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Abstract

Background: Testing the dependence of two variables is one of the fundamental tasks in statistics. In this work, we
developed an open-source R package (knnAUC) for detecting nonlinear dependence between one continuous
variable X and one binary dependent variables Y (0 or 1).

Results: We addressed this problem by using knnAUC (k-nearest neighbors AUC test, the R package is available at https//
sourceforge.net/projects/knnauc/). In the knnAUC software framework, we first resampled a dataset to get the training and
testing dataset according to the sample ratio (from O to 1), and then constructed a k-nearest neighbors algorithm classifier
to get the yhat estimator (the probability of y = 1) of testy (the true label of testing dataset). Finally, we calculated the AUC
(area under the curve of receiver operating characteristic) estimator and tested whether the AUC estimator is greater than

AUC, Association analysis

0.5. To evaluate the advantages of knnAUC compared to seven other popular methods, we performed extensive
simulations to explore the relationships between eight different methods and compared the false positive rates and
statistical power using both simulated and real datasets (Chronic hepatitis B datasets and kidney cancer RNA-seq datasets).

Conclusions: We concluded that knnAUC is an efficient R package to test non-linear dependence between one
continuous variable and one binary dependent variable especially in computational biology area.

Keywords: Open source, R package, Nonlinear dependence, One continuous variable, One binary dependent variable,

Background

In statistics, dependence is any statistical relationship
(causal or not) between two random variables or bivariate
data. Correlation is any statistical relationships involving
dependence which it is often used to refer to the degree to
which the two variables have a linear relationship to each
other. Random variables are dependent if they do not sat-
isfy a mathematical property of probabilistic independence
[1, 2]. And mutual information can be applied to measure
dependence between two variables [3].
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The logistic regression or logit regression is a regression
model in which the dependent variable is categorical [4].
Logistic regression was developed by statistician David Cox
in 1958 [5, 6]. Logical regression estimates the probability
by using a logical function, which is the cumulative logistic
distribution, to measure the relationship between the cat-
egorical variable and one or more independent variables.
Other common statistical methods for assessing the
dependence between two random variables include dis-
tance correlation, Maximal information coefficient (MIC),
Kolmogorov-Smirnov (KS) test, Hilbert-Schmidt Independ-
ence Criterion (HSIC) and Heller-Heller-Gorfine (HHG).
Distance correlation, was proposed by Gabor ] Szekely
(2005), is a measure of statistical dependence between two
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random variables or two random vectors. It is zero if and
only if the random variables are statistically independent [7,
8]. The maximal information coefficient (MIC) is a meas-
ure of the degree of the linear or nonlinear association
between two variables, X and Y. The MIC belongs to the
maximal information-based nonparametric exploration
(MINE) class of statistics [3]. The maximal information
coefficient uses binning as a means to apply mutual infor-
mation on continuous random variables. The Kolmogo-
rov—Smirnov (KS) test quantifies a distance between the
empirical distribution function of the sample and the cu-
mulative distribution function of the reference distribution,
or between the empirical distribution functions of two sam-
ples [2, 9]. HSIC was an independence criterion based on
the eigen-spectrum of covariance operators in reproducing
kernel Hilbert spaces (RKHSs), consisting of an empirical
estimate of the Hilbert-Schmidt Independence Criterion
[10]. Heller-Heller-Gorfine (HHG) is a powerful test that is
applicable to all dimensions, consistent against all alterna-
tives, and is easy to implement [11].

We had previously proposed an algorithm named
continuous variance analysis (CANOVA) [12], which was
inspired by the analysis of variance (ANOVA) of continu-
ous response with a categorical factor. In the CANOVA
framework, we first proposed a concept of “neighborhood
value” based on the value of X, and then we use the
permutation test to find the P value of the observed “with
neighborhood variance” [12].

To further detect the nonlinear dependence between one
continuous variable and one binary variable, an open-
source R package (knnAUC, https://sourceforge.net/pro-
jects/knnauc/) was developed. In the knnAUC framework,
the AUC estimator based on a k-nearest neighbors classi-
fier was calculated firstly [13, 14], and then the significance
of the AUC based statistic was further evaluated. In order
to investigate the feasibility of knnAUC, the false positive
rates [15] and statistical power [16] of knnAUC and the
other seven commonly used correlation coefficients were
evaluated in the simulation studies. To evaluate the per-
formance of knnAUC in real datasets, we further compared
their performance in both one real chronic hepatitis B
(CHB) dataset [17] and one kidney cancer RNA-seq (tran-
scriptome sequencing) dataset [18, 19].

Implementation

Summary

The key idea of knnAUC is based on a comparison test
of area under curve (AUC) for Response Operating
Characteristic (ROC). Mason and Graham calculated the
p value based on the Mann-Whitney U statistics [20,
21]. The p value addresses the null hypothesis [20, 21]:
variable X cannot be used to discriminate between
“Y =17 and “Y =07, that is to say, AUC equals 0.5.
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For one continuous variable X and one binary variable Y,
we firstly resampled a dataset to get the training and test-
ing dataset according to the sample ratio (sample number
of training dataset/sample number of total dataset, range
from 0 to 1), and then constructed a k-nearest neighbors
algorithm classifier [13, 14] to get the yhat estimator (the
probability of y=1) of testy. At last, we calculated the
AUC estimator and tested whether the AUC estimator is
greater than 0.5.

Pseudocode for knnAUC
Input: one continuous variable X and one binary variable
Y, both are of length N.

Parameter:

x, a vector containing values of a continuous variable (X).
9, a vector containing values of a binary (0 or 1) discrete
variable (Y).

ratio, the training sample size ratio (from 0 to 1), ratio
= (sample number of training dataset)/(sample number
of total dataset).

kmax, a positive integer, we'll automatically find the
best parameter k for knn between 1 and kmax. The best
number of nearest neighbors (k) is determined automatically
using leave-one-out cross-validation, subject to an upper
limit (kmax).

Software Framework:

1. resample dataset by row without replace (resample only once): data
=data (y, x)

if (trainy has both 0 and 1) {train = data (select number_of_rows*ratio)}
if (testy has both 0 and 1) {test =data (remaining rows)}

2. calculate yhat by knn:yhat = knn (train, test, kmax)

3. calculate the AUC estimator and test whether AUC is greater than
0.5:result = auc.test(testy, yhat)

4. return AUC estimator and pvalue:auc = resultauc, pvalue =
result.pvalue

Results

Results from simulation study

To estimate power of different methods, we simulated
nine simple functions of the binary logistic regression
model (including binomial distribution function, linear
function, quadratic function, sine function and cosine
function), as shown in Table 1. The independent vari-
able X follows normal distribution (mean =0, standard
deviation = 1). Nine simple functions were simulated
between logit (P(Y =1|X)) and X, including constant
functions (Y follows Bernoulli distribution), linear func-
tions, quadratic functions, sine functions and cosine
functions. Five algorithms were chosen as benchmarks:
Logistic regression, Distance correlation coefficient,
MIC, Kolmogorov—Smirnov test and CANOVA. To
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Table 1 Simulation power in nine simple simulation functions

N =100, X~N (0,SDA2), SD =1 Logit Distance MIC KS Canova knnAUC
Y~ Bernoulli distribution (p = 0.5) 0.050 0.047 0.027 0.048 0.043 0.048
logit (P(Y =1[X)) =X + 1 0.989 0979 0627 0.947 0406 0648
logit (P(Y = 1|X)) = (0.25 X + 1)A2 + 1 0.302 0.277 0.034 0.236 0.062 0.118
logit (P(Y = 1]X)) = sin (pi X + 1) +1 0.042 0.107 0.266 0.186 0.199 0.306
logit (P(Y = 1|X)) =sin 2'pi" X+ 1) +1 0.050 0.055 0.183 0073 0.196 0192
logit (P(Y = 1|X)) = sin (3'pi X+ 1) + 1 0.045 0.050 0137 0053 0.170 0.120
logit (P(Y = 1|X)) = cos (pi X + 1) +1 0.037 0.108 0.265 0.197 0.186 0.291
logit (P(Y = 1|X)) = cos (2'pi X + 1) + 1 0.050 0052 0.179 0078 0.175 0.179
logit (P(Y = 1[X)) = cos (3'pi X + 1) + 1 0.046 0.048 0.123 0.056 0.168 011

The bold means the first place result of all methods compared. * means multiplication operator

calculate the false positive rate, the data was simulated
10,000 times. The statistical power was calculated by re-
peating 1000 times. The sample size (N) is set as 100. It is
worth noting that we fixed the knnAUC parameters (de-
fault parameters, ratio = 0.46, kmax = 100) used in simula-
tion study. And MIC also has a bias/variance parameter
(the ‘alpha’ parameter in the minerva implementation): the
maximal allowed resolution of any grid [3]. Reshef et al.
also found that different parameter settings (o = 0.55, ¢ =5)
can make the calculation faster and do not significantly
affect performance [22]. For the sake of simplicity, here we
only use the default parameters of the MIC (« = 0.6, ¢ = 15).

To test the Type-I error rate of benchmarked
methods, the data was simulated 10,000 times to esti-
mate the false positive rate (Table 1, Y~ Bernoulli distri-
bution). The Type-I error of all methods are less than
0.05, indicating their nominal levels are well controlled
(Table 1). In the comparison with other non-constant
functions in the simulation data, we showed some inter-
esting findings in Table 1: (1) in the case of linear correl-
ation, the logistic regression was the most powerful
method, knnAUC also performed well. (2) in the case of
non-linear correlation, the performance of knnAUC and
CANOVA were two of the most powerful method, espe-
cially in the function of a high degree of shock/non-lin-
ear situation. (3) knnAUC was superior to the MIC
algorithm in most cases.

In order to detect the performance of knnAUC and other
algorithms, different variance levels in the simulation were
performed (mean =0, standard deviation =1/3, 1/2, 2 and
3), and the power across different levels of variance was re-
ported (shown in Additional file 1). From Additional file 1,
we arrived to the following conclusions after adding differ-
ent variance to Y: (1) When the variance level was low
(standard deviation = 1/3, 1/2), most of the methods per-
formed poorly. However, knnAUC and Distance were two
of the most powerful method among all non-linear func-
tions, logistic regression had a higher power in linear func-
tions. (2) When the variance level was high (standard

deviation = 2, 3), most of the methods in the complex sine/
cosine functions was less powerful, but knnAUC and CA-
NOVA had higher power than other methods. For simple
linear dependence, most of the methods were relatively effi-
cient. Therefore, to obtain a higher statistical effect, when
the relationship between the two random variables is linear
or relatively simple, we recommend the logit regression.
When the relationship is non-linear or complex, knnAUC
and CANOVA are better choices for exploring the depend-
ence structure of the binary class of dependent variables
and the continuity independent variables.

Results from chronic hepatitis B (CHB) dataset
We compared the knnAUC algorithm with the other seven
algorithms using a real gene expression dataset for chronic
hepatitis B (CHB) dataset, which included 122 samples and
gene expressions with three clinical parameters [17]. The
level of dependence among inflammation grades, gene ex-
pressions and clinical parameters (ALT, AST and
HBV-DNA) were tested in large-scale CHB samples [17].
We have one binary dependent variable Y for the de-
gree of inflammation of the liver (G). Age, gender, ALT,
AST, and HBV were all standardized values. These five
variables were clinical physiologic indexes. The expres-
sion levels of 17 significant genes [17] were our X vari-
ables. The significance level is preset to be 0.05. It is
worth noting that we used the knnAUC default parame-
ters (ratio = 0.46, K =100) in the CHB dataset. For sim-
plicity, the other algorithms were also applied the
default parameters (especially for MIC, a = 0.6, ¢ = 15).
The p-value comparison of all methods for chronic
hepatitis B (CHB) dataset [17] is shown in Table 2. All
knnAUC results were realized in the R environment
(https://sourceforge.net/projects/knnauc/), =~ CANOVA
was realized in the C++ environment, the other four
benchmarks were calculated using the R packages ‘en-
ergy’ [23], ‘Hmisc’ [24] and ‘minerva’ [25]. All results
were calculated on a desktop PC, equipped with an Intel
Core i7-4790 CPU and 32 GB memory.
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Table 2 Corresponding p-values of liver inflammation grades in CHB dataset (a = 0.05)

Variables knnAUC Logit Distance MIC KS CANOVA
Gender 7.889E-01 7.527E-01 7.094E-01 8.841E-04 1.00E + 00 5.132E-01
Age 6.957E-01 4.304E-01 4.633E-01 1.696E-01 3.54E-01 6.023E-01
AST 1.387E-05 4.524E-03 2.000E-05 4.581E-01 5.90E-06 3.729E-03
ALT 2.180E-04 8.211E-05 1.000E-05 4.229E-01 3.36E-06 1.574E-04
HBV 6.121E-03 6.775E-01 1.827E-01 2.557E-01 1.19E-01 9.440E-02
DLX3 7.755E-01 2.928E-02 4.196E-02 1.877E-01 6.61E-02 7.607E-01
ALPK1 2.007E-02 1.458E-03 2.220E-03 2.719E-01 9.67E-03 2.619E-01
YBX1 2.791E-02 7.759E-05 1.100E-04 3.419E-01 3.95E-03 3.390E-01
ZNF75A 2.584E-01 1.288E-01 3.924E-02 2.662E-01 4.24E-02 2.619E-01
SPP2 6.084E-04 8.177E-02 3.031E-02 2.681E-01 3.09E-02 9.435E-02
TTLL4 3.332E-01 5.029E-01 5.182E-01 2411E-01 6.73E-01 2.620E-01
TTLLY 1.350E-01 2.789E-01 3477801 2.097E-01 343E-01 6.025E-01
AGAP3 3.300E-02 7.963E-01 8.173E-02 2611E-01 1.74E-01 1.386E-01
DCTN4 4.869E-03 4.212E-02 1.367E-02 2.534E-01 8.61E-03 2.619E-01
IGF1R 7.545E-01 7.296E-01 9.058E-01 1.714E-01 8.44E-01 6.850E-01
PRDX2 6.649E-01 1.120E-01 1.898E-01 2.281E-01 4.14E-01 6.024E-01
NKAPL 9.824E-01 8.817E-01 6.992E-01 2.598E-01 7.37E-01 3.871E-02
NRXNT1 7.167E-01 9.583E-01 9.895E-01 1.670E-01 9.82E-01 9.165E-01
NXF2 1473E-01 9.902E-01 8.698E-01 1.899E-01 7.14E-01 9.166E-01
Pou2f2 5.958E-01 3.176E-01 3.898E-01 2.034E-01 3.79E-01 7.607E-01
SIRPB2 9.394E-01 3.853E-01 6.399E-01 1.771E-01 9.04E-01 8.766E-01
TRD 3.733E-01 6.533E-01 1.965E-01 2445E-01 1.10E-01 8.766E-01

If MIC> 0.31677, then p value < 0.050004564
Variable Y: G on behalf of liver inflammation grades, two categories

Variable X: age; gender; ALT, AST, HBV_DNA is the value after standardization; 17 primitive gene expression
The significant values are shown in bold; the significant variables detected only by knnAUC are shown in bold italics

Then, a literature review for validation of each significant
gene was performed using pubmed (https://www.ncbi.nlm.-
nih.gov/pubmed/). In the dependence study of inflamma-
tion grades of hepatitis (Y), two significant variables were
only detected by knnAUC algorithm, shown in Table 2, one
is clinical variable HBV-DNA and the other is AGAP3 gene.
HBV-DNA is an important standard to assess pathological
features (such as the inflammation level G) and determine
prognosis for hepatitis B virus (HBV)-infected patients. The
prognosis and outcome of treatment for chronic hepatitis B
virus (HBV) infection are predicted by levels of HBV DNA
in serum [26]. What’s more, AGAP3 was reported having
predictive power for inflammation grades of chronic hepa-
titis B [17]. ALT, DLX3, ALPK1, YBX1 and DCTN4 were
detected by a variety of algorithms at the same time.
NKAPL was specifically detected by the CANOVA algo-
rithm. Serum parameters (e.g. alanine amino transaminase
[ALT] and aspartate amino transaminase [AST]) are uti-
lized to access the damage of liver and HBV viral infection
[27]. In our previous principal component analysis (PCA)
research, DLX3, ALPK1, YBX1, DCTN4 and NKAPL have
a strong ability to predict inflammation grades [17].

Results from the kidney cancer study

To further evaluate the performance of the knnAUC algo-
rithm, we also compared knnAUC with the other seven al-
gorithms using a real RNA-seq dataset of kidney cancer,
which included 604 samples (532 cancer cases, 72 normal
controls) and 20,531 genes. We tested the correlation level
between X (20,531 gene expression data) and Y (whether it
was kidney cancer) [18, 19]. At the same time, the comput-
ing time of each algorithm was compared. The significance
level was preset to be 2.435342e-06 (Bonferroni correction).
It is worth noting that we used the knnAUC default param-
eters (ratio =0.46, K=100) in kidney cancer dataset. For
simplicity, other algorithms also applied the default param-
eters (especially MIC, « = 0.6, ¢ = 15), which were shown in
Table 3.

In the real kidney cancer data, the comparison of the
power and computing time of different methods are
shown in Table 3. In Additional file 2, we only listed the
genes detected by knnAUC which were not detected by
other methods. At the same time, genes that can only be
detected by other methods were listed in
Additional file 3.
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Table 3 Comparison of all methods in kidney cancer dataset (the significance level a = 2.435e-06)

Kidney cancer dataset knnAUC Logit MIC KS Distance CANOVA
Unique genes reported in Pubmed 4 2 1 6 2 1

The number of unique genes 65 293 14 566 124 18
Significant gene number 8453 9633 8081 11,915 10,946 5901
Computing time (seconds) 0.0912 0.0068 0.0052 0.0033 2589717 19

The bold means the first place results of all methods compared. The Computing time was recorded between 1 gene and 604 samples

From Table 3, it can be seen that the Spearman correl-
ation coefficient can detect the most number of signifi-
cant genes (11,629 genes, a=0.05 / 20,531) in real
kidney cancer RNA-seq data. But the KS test detected
the most number of unique genes. And interesting ob-
servation made is that the computing time of knnAUC
was significantly faster than distance and CANOVA. To

further compare the features of each method and to ex-
plore the biology relevance of the detected genes, “sig-
nificant” genes that were uniquely detected by each
method (other methods failed to detect positive) were
chosen as the “target gene set”. And then a literature re-
view was performed for the sake of validating each gene
in the pubmed database.
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The uniquely significant genes detected by knnAUC
and the corresponding P-values of all methods are
shown in Additional file 2. And genes reported in
pubmed (indicating that there is an abstract in Pubmed
concerning a relationship with kidney cancer and the
gene) are shown in Additional file 2 and Fig. 1 (Scatter-
plot and probability density distribution). Similarly, the
uniquely significant genes found by other methods are
shown in Additional file 3 and the genes reported in
pubmed are showed in Fig. 2, 3, 4, 5 and 6.

From the unique set of genes detected by knnAUC
(Additional file 2), four genes, APOE, DSC2, SEC63 and
SYCP1 were reported to be relevant to renal cancer
(Fig. 1). A functional region of APOE could increase
renal cell carcinoma susceptibility in a two stage
case-control study [28]. DSC2 is associated with devel-
opment and progression of renal cell carcinoma (RCC)
[29]. SEC63 is associated with polycystic kidney disease
[30, 31]. And copy-number gain of SYCP1 in human
clear cell renal cell carcinoma predicts poor survival
[32]. Although the distributions of these genes have
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almost the same mean value and different curvature of
the density distribution function, the AUC values of
these genes’ prediction models are significantly higher
than 0.5, which could be detected by knnAUC method.

UGT1A9 (identified in Additional file 3, Fig. 2) were
the unique gene (also reported in pubmed database) de-
tected by CANOVA. A significant decrease glucuronida-
tion capacity of neoplastic kidneys versus normal
kidneys was related with reduced UGT1A9 and UGT2B7
mRNA and protein expression [33].

Two unique genes (also reported in pubmed database)
were detected by distance correlation. They were
CITED1 and FIGF (identified in Additional file 3, Fig. 3).
CITED1 confers stemness to Wilms tumor and enhances
tumorigenic responses [34]. FIGF was related with the
development of kidney in murine [35]. The two unique
genes detected by logistic regression were GRPR and
PRODH (identified in Additional file 3, Fig. 4). As a recep-
tor for gastrin-releasing peptide (GRP), GRPR promotes
renal cell carcinoma by activating ERK1/2 pathway
together with GRP [36]. PRODH is among a few genes
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induced rapidly and robustly by P53, the tumor suppres-
sor [37, 38]. MIC detected one gene, S100A1 (identified in
Additional file 3, Fig. 5). HNF1p and S100A1l are useful
biomarker for distinguishing renal oncocytoma and chro-
mophobe renal cell carcinoma [39].

Six unique genes (also reported in pubmed database)
were detected by KS test. They were SIX2, EPO,
ASPSCR1, FOXD1, EGR1 and LPO. SIX2 is activated in
renal neoplasms and influences cellular proliferation and
migration [40]. EPO is related to the development of renal
cell carcinoma [41]. A total of five TFE3 gene fusions
(PRCC-TFE3, ASPSCR1-TFE3, SFPQ-TFE3, NONO-TFE3
and CLTC-TFE3) have been identified in RCC tumors
and characterized at the mRNA transcript level [42].
FOXDL1 is an upstream regulator of the renin-angiotensin
system during metanephric kidney development [43].
MAML1 acts cooperatively with EGR1 to activate
EGR1-regulated promoters, which could also have im-
plications for the development of renal cell carcinoma
[44]. Compared to normal renal cortex, the LPO in-
duction period was markedly increased in renal-cell
carcinoma [45, 46].

Discussion and conclusions
Recently, correlations among inflammation grades, gene ex-
pressions and clinical parameters (serum alanine amino
transaminase, aspartate amino transaminase and HBV-
DNA) were analyzed based on a large-scale CHB (chronic
hepatitis B) samples [17]. The gene expressions with three
clinical parameters in 122 CHB samples was analyzed by
improved regression model and principal component ana-
lysis [17]. We found that significant genes, such as DLX3,
ALPK1, YBX1, DCTN4, NKAPL, ZNF75A, SPP2 and
AGAP3 (shown in Table 2), related to clinical parameters
have a significant correlation with inflammation grades.
Among all the benchmarked methods, knnAUC
detected four unique genes related to renal cancer in
pubmed database. Two of these genes were reported to
be associated with renal cell carcinoma (RCC). MACC1
and DSC2 are related to the prognosis of RCC [29, 47].
The up-regulation of PDE2A methylation level was re-
ported to promote the development of renal kidney pap-
illary cell carcinoma (KIRP) [48]. Finally, NMD3 has
been associated with the suppression of Wilms’ tumor
through gene-specific interaction with GRC5 [49].
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The non-linear dependence in our study is on the raw
scale between one continuous variable and one binary
variable, and other transformations will also be consid-
ered in our future studies. Theoretically, any machine
learning algorithm could be the kernel function of the
AUC based independence test we've developed. We also
tested the performance of random forest [50], support
vector machines [51] and generalized boosted models
[52] as the kernels, however, they are not as powerful as
knnAUC. And k-NN is a classic non-parametric method
in machine learning area. But k-NN fails in case of the
curse of dimensionality [53]. The curse of dimensionality
in the k-NN basically means that Euclidean distance is
not helpful in the presence of high dimensions because
all vectors are almost equidistant to the search query
vector. To avoid overfitting, we only resampled the
dataset once which is equivalent to “an independent
randomized trial” in statistics. Another advantage of
knnAUC is that, it is robust with its two parameters,

ratio (the training sample size ratio) and kmax (auto-
matically find the best parameter for knn between 1
and kmax). The knn algorithm was realized by
RWeka package [14]. The ratio and kmax don’t sig-
nificant influence the knnAUC performance. However,
they may influence the computing time. For computa-
tional efficiency, using default parameters (ratio = 0.46
and k =100), knnAUC could have competitive results.
knnAUC is rather stable when the sample size is large
enough (like >100, we used knnAUC to recalculate
Table 1 for 100 times in Additional file 4). And we
may sometimes change the parameter ratio when the
sample is extreme unbalanced (Additional file 5). For
example, when you have too much cases such as 80~
90% of total samples, you may want to set ratio=0.1
or 0.2 to get more training samples in knnAUC
method. When the average proportion of cases (Y =1)
was above 0.87, we found that the best parameter ra-
tio was almost always 0.1 in Additional file 5. On the
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other hand, when the sample is not so extreme un-
balanced (60~ 70% samples are cases), knnAUC per-
formed well with the default parameters (ratio = 0.46)
in Additional file 5. In practice, we can use grid
search to tune the two parameters to improve power.
For example, the parameter ratio can be tuned from
0.1 to 09 by 0.1, and the parameter kmax can be
tuned from 2 to sample size by 1 to maximize detec-
tion power.

Several methods were proposed to identification of genes
related to a certain kind of cancer [54, 55]. In this article,
the gene expression datasets are used to explain the pur-
pose of our knnAUC method: detecting non-linear depend-
ence biological signals between one continuous variable X
and one binary variable Y. Furthermore, we could quantize
the forecast skills of X by AUC and test whether it is signifi-
cantly above 0.5. That is to say, knnAUC could be used to
detect non-linear biological signals, which may be validated
by further mechanism experiments.

To sum, we developed an open-source R Package to
detect dependence between one continuous variable and
one binary variable especially under complex non-linear
situations. We concluded that knnAUC (https://source-
forge.net/projects/knnauc/) is an efficient R package to
test non-linear dependence between one continuous
variable and one binary dependent variable especially in
computational biology area.

Availability and requirements
Project name: knnAUC.
Project home page: https://sourceforge.net/projects/
knnauc/
Operating system(s): Windows or Linux.
Programming language: R.
License: GPL-2.
Any restrictions to use by non-academics: licence
needed.

Additional files

Additional file 1: The power comparison of simulation study across
different variance levels. (XLSX 14 kb)

Additional file 2: The significant (associated with kidney cancer) genes
only detected by knnAUC. (XLSX 16 kb)

Additional file 3: The significant (associated with kidney cancer) genes
only detected by other methods. (XLSX 106 kb)

Additional file 4: The recalculated (100 times) simulation power of
knnAUC with default parameters in nine simple functions. (XLSX 37 kb)

Additional file 5: The simulation power of knnAUC with different ratios
in nine simple functions. (XLSX 22 kb)
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