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Abstract

Background: Nowadays, according to valuable resources of high-quality genome sequences, reference-based
assembly methods with high accuracy and efficiency are strongly required. Many different algorithms have been
designed for mapping reads onto a genome sequence which try to enhance the accuracy of reconstructed genomes.
In this problem, one of the challenges occurs when some reads are aligned to multiple locations due to repetitive
regions in the genomes.

Results: In this paper, our goal is to decrease the error rate of rebuilt genomes by resolving multi-mapping reads. To
achieve this purpose, we reduce the search space for the reads which can be aligned against the genome with
mismatches, insertions or deletions to decrease the probability of incorrect read mapping. We propose a pipeline
divided to three steps: ExactMapping, InExactMapping, and MergingContigs, where exact and inexact reads are
aligned in two separate phases. We test our pipeline on some simulated and real data sets by applying some read
mappers. The results show that the two-step mapping of reads onto the contigs generated by a mapper such as
Bowtie2, BWA and Yara is effective in improving the contigs in terms of error rate.

Conclusions: Assessment results of our pipeline suggest that reducing the error rate of read mapping, not only can
improve the genomes reconstructed by reference-based assembly in a reasonable running time, but can also have an
impact on improving the genomes generated by de novo assembly. In fact, our pipeline produces genomes
comparable to those of a multi-mapping reads resolution tool, namely MMR by decreasing the number of
multi-mapping reads. Consequently, we introduce EIM as a post-processing step to genomes reconstructed by
mappers.
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Background
The advent of next generation sequencing (NGS) tech-
nologies by greatly increasing the volume of produced
data, created a genomic revolution. Massive amount of
data and low cost of these technologies make it possi-
ble to determine large parts of a genome sequence in
a short time. Today, biological research on any organ-
ism from viruses and bacteria to humans depends on
the genome sequence information. In addition, sequences
of organisms have an important role in understanding
diseases.
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In order to reconstruct a genome sequence based on
NGS data, genome assembly, one of the challenging prob-
lems in bioinformatics, is defined. There are two dif-
ferent approaches to model genome assembly: de novo
and reference-based assembly. In the first model, a novel
genome sequence is reconstructed from scratch by only
applying NGS reads. In the second one, a reference
genome is employed to assemble the NGS reads by map-
ping them onto the reference.
Because of the large volume of NGS reads, established

alignment algorithms such as Smith-Waterman aren’t effi-
cient for read mapping. To reduce search space, several
algorithms have been developed [1–5] using the seed-
and-extending approach in which the reads are mapped
onto the reference in two main steps. Firstly, some sub-
sequences of each read are selected as seeds to find their
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positions in the reference. In this way, the candidate loca-
tions of the reads are determined rapidly. Secondly, each
read is aligned to its candidate locations by a dynamic
programming algorithm in order that the actual mapping
positions are obtained.
During the past years, various algorithms have been

designed to improve the accuracy and efficiency of
mappers [6–13]. Although these algorithms represent
appropriate approaches to reduce the time and space
complexity, resolving multi-mapping reads in genome
reconstruction has remained a challenge. Due to repet-
itive regions within the genome, some reads can be
mapped to multiple locations of the reference genome.
Multi-mapping reads may be aligned at incorrect loca-
tions since the read set contains sequencing errors and
genetic variations relative to the reference. As a result,
some errors such as mismatches and indels (insertions or
deletions) are introduced to the reconstructed genome.
Read mappers often randomly select one of the locations
for a multi-mapping read as the primary one. Recently,
a post-processing tool (MMR) has been developed [14]
to find optimal locations for multi-mapping reads within
DNA- and RNA-seq alignment results. It resolves the
problem based on the assumption of aligned reads cover-
age uniformity.
In this study, we introduce a new view to resolv-

ing multi-mapping reads by increasing the rate of reads
aligned uniquely to the reference in order to decrease the
error rate of the reconstructed genome sequence. For this
aim, we divide the reads into two groups in accordance
with the reference genome. The idea is inspired by the
following fact.
Consider a target genome (the genome from which a set

of reads is sampled) which is highly similar to the respec-
tive reference genome. If the read set is mapped onto the
reference, high percentage of the reference can be cov-
ered by the reads uniquely aligned without mismatches
and indels (exact reads). Leftover alignable reads (inexact
reads) are thenmapped to the remaining parts of the refer-
ence. Therefore, to reconstruct most of the target genome,
it is enough to find the locations of reads which have
unique exact-matching with the reference. The rest of the
target genome can be rebuilt by aligning remaining reads
against the reference with mismatches and indels.
Most of the existing read mappers don’t consider any

differences between the mapping of exact and inexact
reads. For example, hash-based mappers find seeds which
support mismatches (space-seeds) and gaps on the whole
reference genome for all reads [15]. On the one hand,
consecutive seeds are enough for exact reads and using
space-seeds leads to excessive memory consumption. On
the other hand, inexact reads are aligned by finding can-
didate locations on the whole reference genome, while
according to high similarity between a target genome and

its reference, searching in small parts of the reference is
sufficient to find these types of reads.
Based on defining reads in two types: exact and inex-

act reads, we present a pipeline (EIM - mapping Exact
and Inexact reads separately and then Merging the con-
structed contigs) for resequencing of a genome. To assess
our pipeline, we have chosen Bowtie2 [7] as a highly
cited and user-friendly mapper and used some real and
simulated read sets. For a more complete evaluation of
EIM pipeline, two other mappers are also used. Our
results illustrate that EIM pipeline improves the quality of
genomes reconstructed by the mappers in terms of error
rate and yields comparable results to MMR in reducing
errors.

Methods
Let S = s1s2 . . . sL denote a DNA sequence in
which ∀1≤i≤L si ∈ {A,C,G,T ,N}; and |S| denote
the length of S. A genome sequence is a long DNA
sequence. A set of paired reads is defined as R =
{〈r1, r′1〉, 〈r2, r′2〉, . . . , 〈rm, r′m〉}where for each i, ri and r′i are
short DNA sequences with length of k.
We propose a three-step pipeline (Fig. 1) for reference-

based assembly as below, where a set of paired reads R and
a genome sequence G are given as inputs:

i. ExactMapping
The set of reads is mapped onto the genome
sequence without mismatches and indels. Then an
exact contig set called Cng1 is generated from
uniquely mapped reads.

ii. InExactMapping
The remaining reads from previous step are mapped
onto the regions of the genome which are covered
with no contigs of Cng1 to construct an inexact
contig set named Cng2.

iii. MergingContigs
The two contig sets, Cng1 and Cng2 are merged to
build up ultimate contigs.

In the following, each step of EIM pipeline is described
in detail.

ExactMapping
In this step, we should apply a mapper to align the set of
reads with the genome without mismatches and indels. In
this regard, the genome G and the read set R are given
to the mapper as inputs. After running the mapper, two
outputs are produced: i) set R′ ⊂ R containing unmapped
and multi-mapping reads ii) SAM file [16] including the
information of the alignment. Then consensus sequence
C is built up from uniquely mapped reads in the SAM file,
where C is a DNA sequence with length |G|. Afterwards,
a set of contigs called Cng1 is generated by breaking the
sequence C at each position of ‘N’.
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Fig. 1 EIM pipeline overview and applied tools. The first step has
three outputs: leftover reads (R′), modified remaining parts of the
genome sequence (GM) and exact contigs (Cng1). The output of the
second step is inexact contig set indicated by Cng2. Currently, EIM
can apply one of mappers Bowtie2 [7], BWA [8, 9] and Yara [10] for
mapping reads

InExactMapping
In this stage, genome sequenceG = g1g2 . . . gn is modified
based on consensus sequence C = c1c2 . . . cn to generate
a new genome called GM. To construct genome GM, the
following steps are taken:

1: Make sequence C′ = c′1c′2 . . . c′n as follows:

c′i =
{
N ci ∈ {A,C,G,T},
gi ci = N ,

where C′ contains all parts of genome G covered with
no contigs of Cng1.

2: Generate sequence GM = gM1 gM2 . . . gMn by extending
each contiguous nucleic acid sequence as:

gMi =
⎧⎨
⎩
c′i c′i ∈ {A,C,G,T},
gi c′i = N&∃kj=1c′i±j ∈ {A,C,G,T},
N o.w,

where k is equal to the read length.

ThenGM is broken at each position of ‘N’, and as a result
a set of contigs is obtained. After that, a mapper is used
in order to align R′ against the set of contigs with mis-
matches and indels. Finally, a consensus sequence is made
from mapped reads in the SAM file for each contig and
added to Cng2.

MergingContigs
In this part, the two contig sets Cng1 and Cng2 gener-
ated respectively at the steps of ExactMapping and InEx-
actMapping, are combined to rebuild the target genome.
Although Cng1 contains large contigs which make up
most of the target genome, Cng2 is required to produce
larger contigs including the differences with genome G.
We merge the contig sets without alignment because the
positions of contigs relative to the genome G are known.
In this way, every two contigs of Cng1 are joined by a
contig of Cng2 overlapping with both of them. Merging
method is described in more detail below.
The union of Cng1 and Cng2 contig sets is defined

as Cng =
{
≺ Di, si, ei, ti �| Di = di1d

i
2 · · · diei−si+1

}
where

for each i, Di is a contig belonging to either Cng1 or Cng2.
The start and end positions of contig Di on the reference
are shown by si and ei, repectively. It should be noted that
si < si+1 and ei < ei+1. Moreover, the value of ti is set to
1 (or 2) when Di ∈ Cng1 (or Di ∈ Cng2). In the following,
all the contigs in Cng are merged by a recursive equation:
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mi =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∅ i = 0,
mi−1 · Di 1 ≤ i ≤ |Cng|& ti = 1, (1a)
mi−1 · di1di2 · · · di

(ei−si+1)−k i = 1&ti = 2, (1b)
mi−1 · dik+1d

i
k+2 · · · di

(ei−si+1)−k 1 < i < |Cng|&ti = 2, (1c)
mi−1 · dik+1d

i
k+2 · · · di

(ei−si+1) i = |Cng|&ti = 2, (1d)

where k is equal to the length of a read, and |Cng| is the
number of contigs in the Cng set. For each i, mi denotes
the merged sequence achieved by combining D1 to Di.
Part (1a) of the above equation shows that each con-
tig of Cng1 has to be completely inserted to the merged
sequence as it is highly probable that the contig has been
made correctly. Parts (1b), (1c) and (1d) indicate how
to insert a contig of Cng2 to the merged sequence after
removing the extended parts (with length of k). The ulti-
matemerged sequence is represented bym|Cng| whichmay
include some Ns because of Cng2 contigs. Thus m|Cng|
sequence is broken at each position of ‘N’ for generating
output contigs of EIM pipeline.

Datasets
Several real and simulated datasets are used to evaluate
the accuracy of EIM pipeline. The first real dataset is an
Illumina MiSeq pair-end read set from E. coli downloaded
from [17, 18] which consists of about 1.5 million paired
reads of 151 base-pair (bp) with coverage depth 100×.
We apply Escherichia coli str. K12 substr. MG1655 [Gen-
Bank:NC_000913] as a reference genome and Escherichia
coli O145:H28 str. RM12581 [GenBank: CP007136.1] as a
related strain.
The second dataset includes four human chromosome

read sets: Chr1, Chr10, Chr14 and Chr21 extracted
from samples. The whole human genome samples are
downloaded from the SRA database of National Cen-
ter for Biotechnology Information (NCBI) with accession
numbers SRR67780, SRR67785, SRR67787, SRR67789,
SRR67791, SRR67792, SRR67793. The human reference
genome GRCh38 is downloaded from [19]. All read sets
contain 101 bp paired reads with the properties shown in
Table 1.
We simulate several read sets for a prokaryotic and

eukaryotic genome: E. coli and Arabidopsis thaliana.
To simulate reads for E. coli, we create four genome
sequences, E. coli-Mut1 to E. coli-Mut4 derived from E.
coli K12. Then Illumina read sets, ReadSet1 to ReadSet8
and ReadSet9 to ReadSet12 are simulated for mutated

Table 1 Real data sets properties

Data set GenomeLength Reads# Coverage

Human Chr 1 248, 956, 422 80, 623, 200 34×
Human Chr 10 133, 797, 422 45, 121, 800 34×
Human Chr 14 107, 349, 540 36, 117, 398 42×
Human Chr 21 46, 709, 983 18, 941, 800 42×

genomes by DWGSIM [20] and ART [21], respectively. E.
coli-Mut1 and E. coli-Mut2 have single nucleotide vari-
ants (SNVs) with the rate of 0.1%. E. coli-Mut2 has SNVs
of random size among 1 to 3. E. coli-Mut3 has SNVs and
deletions of the rates 0.09% and 0.01% respectively. E. coli-
Mut4 has SNVs and insertions of the rates 0.09% and
0.01% respectively. The read sets, ReadSet1 to ReadSet4
are simulated such that the length and coverage depth of
the reads are similar to those of the real read set from E.
coli K12 genome (i. e. more than 1.5 million paired reads
of 150 bp). The read sets, ReadSet5 to ReadSet12 are sim-
ulated with low coverage (i. e. about 3000 paired reads of
150 bp) and sequencing error. The properties of simulated
reads are shown in Table 2.
To generate reads for Arabidopsis thaliana, we create

a genome sequence derived from TAIR10 [GenBank:
CP002684.1-CP002688.1] reference genome. Firstly,
TAIR10 genome sequence is mutated based on bur-0
strain variations obtaining from [22]. Then an Illumina
read set including 15.6 million paired reads of 150
bp with coverage depth of 20× is simulated by ART
simulator.

Tools
Some tools are utilized for running EIM pipeline as
follows. We use DWGSIM [20] and ART [21] for sim-
ulating reads, Bowtie2, Yara [10] and BWA [8, 9] for
mapping reads, and SAMtools [16] for making consen-
sus sequences. We also implement a simple hash-based
aligner called ExactMapper for mapping reads without
mismatches and gaps to make the pipeline faster.
The assessments on large genomes including human

chromosomes and Arabidopsis thaliana are performed
on a desktop which has a 3.60GHz Intel(R) Core(TM)
i7 − 6850K 6-core processor and 32GB of RAM running
64-bit Ubuntu 18.04 LTS. The other assessments are per-
formed on a laptop with an Intel(R) Core(TM) i7−3517U
processor and 8GB of RAM running 64-bit Ubuntu 15.10.
At ExactMapping step, we apply ExactMapper aligner

for small genomes to generate a SAM file and extract
remaining reads (unmapped and multi-mapping reads)
simultaneously. Next, SAM file is given to a script to build
up a consensus sequence C from uniquely mapped reads.
At InExactMapping step, we employ one of the aforemen-
tioned mappers with appropriate parameters and then
construct the consensus sequence by SAMtools. For this
purpose, The ‘--keep-masked-ref ’ parameter is set for
‘bcftools call’ command of SAMtools to be able to make
consensus in IUPAC positions of the reference genome.
It should be noted, for large genomes such as the human

chromosome 14, we use Bowtie2 in ExactMapping step.
The ‘--score-min’ parameter of Bowtie2 is set to the value
‘C, 0,−1’ to only map the reads with exact matches to
the genome. Th unmapped and multi-mapping reads are
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Table 2 Simulated data sets properties

Data set Target genome Genome length Indel+SNV % # SNVs # Insertions # Deletions Read length Coverage Simulator

ReadSet1 E. coli-Mut1 4639675 0.1 4640 0 0 150 100× DWGSIM

ReadSet2 E. coli-Mut2 4639675 0.1 4640 0 0 150 100× DWGSIM

ReadSet3 E. coli-Mut3 4639138 0.1 4205 0 537 150 100× DWGSIM

ReadSet4 E. coli-Mut4 4640180 0.1 4135 505 0 150 100× DWGSIM

ReadSet5 E. coli-Mut1 4639675 0.1 4640 0 0 150 20× DWGSIM

ReadSet6 E. coli-Mut2 4639675 0.1 4640 0 0 150 20× DWGSIM

ReadSet7 E. coli-Mut3 4639138 0.1 4205 0 537 150 20× DWGSIM

ReadSet8 E. coli-Mut4 4640180 0.1 4135 505 0 150 20× DWGSIM

ReadSet9 E. coli-Mut1 4639675 0.1 4640 0 0 150 20× ART

ReadSe10 E. coli-Mut2 4639675 0.1 4640 0 0 150 20× ART

ReadSet11 E. coli-Mut3 4639138 0.1 4205 0 537 150 20× ART

ReadSet12 E. coli-Mut4 4640180 0.1 4135 505 0 150 20× ART

extracted from the SAM file by a script and the consensus
sequence is constructed by SAMtools.

Evaluation metrics
To evaluate EIM pipeline, we calculate some contigu-
ity and quality metrics by QUAST [23] for contig sets
(genomes) reconstructed by ExactMapping step, EIM and
the mappers.
We use two metrics to compare the contiguity of the

contig sets as follows:

• Contigs-500: The number of contigs with length of
greater than 500 bp belonging to the contig set.

• N50: The length of the smallest contig in the set that
contains the fewest (largest) contigs whose combined
length represents at least 50% of assembly [24].

We use quality metrics for indicating the accuracy of
the reconstructed genomes. To calculate some quality
metrics, each set of contigs is aligned to the target (or ref-
erence) genome to find the number of errors regarding to
each contig set as below:

• Errors: The total number of mismatches and indels
(insertions and deletions) in the aligned contigs
relative to the target genome.

• IUPAC-codes: The total number of IUPAC
ambiguity positions in the contig set.

• Genome-Fraction: The percentage of the target (or
reference) genome covered by the aligned contigs.

when the target genome is not available, we apply the
following quality measure to test the accuracy of the
reconstructed genomes.

• Remapped-Reads: The percentage of the reads
which are identically mapped (i.e. without
mismatches and indels) onto the contigs.

Results
A set of reads and a reference genome are given to EIM
pipeline as inputs and then EIM constructs a set of con-
tigs as output by stepwise mapping of the reads onto
the reference. The sequencing errors and genetic differ-
ences as well as repetitive regions in the genome are
the factors which introduce mapping errors such as mis-
matches and indels into the contigs relative to the target
genome.
To evaluate the results of EIM pipeline, we use differ-

ent datasets in terms of similarity between the target and
reference genomes as follows:

1. By considering a reference genome identical to the
target genome, we initially assess our pipeline where
the real read set from E. coli K12 includes
sequencing errors.

2. According to the high similarity between any human
genome and the human reference, we investigate
results of EIM pipeline where the real reads from a
human chromosome 14 contain sequencing errors as
well as SNVs. It is to be noted that the target genome
is not available.

3. By simulating some target genomes highly similar to
E. coli K12 genome, we examine EIM pipeline in
which the simulated reads include SNVs. In this way,
we can test the accuracy of EIM more precisely since
the target genomes are available.

4. By using a closely related genome to E. coli K12 as a
reference, we perform EIM pipeline on a real read set
from E. coli K12 to assess our pipeline where the
similarity between the target and reference genomes
is not very high.

For completing the evaluation of EIM, we apply different
mappers on a real read set from E. coli K12 and a closely
related genome to it as a reference, and then compare the
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results of EIM pipeline to the respective mappers. In addi-
tion, we evaluate our pipeline on eukaryotic genomes of
human and Arabidopsis thaliana.

Assessment of EIM on a real dataset of E. coli K12
To test the accuracy of EIM, we examine the effect of
sequencing errors without considering any other factors.
For this purpose, E. coli K12 genome and its reads gener-
ated by using Illumina are given to EIM as inputs. Accord-
ingly, the target and reference genomes are the same and
the read set includes sequencing errors.
An Illumina sequencer has an error rate of < 0.1%

[25], because of which only 61.79% of the reads can be
mapped at the first step of EIM pipeline (ExactMapping).
However, contigs constructed from the uniquely mapped
reads cover nearly entire of the target genome (99.995% in
Table 3). At the second step of our pipeline (InExactMap-
ping), remaining reads from the first step aremapped onto
just 0.005% of the reference. As shown in Table 3, the
last step of EIM (MergingContigs) produces a contiguous
contig including 2 errors, while Bowtie2 mapper makes
11 contigs containing the same number of errors on this
sample data. Although Bowtie2 generates more contigs
than EIM, the Genome-Fraction values of both contig sets
are the same (100%) because the gaps between contigs of
Bowtie2 are too small compared to the total length of the
target genome.
This assessment shows that contig sets reconstructed by

EIM and Bowite2 are the same in terms of accuracy when
the read set contains sequencing errors.

Assessment of EIM on a real dataset of human
chromosome 14
In this assessment, our goal is to investigate the accuracy
of EIM where the set of reads extracted from a genome

Table 3 Real datasets analysis where the inputs of EIM pipeline
are the read set and reference genome

Assembly Exact EIM Bowtie2

E. coli

Contigs-500 64 1 11

N50 (kbp) 1250.9 4639.673 597.8

Errors 0 2 2

Genome-Fraction (%) 99.995 100 100

Human chromosome 14

Contigs-500 27312 451 1179

N50 (kbp) 6 407.6 174.1

Errors 18 44407 44911

Genome-Fraction (%) 93.22 99.80 99.71

The evaluation metrics has been defined in the text. The columns headed ’Exact’,
’EIM’ and ’Bowtie2’ represent the contiguity and quality of contigs constructed by
ExactMapping step of EIM, EIM and Bowtie2, respectively

includes sequencing errors as well as SNVs and indels rel-
ative to the reference. We perform EIM on the human
chromosome 14 reference and the reads from a human
chromosome 14.
Due to sequencing errors and genetic differences

between human genomes, only about half of reads
(58.33%) are aligned at the ExactMapping step. The con-
tigs constructed from this volume of the reads cover
93.22% of the chromosome 14 reference (Table 3). Fur-
thermore, the results presented in Table 3 show that
EIM makes significantly fewer contigs than Bowtie2. In
other words, the comparison of N50 values indicates that
EIM can make a contig set more contiguous than that
of Bowtie2. Moreover, the contigs of EIM include fewer
errors relative to the reference than those of Bowtie2.
Although comparing with the reference genome gives
insight into the error rate of the reconstructed genomes,
some differences are true differences rather than errors.
Since the target genome is not available, we use the read
set to assess the accuracy of EIM. In this way, the reads
are mapped without mismatches and indels to the recon-
structed genomes to calculate Remapped-Reads values.
The results of the remapping show that the Remapped-
Reads values for the genomes reconstructed by EIM and
Bowtie2 are 60.87% and 58.68% respectively. This is an
appropriate evidence that the reconstructed genome by
EIM is more accurate than that of Bowtie2.
Our results show that when the target and reference

genomes are highly similar, EIM pipeline can reconstruct
a more accurate genome than the one rebuilt by Bowtie2
mapper.

Assessment of EIM on simulated data
To assess the accuracy of EIM more precisely, the target
genome sequences are required. Since target sequences
are typically not available for most of individuals and
strains, we use simulated data. To do so, we make some
genome sequences derived from E. coli K12 genome
by creating mismatches and indels using different rates
and then simulate read sets from the mutated genomes
(Table 2).
We test EIM pipeline on ReadSet1 (Table 2) and E. coli

K12 as a reference genome. To compare contigs gener-
ated by EIM and Bowtie2 , we align both contig sets
against E. coli-Mut1 (the target genome) and present the
results in the second, third and last columns of Table 4.
Although EIM pipeline rebuilds a contiguous contig, it
introduces more errors than Bowtie2. It is also worth
mentioning that the contigs of ExactMapping step of EIM
called Exact contigs have 90.285%Genome-Fraction value
which in comparison with that obtained by real data
experiment (99.995% in Table 3) is very low. It seems that
a lower Genome-Fraction value of Exact contigs leads to
the higher errors in the final contigs produced by EIM.
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Table 4 Simulated ReadSet1 analysis where the inputs of EIM
pipeline are the read set and either the reference genome (ref) or
the genome reconstructed by Bowtie2 (cns-bt)

c 1 c 2 c 3 c 4 c 5 c 6 c 7

Assembly Exact EIM Exact EIM (v1) EIM (v2) Bowtie2

/ref /ref /cns-bt /cns-bt /cns-bt / ref

Contigs-500 2817 1 68 9 2 6

N50 (kbp) 1.82 4639.6 156.4 1108.9 3543.3 2385.650

Errors 3 45 0 28 29 38

Genome-Fraction (%) 90.285 100 99.381 99.992 99.999 100

The evaluation metrics has been defined in the text. The columns headed
’Exact/ref’, ’EIM/ref’, ’EIM (v1)/cns-bt’, ’EIM (v2)/cns-bt’ and ’Bowtie2’ represent the
contiguity and quality of the respective contigs. Also E. coli K12 genome is denoted
by ’ref’ and the consensus sequence constructed by Bowtie2 on E. coli genome is
denoted by ’cns-bt’

We need to point out that the more fraction of the tar-
get genome is covered by Exact contigs, the smaller parts
of the reference remain for InExactMapping step of EIM.
Hence the probability that the leftover reads are aligned at
true locations is increased and as a result, the error rate
of the reconstructed genome is reduced. Furthermore, the
fraction of the target genome covered by Exact contigs is
directly proportional to the similarity between the target
and reference genomes. In other words, the higher simi-
larity between the target and reference genomes leads to
fewer errors in the genome reconstructed by EIMpipeline.
Accordingly, since the genome sequence reconstructed by
a mapper is more similar to the target genome than to
the reference (ref ), the genome sequence reconstructed by
Bowtie2 (cns-bt) is fed to EIM instead of the reference as
input.
The results can be seen in the fourth and fifth

columns of Table 4. The comparison of the second
and fourth columns shows that by giving the genome
sequence reconstructed by Bowtie2 instead of the refer-
ence sequence to EIM as the input, the Genome-Fraction
value of Exact contigs increases from 90 to >99%. In
addition, the number of errors in final contigs of EIM
decreases from 45 to 28. It suggests that the genome
sequence reconstructed by a mapper is a better input for
our pipeline as it leads to a lower error rate. Our analy-
sis up to this point shows that by feeding cns-bt instead of
ref to EIM pipeline as input, the error rate is reduced. It
is important to note that the error rate decreasing is valu-
able only when EIM rather maintains the same N50 and
Genome-Fraction values as those of the input genome.
However, the results of EIM in the fifth column compared
to the last column of Table 4 indicate that this condition is
not satisfied.
We observed that cns-bt includes 137 IUPAC-codes

while ref contains no IUPAC-codes. Furthermore, the
genome reconstructed by mapping a read set onto a

reference sequence containing IUPAC-codes is less
contiguous than the reference because SAMtools makes
a consensus sequence including ‘N’ in the IUPAC-code
positions. Thus the existence of IUPAC-codes in the input
genome of EIM yields a more fragmented genome as out-
put. To solve this issue, we execute SAMtools with a
parameter allowing to build consensus in the IUPAC-code
positions instead of substituting ‘N’ ambiguity character
(“Tools” subsection). As shown in the sixth column of
Table 4, EIM with this modification makes contigs which
in addition to including less errors than cns-bt (the input
genome), are nearly as contiguous as cns-bt and with
high coverage of the target genome. In the following, EIM
described in the fifth and sixth columns of Table 4 are
considered as versions one (v1) and two (v2), respectively.
Tables 5 and 6 represent the results of applying EIM

(v2) pipeline and Bowtie2 mapper to the simulated read

Table 5 Simulated high coverage datasets analysis where the
inputs of EIM pipeline are the read set and genome
reconstructed by Bowtie2

Assembly Exact EIM (v2) Bowtie2

ReadSet1

Contigs-500 68 2 6

N50 (kbp) 156.4 3543.3 2385.6

Errors 0 29 38

IUPAC-codes 0 11 137

Genome-Fraction (%) 99.381 99.999 100

ReadSet2

Contigs-500 142 3 5

N50 (kbp) 62.7 1371.6 939.1

Errors 0 45 92

IUPAC-codes 0 29 246

Genome-Fraction (%) 99.338 100 99.997

ReadSet3

Contigs-500 96 6 3

N50 (kbp) 94.4 1096.2 3267.7

Errors 2 54 87

IUPAC-codes 0 11 140

Genome-Fraction (%) 99.285 99.997 100

ReadSet4

Contigs-500 77 3 3

N50 (kbp) 115.5 2337.4 1530.2

Errors 6 55 72

IUPAC-codes 0 15 34

Genome-Fraction (%) 99.436 99.998 100

The evaluation metrics has been defined in the text. The columns headed ’Exact’,
’EIM (v2)’ and ’Bowtie2’ represent the contiguity and quality of contigs constructed
by ExactMapping step of EIM, EIM (v2) and Bowtie2, respectively
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Table 6 Simulated low coverage datasets analysis where the inputs of EIM pipeline are the read set and genome reconstructed by
Bowtie2

Assembly Exact EIM (v2) Bowtie2 Exact EIM (v2) Bowtie2

DWGSIM simulator ART simulator

ReadSet5 ReadSet9

Contigs-500 172 14 58 137 13 56

N50 (kbp) 43.9 735.7 159.6 75.2 909.5 175.3

Errors 0 53 64 1 45 53

IUPAC-codes 0 36 137 0 38 102

Genome-Fraction (%) 98.899 99.991 99.983 98.912 99.983 99.965

ReadSet6 ReadSet10

Contigs-500 163 6 64 178 18 63

N50 (kbp) 44.4 1698.5 112.2 45.4 485.2 116.9

Errors 1 68 92 2 68 83

IUPAC-codes 0 28 95 0 39 187

Genome-Fraction (%) 98.843 99.998 99.976 98.871 99.988 99.984

ReadSet7 ReadSet11

Contigs-500 424 11 55 425 17 70

N50 (kbp) 16.6 590.9 125.9 18 386.6 115.4

Errors 2 185 361 6 179 369

IUPAC-codes 0 24 117 0 38 151

Genome-Fraction (%) 98.666 99.993 99.985 98.697 99.989 99.983

ReadSet8 ReadSet12

Contigs-500 397 17 56 366 13 49

N50 (kbp) 18.9 493.4 141.1 21.6 529.5 127.6

Errors 8 190 331 8 186 322

IUPAC-codes 0 21 105 0 23 121

Genome-Fraction (%) 98.771 99.99 99.979 98.799 99.983 99.982

The evaluation metrics has been defined in the text. The columns headed ’Exact’, ’EIM (v2)’ and ’Bowtie2’ represent the contiguity and quality of contigs constructed by
ExactMapping step of EIM, EIM (v2) and Bowtie2, respectively. The results of running the pipeline on datasets simulated by DWGSIM and ART are shown in left and right side
of the table, respectively

sets with high and low coverage, respectively. As illus-
trated by the results, not only can EIM (v2) decrease
the error and IUPAC-code rates, but it can also maintain
the contiguity and Genome-Fraction value very close to
Bowtie2.
The results of this assessment show that our pipeline

can improve the genome sequence reconstructed by
Bowtie2 mapper in terms of accuracy when a highly simi-
lar reference to the target genome is available and the read
set includes SNVs relative to the reference.

Assessment of EIM on a real dataset of E. coli K12 and a
closely related genome
In this assessment, we examine the accuracy of EIM when
similarity between the target and reference genomes is
not so high. The application is where a reference is not

available and a closely related genome is used as a ref-
erence. We apply E. coli O145:H28 as a closely related
genome to E. coli K12.
To evaluate EIM on the read set from E. coli K12,

a genome sequence is reconstructed from mapping the
reads onto E. coli O145:H28 genome by Bowtie2, then the
reconstructed genome and the reads are given to EIM as
inputs. Table 7 shows that the contig sets generated by
EIM (v1) and EIM (v2) contain fewer errors and IUPAC-
codes than that of Bowtie2. Moreover, EIM (v2) can make
contigs which have nearly the same Genome-Fraction
value and N50 size as those of Bowtie2.
It should be noticed that the Genome-Fraction values of

the contigs produced by EIM and Bowtie2 are less than
90%. In such cases where there is no reference available
and the related genome is not highly similar to the target
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Table 7 Real dataset analysis where a closely related genome is used as a reference

Assembly Exact EIM (v1) EIM (v2) Bowtie2 MaSuRCA EIM (v1) + MaSuRCA

Contigs-500 497 334 263 259 114 114

N50 (kbp) 12.3 22.2 32 29.3 106 106

Errors 58 618 1190 2472 2407 1786

IUPAC-codes 0 17 56 280 0 5

Genome-Fraction (%) 87.013 87.811 88.578 88.575 99.058 99.058

The evaluation metrics has been defined in the text. The columns headed ’Exact’, ’EIM (v1)’, ’EIM (v2)’, ’Bowtie2’, ’MaSuRCA’ and ’EIM (v1) + MaSuRCA’ represent the
contiguity and quality of contigs constructed by ExactMapping step of EIM, EIM (v1), EIM (v2), Bowtie2, MaSuRCA and combining the contig sets of EIM (v1) and MaSuRCA
assembler, respectively

genome, de novo genome assembly is a better approach
for reconstructing the genome sequence. However, the
genome sequences generated by de novo assemblers are
not error-free. For this reason, approaches for improving
the accuracy of de novo assembled contigs are needed.
Here we use the contigs generated by EIM to improve the
contigs produced by a de novo assembler. In fact, we use
version one of EIM pipeline because contigs of EIM (v1)
include less errors than those of EIM (v2). The read set is
assembled by MaSuRCA [26], one of the best assemblers
at GAGE-B [27], then the contigs constructed by EIM and
MaSuRCA are combined into a contig set including fewer
errors than the contigs of MaSuRCA (Table 7).
This analysis indicates that when a closely related

genome is used as a reference, and thus the reference and
target genomes are not highly similar, EIM (v2) can recon-
struct a genome sequence with the same contiguity and
Genome-Fraction value including less errors and IUPAC-
codes than the genome reconstructed by Bowtie2 mapper.
In addition, the genome rebuilt by EIM (v1) can decrease
the error rate of a genome sequence generated by a de novo
assembler such as MaSuRCA.

Evaluation of EIM by different mappers
To evaluate the performance of our pipeline by usingmap-
pers other than Bowtie2, we select BWA as a popular
and widely used mapper and Yara as one of the state-of-
the-art mappers. We use the three mappers and version
2 of EIM on the read set from E. coli K12 and E. coli
O145:H28 genome as a reference. For each mapper, the
genome reconstructed by the mapper is given to EIM (v2)
as input and the mapper itself is applied for aligning reads
in the second step of EIM (v2) (i. e. InExactMapping).
As illustrated in Fig. 2, for all mappers, EIM pipeline

maintains N50 size and Genome-Fraction value close but
not identical to those of the mappers (Fig. 2a and b). It also
reduces the number of errors and significantly decreases
the number of IUPAC-codes (Fig. 2c and d).
Figure 2e shows the running times of the three map-

pers compared to EIM. Since the input genome of EIM is
built by a mapper, the running time of reconstructing a
genome by EIM is the total of mapper and EIM pipeline

runtimes. In addition, the running time of reconstruct-
ing a genome by a mapper is the total of read mapping
and consensus constructing runtimes, which the second
one is more time-consuming. Our pipeline decreases the
computational time of making a consensus by a two-step
mapping. In ExactMapping, most of the reads are exactly
aligned and a SAM file is made from which the consensus
sequence can be constructed by a simple and fast script
without using SAMtools. Moreover, only a low percent-
age of reads is transferred to InExactMapping step and
thus the consensus sequence is made rapidly by SAMtools
in this stage. Consequently, the overhead time of recon-
structing the E. coli genome by EIM pipeline after running
a mapper is less than one-third of that of the respective
mapper (Fig. 2e).
This evaluation demonstrates that EIM pipeline can

be used as a post-processing tool to improve the
genome reconstructed by a mapper to a more accu-
rate one in an acceptable runtime while maintaining
the contiguity and Genome-Fraction value of the input
genome.

Evaluation of EIM on de novo assembled genomes
In this section, we assess the effect of EIM pipeline on
the results of de novo assemblies. For this purpose, we
compare EIM with Pilon framework [28] and Columbus
module of Velvet assembler [29]. These tools get a draft or
reference genome and mapped reads on it, to apply read
mappings for improving genome assembly.
In the following, we first generate two genomes by

Velvet andMaSuRCA assemblers on the real read set from
E. coli K12. Then each draft genome is inputted to EIM,
Pilon, and Columbus.
As illustrated in Fig. 3, all frameworks reduce the num-

ber of errors and dramatically decrease the number of
IUPAC-codes when that of the draft genome is too high
(Fig. 3a and b). Although EIM and Columbus decrease
N50 size (Fig. 3c), they maintain Genome-Fraction value
close to those of draft genomes (Fig. 3d).
The results of this comparison show that EIM pipeline

has an impact on reducing the error rate of the genomes
generated by de novo assembly.



Salari et al. BMC Bioinformatics          (2018) 19:406 Page 10 of 15

Fig. 2 The comparison of contigs generated by Bowtie2, Yara and BWA with the respective contigs of EIM on the real read set of E. coli K12. Firstly,
the mappers were executed on the read set and the reference, and then the contig sets were generated. Secondly, for each mapper, EIM (v2) was
run on the read set and the contig set constructed by the mapper while using it at the second step for mapping. Finally, the contiguity and quality
of contigs were computed as a N50 size b Genome-Fraction value c The number of errors d The number of IUPAC codes. In addition, the running
time of obtaining contigs was measured and showed in seconds (e)

Evaluation of EIM on eukaryotic genomes
For the final evaluation, we run EIM pipeline on the
datasets of human as a mammalian and Arabidopsis
thaliana as a model plant. To evaluate EIM on human, we
select the smallest and the largest chromosomes as well as
a chromosome with average length namely Chr21, Chr1,

and Chr10, respectively and extract the reads of each one
from real samples of the whole human genome. Then we
run EIM on each dataset separately. For evaluating our
pipeline on Arabidopsis thaliana, we simulate a dataset for
all chromosomes of bur-0 strain and use TAIR10 as the
reference to run EIM.
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Fig. 3 The comparison of contigs generated by EIM, Pilon and Columbus on the real read set of E. coli K12.Firstly, two draft genomes were generated
by Velvet and MaSuRCA de novo assemblers. Secondly, EIM, Pilon and Columbus were run by each draft and mapped reads on the draft. Finally, the
quality and contiguity of contigs were computed as a The number of errors b The number of IUPAC codes c N50 size d Genome-Fraction value

As shown in Table 8, EIM pipeline reduces error rates
on all three human chromosomes and bur-0 strain of
Arabidopsis. To be precisely measured the accuracy of
generated contigs, the reads are exactly mapped onto each
contig set to calculate Remapped-Reads value. As seen,
EIM increases Remapped-Reads values. Furthermore, the
results show that our pipeline considerably increases the
N50 size of contig sets generated for human chromosomes
because of the high similarity between human genomes.

In order to examine the effect of different chromosomal
regions on accuracy of EIM, we test our pipeline on por-
tions of a human chromosome. To achieve this goal, we
divide Chr1, the largest human chromosome, to twenty
five same-length regions as follows:

P = {p1, . . . , p25} for each i |pi| 
 10Mbp.

The number of ambiguity characters (Ns) is assessed in
each pi1 ≤ i ≤ 25 (Fig. 4).We omit p14 because this region
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Table 8 Evaluating EIM on some eukaryotic datasets

Assembly EIM (v2) Bowtie2

Human chromosome 1

Contigs-500 2497 5018

N50 (kbp) 420.7 158.2

Errors 115381 120726

IUPAC-codes 7862 158247

Genome-Fraction (%) 99.828 99.614

Remapped-Reads (%) 52.02 50.95

Human chromosome 10

Contigs-500 1443 2478

N50 (kbp) 399.9 149.2

Errors 70478 73842

IUPAC-codes 5508 112333

Genome-Fraction (%) 99.209 99.034

Remapped-Reads (%) 51.72 49.93

Human chromosome 21

Contigs-500 1239 2362

N50 (kbp) 237.8 101

Errors 22904 23579

IUPAC-codes 3232 46155

Genome-Fraction (%) 99.114 97.73

Remapped-Reads (%) 44.58 42.23

Arabidopsis Thaliana (bur-0)

Contigs-500 6936 6987

N50 (kbp) 428.8 417.4

Errors 136539 179312

IUPAC-codes 4842 2370

Genome-Fraction (%) 98.634 98.572

Remapped-Reads (%) 66.32 65.24

The evaluation metrics has been defined in the text. The columns headed ’EIM (v2)’
and ’Bowtie2’ represent the contiguity and quality of contigs obtained based on the
results of EIM (v2) and Bowtie2, respectively

is a whole sequence of Ns. We then run EIM on the read
set of Chr1 and each pi1 ≤ i ≤ 25andi �= 14, separately.
As shown in Fig. 5, EIM pipeline increases N50 values

and reduces error numbers, and significantly decreases
IUPAC numbers for all regions. Note that, because of the
high fraction of Ns in centromere region, contigs gener-
ated by Bowtie2 and EIM on p13 and p15 have lowN50 size
and low error numbers (Fig. 5a and d).
In addition, EIM increases Remapped-Reads values for

all regions except for the first one (Fig. 5b). To explore the
reason, we break the p1 region from Ns and select two
of five yielded portions called p1_1 (∼ 2.1 Mbp) and p1_2
(∼ 7.2 Mbp) for analysis because their length is more than
1 Mbp. Then we run EIM on the read set of Chr1 and

Fig. 4 The distribution of N characters in the regions of Chr1. The
regions of p14, p13 and p15 have 54%, 24% and 20% of N characters of
Chr1, respectively. The centromere consists of p13, p14 and p15
regions which contain 97% Ns of Chr1

p1_1 and p1_2 regions, separately. The results show that
the Remapped-Reads value of contigs generated by EIM is
0.05%more than that of Bowtie2 for p1_2 while this value is
0.35% less than that of Bowtie2 for p1_1. Thus the shorter
portion i.e. p1_1 leads to decreasing of the Remapped-
Reads value of p1 region. According to this observation,
we examine GC-content of all regions of Chr1. The GC-
content of p1_1 is 56% while GC-content of p1_2 and other
regions are less than 50% (Fig. 6).
The results from GC-content analysis suggest that run-

ning EIM on genomic regions with less than 50% GC-
content can generate contigs which are more accurate
than those of a mapper.

Discussion
As mentioned in the “Background” section, one of the
most challenging aspects of genome sequence reconstruc-
tion from NGS data is the existence of multi-mapping
reads. We claim that EIM pipeline decreases the number
of multi-mapping reads and thus reduces the error rate
of the reconstructed genome. To demonstrate this claim,
we analyse each step of EIM separately. Let the input
genome sequence of EIM be the genome reconstructed by
a mapper like Bowtie2.
At ExactMapping step, the consensus sequence is built

from the reads uniquely mapped and thus the result-
ing Exact contigs contain very low errors (see the ‘Exact’
column in Tables 6 and 7). Therefore the number of errors
in the contigs of the next step plays a determining role in
the error rate of the genome reconstructed by EIM. The
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Fig. 5 The comparison of contigs generated by Bowtie2 and EIM on the regions of Chr1. Firstly, Chr1 was divided to some regions, pi1 ≤ i ≤ 25.
Secondly, Bowtie2 and EIM were run by the read set of Chr1 and each pi1 ≤ i ≤ 25andi �= 14, separately. Finally, the quality and contiguity of
contigs were computed as a N50 size b The Remapped-Reads value c The number of IUPAC codes d The number of errors

reads not applied in this step, namely multi-mapping and
unmapped reads are transferred to the second step to be
aligned with mismatches and indels.
At InExactMapping step, the remaining reads are

aligned to the parts of the input genome not cov-
ered by any Exact contigs and then the consensus
sequence is generated. To examine the effect of EIM
on multi-mapping reads, we should compare the num-
ber of multi-mapping reads in this step to that obtained

by mapping the reads onto the whole input genome.
To do so, the reads that can be mapped at the sec-
ond step of EIM, are aligned again to the whole input
genome. Figure 7 shows that our pipeline leads to
less multi-mapping reads on the simulated and real
datasets. In fact, on the simulated datasets, EIM can
decrease the number of multi-mapping reads by find-
ing unique mapping locations for 17% of them on
average.
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Fig. 6 GC-content of contig sets generated by EIM on the regions of
Chr1. As shown, p1_1 has the maximum GC-content among all regions

To complete the examination of the effect of EIM
pipeline on multi-mapping reads, EIM is compared to a
multi-mapping reads resolution tool, MMR. We compare
the genome reconstructed by EIM to the genome obtained
based on the results of MMR on the read set from E. coli
K12 and E. coli O145:H28 as a reference. In this way, firstly,

Fig. 7Multi-mapping reads on the whole and the remaining parts of
the genome. A real and four simulated datasets were used. The
orange and yellow bars show the percentage of multi-mapping reads
where the reads were aligned against the whole genome, and in
which the reads were mapped onto the regions not covered by the
contigs of the first step of EIM, respectively

the reads are mapped by Bowtie2 onto the reference and a
SAM file is generated. Then a sorted BAM file and a con-
sensus sequence are built from SAM file as the inputs of
MMR and EIM, respectively. MMR produces a BAM file
that assigns an optimal mapping location to each multi-
mapping read, while EIM generates a contig set such that
the number of multi-mapping reads are decreased.
As shown in Table 9, both approaches maintain the con-

tiguity and reduce the error rate of the input. In addition,
EIM can impressively decrease the number of IUPAC-
codes from 280 to 56. The running time of reconstructing
E. coli genome by EIM (330 sec) is significantly less than
that of MMR (999 sec) without considering the running
time of making the inputs. Note that for reconstructing
a genome based on MMR results, a consensus construc-
tion stage is required after applyingMMRwhich causes to
increase the runtime.
As shown by this analysis, the results of EIM pipeline

are comparable to a multi-mapping reads resolution tool
in terms of the main goal, that is, reducing the error rate
of the genome reconstructed by a mapper.

Conclusion
The goal of our work is to improve the accuracy of
contigs generated using NGS read mappers by decreas-
ing their error rate. To achieve this purpose, we design
EIM pipeline which aligns the exact and inexact reads
against the genome sequence at two separate steps to
map the inexact reads more precisely. The assessment
of our pipeline on simulated and real read sets show
that the separation of reads is effective in reducing the
number of mismatch and indel errors with regard to the
target genome and significantly decreases the number of
IUPAC-codes in the input genome. The evaluation of EIM
by three mappers namely Bowtie2, BWA and Yara also
indicates that our pipeline, as a post-processing step to
different mappers, can improve the genome sequences
reconstructed by them in an acceptable running time.
In addition, EIM pipeline can reconstruct a comparable
genome to that of MMR (a multi-mapping reads resolu-
tion tool) in terms of error rate.

Table 9 Comparing EIM and MMR results on a real dataset

Assembly Bowtie2 EIM (v2) MMR

Contigs-500 259 263 260

N50 (kbp) 29.3 32 31.3

Errors 2472 1190 1369

IUPAC-codes 280 56 224

Genome-Fraction (%) 88.575 88.578 88.671

The evaluation metrics has been defined in the text. The columns headed ’Bowtie2’,
’EIM (v2)’ and ’MMR’ represent the contiguity and quality of contigs obtained based
on the results of Bowtie2, EIM (v2) pipeline and MMR tool, respectively
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