over the entire chromosomes
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Table 3 Summary of hsegHMM-N, hsegHMM-T, and
hsegHMM-TA/AB models of a renal cell carcinoma sample:
hsegHMM-TA/AB indicates the hsegHMM-T with A and AB state
space; Est and logL represent estimated values for parameters
and log-likelihood function values given all the estimates,
respectively; ψ is the ploidy and α is the tumor purity; κ2 is the
variance component of logR in hsegHMM-T; V(W) and τ 2 are the
variance of logR and logOR in both models, respectively; SEH
indicates the average asymptotic standard errors of estimates
based on the Hessian matrices

hsegHMM-N hsegHMM-T hsegHMM-TA/AB

Est SEH Est SEH Est SEH

ψ 1.62 0.003 1.61 0.003 1.60 0.003

α 0.87 0.002 0.88 0.002 0.88 0.002

κ2 N/A 0.16 0.002 0.17 0.003

V(W) 0.25 0.002 0.26a 0.003b 0.27a 0.003b

τ 2 0.57 0.012 0.58 0.012 0.57 0.014

v N/A 5.50 0.185 5.48 0.218

AIC 64682.17 63120.48 62923.90

BIC 65934.07 64380.89 62992.03

of genotype states be chosen. Of course, the choice of
this model should be based on using penalized likelihood
methods such as AIC. Last, the hsegHMM assumes that
logR and logOR measurements given genotype are inde-
pendent across the entire chromosomes. This may not be
true when loci are very close together, and failure of this
assumption may lead to hypersegmentation. We therefore
recommend thinning the sequence data (e.g., taking only
one out of ten data points) to avoid this problem.
The application of hsegHMM can be extended in three

future directions that have important applications in
cancer genetics. First, hsegHMM can be applied to a
population-based study where many subjects will be ana-
lyzed. In this case, we suggest that individual-specific
analyses be conducted and the results combined in a final
analysis. For example, evidence of a SCNA being related
to a particular cancer may be suggested if a sizable pro-
portion of the posterior probabilities of a genotype at a
particular chromosome location are greater than a certain
threshold (e.g. >80%). Second, the relationship between
a genetic factor and a subject-specific covariate may be
examined in a second stage regression. For example, by
using all the individual ploidy estimates obtained from the
population-based study, we can construct a linear regres-
sion of the log ploidy estimate, logψ̂ with a set of any
covariates such as logψ̂ = β0+β1age+β2BMI. As an illus-
tration for a population-based study, we have analyzed all
316 renal cell carcinoma samples from TCGA with the
proposed model based on 5 copy number of state-space.
We obtained the distribution of estimated ploidy across all
the samples for any major copy number alteration event

across the chromosomes. We also estimated the distri-
bution of purity which is a measure of the quality of
the tissue samples. Furthermore, we created a cytoband-
based stacked histogram of allele-specific SCNA events
for integrating allele-specific SCNA profiles from all the
316 samples. Each sample has its own allele-specific
SCNA profile with different genotypes and regions. To
standardize genetic locations across the samples, we used
a cytoband file format which has predefined positions
of cytobands across the whole chromosomes. For each
cytoband, the corresponding allele-specific SCNA event
is assigned within individual sample, and the number of
times each event occurs is counted. After counting the
frequencies of all the cytobands, we found that the most
frequent mutation is a hemizygous deletion (genotype A)
that has highest frequency on Chromosomes 3 and 14.
In addition, we found a high frequency of a Gain (geno-
type AAB) in the region between q21.3 and q35.3 on
Chromosome 5 (Additional file 9).
Last, our model structure can be extended to infer

tumor subclonal populations. In practice, a tumor sample
contains amixture of clones not just onemain clone which
is assumed in hsegHMM. Such an approach can also be
embedded into a hidden Markov modeling framework,
and is the subject of future research.

Conclusions
In this paper, we propose a hidden Markov model frame-
work (hsegHMM) for estimating genotype status as well
as copy number at each locus, incorporating the com-
plexities of tumor samples as well as hypersegmentation.
Specifically, under certain type of data with more fluctu-
ated or irregular observations, hsegHMM-T model per-
forms better than hsegHMM-N model in terms of such a
remarkable reduction of hypersegmentation. As a byprod-
uct of the hsegHMM estimation procedure, we can com-
pute the posterior probabilities of allele-specific genotype
status (the Method section) as well as provide a rigor-
ous comparison of different models (e.g. normal versus
t-distribution) by using AIC and BIC (the Result section).
Hence, hsegHMM provides a rigorous framework for sta-
tistical inference and model assessment. hsegHMM can
also expand the genotype state space so that it can han-
dle a more flexible range of copy number alterations.
Specifically, this flexibility is useful for analyzing data
from certain type of cancers with high-level amplification
events. Simulation studies showed that hsegHMM-T per-
formed much better than FACETS in situation where the
coverage (read depth) is uneven across the genome.
In conclusion, hsegHMMoffers an allele-specific SCNA

analysis robust to hypersegmentation while accounting
for tumor purity and ploidy. Such robustness enhances
the accuracy of detecting genotype status at each locus in
NGS-based platforms.
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Additional files

Additional file 1: Figure S1. Allele-specific SCNA analysis based on the
hsegHMM-N model of a simulated dataset for the simulation study with
logR generated from t-distribution. The first two panels show the profiles of
logR and logOR over the entire chromosomes; The last two panels indicate
estimated copy numbers and genotype for each sequence over the entire
chromosomes. (PDF 2416 kb)

Additional file 2: Figure S2. Allele-specific SCNA analysis based on the
hsegHMM-T model of a simulated dataset for the simulation study with
logR generated from t-distribution. The first two panels show the profiles of
logR and logOR over the entire chromosomes; The last two panels indicate
estimated copy numbers and genotype for each sequence over the entire
chromosomes. (PDF 2389 kb)

Additional file 3: Figure S3. Allele-specific SCNA analysis based on the
hsegHMM-N model of a simulated dataset for the simulation study with
logR generated from normal-mixture distribution. The first two panels
show the profiles of logR and logOR over the entire chromosomes; The last
two panels indicate estimated copy numbers and genotype for each
sequence over the entire chromosomes. (PDF 2407 kb)

Additional file 4: Figure S4. Allele-specific SCNA analysis based on the
hsegHMM-T model of a simulated dataset for the simulation study with
logR generated from normal-mixture distribution. The first two panels
show the profiles of logR and logOR over the entire chromosomes; The last
two panels indicate estimated copy numbers and genotype for each
sequence over the entire chromosomes. (PDF 2387 kb)

Additional file 5: Figure S5. Probability of identification for different sizes
of purity with logR generated from the normal-mixture distribution. The
red lines, green lines, and gold lines represent the high (α = 0.7), medium
(α = 0.5), and low (α = 0.3) purity cases. All the results are conducted with
hsegHMM-T. (PDF 898 kb)

Additional file 6: Figure S6. Probability of identification for a region
generated from a non-standard beta-based read depths. The red line and
blue line represents hsegHMM-T and FACETS; The black dotted line is the
true one. (PDF 13 kb)

Additional file 7: Figure S7. Probability of identification with the half size
of read counts and depths from Figure 6 green lines, blue lines, and red
lines indicate the probabilities of identification based on the FACETS,
hsegHMM-N, and hsegHMM-T models, respectively; Each dataset consists
of 4,942 observations of logR and logOR. (PDF 437 kb)

Additional file 8: Figure S8. Probability of identification with the double
size of read counts and depths from Figure 6 green lines, blue lines, and
red lines indicate the probabilities of identification based on the FACETS,
hsegHMM-N, and hsegHMM-T models, respectively; Each dataset consists
of 4,942 observations of logR and logOR. (PDF 436 kb)

Additional file 9: Figure S9. Frequency of Allele-specific SCNA events
based on cytobands across all the chromosomes for 316 samples from
TCGA "HOMD" indicates homozygous deletion state. (TIF 9522 kb)
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