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Adaptively capturing the heterogeneity of
expression for cancer biomarker
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Xin-Ping Xie1, Yu-Feng Xie1,2,3, Yi-Tong Liu1,2 and Hong-Qiang Wang2*

Abstract

Background: Identifying cancer biomarkers from transcriptomics data is of importance to cancer research.
However, transcriptomics data are often complex and heterogeneous, which complicates the identification of
cancer biomarkers in practice. Currently, the heterogeneity still remains a challenge for detecting subtle but
consistent changes of gene expression in cancer cells.

Results: In this paper, we propose to adaptively capture the heterogeneity of expression across samples in a gene
regulation space instead of in a gene expression space. Specifically, we transform gene expression profiles
into gene regulation profiles and mathematically formulate gene regulation probabilities (GRPs)-based statistics
for characterizing differential expression of genes between tumor and normal tissues. Finally, an unbiased estimator (aGRP)
of GRPs is devised that can interrogate and adaptively capture the heterogeneity of gene expression. We also derived an
asymptotical significance analysis procedure for the new statistic. Since no parameter needs to be preset, aGRP is easy and
friendly to use for researchers without computer programming background. We evaluated the proposed method on both
simulated data and real-world data and compared with previous methods. Experimental results demonstrated the superior
performance of the proposed method in exploring the heterogeneity of expression for capturing subtle but consistent
alterations of gene expression in cancer.

Conclusions: Expression heterogeneity largely influences the performance of cancer biomarker identification from
transcriptomics data. Models are needed that efficiently deal with the expression heterogeneity. The proposed method can
be a standalone tool due to its capacity of adaptively capturing the sample heterogeneity and the simplicity in use.

Software availability: The source code of aGRP can be downloaded from https://github.com/hqwang126/aGRP.
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Background
Cancer is generally thought of to be driven by a series of
genetic mutations of gene markers induced by selection
pressures of carcinogenesis inside or outside cells [1, 2].
Such biomarkers, including onco- and tumor suppressor
genes, often over-express or under-express in cancer
cells as differentially expressed genes (DEGs), and are as-
sociated with uncontrollable proliferation or immorality
of cancer cells [3]. With help of high throughput
technology, one can screen out cancer biomarkers from

transcriptomics data as DEGs between normal and
cancer cells. However, transcriptomics data are typical of
small sample, very noisy and inherently highly heteroge-
neous, rendering differential expression elusive. The he-
terogeneity of transcriptomics data remains a challenge
for identifying cancer biomarkers [4, 5].
Over past decades, a large number of computational

methods or tools have been developed for transcripto-
mics data analysis [6, 7]. Earliest is fold-change (FC)
criterion, which, though simple and intuitive, ignores the
heterogeneity and often outputs statistically and
biologically unexplained results. Many sophisticated
statistical tests have been developed for efficient identifi-
cations of DEGs, e.g. t-statistic and its various variants
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[8], Rankprod [9], cuffdiff [10], DESeq [11], DEGSeq
[12] and edgeR [13]. Generally, these methods are cate-
gorized into two groups: parametric or non-parametric.
The former often use a variant of t-statistic, e.g. SAM
[14] and Limma [8], or negative binomial distribution,
e.g., cuffdiff and DESeq, to model the differential expres-
sion of a gene. However, these methods made distribu-
tion assumptions that are often violated due to the
complexity and heterogeneity of data in practice, and
when applied to real data, they tend to produce similar
overall results. Compared with the parametric methods,
non-parametric methods generally do not make assump-
tions about data distribution but measure the difference
of expression using a comparison-based quantity, e.g.,
ranks. The use of ranks relieves the harm from the
expression heterogeneity to some extent. Among the
non-parametric methods, commonly used is Rankprod
proposed by Breitling et al. [9], which works well in
many cases [15]. However, the performance of Rankprod
depends on the proportion of differentially expressed
genes and those in different directions, and it is
computation-intensive due to the large numbers of sam-
ple comparisons involved, even computationally prohi-
bited when sample size is very large. Recently, Nabavi et
al. [16] introduced the Earth’s mover distance (EMD), a
measure of distances commonly used in image process-
ing, and developed a differential expression statistic
named EMDomics. EMDomics relies on comparing the
overall difference of the normalized distributions be-
tween two classes. EMDomics works well with data of
moderate or larger sample size but can not tell about
the direction or pattern of differential expression for a
DEG. In summary, most of existing methods seldom
consider or ignore the heterogeneity inherent in
transcriptomic data and thus miss subtle but consistent
expression changes [17, 18].
Although the difference in the average of expression

between two sample classes are often employed in many
transcriptomics analyses, such difference is not the only
way that a gene can be expressed differentially [18]. Bio-
logically, there exist a number of regulators or mediators
in cells, e.g., transcriptional factors or miRNA, which,
though work independently, regulate a target gene in a
collective way and accordingly shape a complex and hetero-
geneous expression pattern across inter- or intra-classes for
the target gene. Such regulatory mechanisms may account
for the high biological variability where, for example, sam-
ples in one condition show a bimodal pattern of expression
versus the other condition which show a unimodal pattern
of expression across samples [16].
Relative to continuous gene expression space, gene

regulation space is discrete and can simply consist of
three discrete statues, i.e., up-regulated, down-regulated
or non-regulated, and thus provides an alternative

reduced representation for gene activity [19]. Generally,
the heterogeneity of transcriptomics data comes from
biological variability and non-specific technical noise,
which can corrupt and contaminate differential expres-
sion signals of interest [20]. We here aim to address the
problem of heterogeneity from a regulatory perspective
by introducing regulation events, e.g., up-regulation and
down-regulation. The frequency of the regulation events
occurring in samples not only reflects how genes are dif-
ferentially expressed between two conditions but also
contains information on how noise or contamination
corrupts the data. Based on an unbiased estimator of the
likelihoods of the regulation events, we developed a new
differential expression statistic (aGRP), which can adap-
tively capture the heterogeneity of expression and makes
it possible to flexibly detect cancer biomarkers with
subtle but consistent changes. Because of no parameter
pre-adjusted, the proposed method is also user-friendly
and simple to use in practice. Experimental results on
simulated data and real-world gene expression data
demonstrated the superior performance of the proposed
method in identifying cancer biomarkers over previous
methods.

Methods
For a given gene g, two regulation events can be defined
between tumor and normal tissues: up-regulation,
denoted by U, and down-regulation, denoted by D. If
up-regulation U happens, it means that the gene has
higher expression values in tumor than in normal tis-
sues, while if down-regulation D happens, it means that
the gene has lower expression values in tumor than in
normal tissues. Let P(U) and P(D) represent the prob-
abilities that events U and D occur between tumor and
normal tissues, respectively. Considering the mutual
exclusiveness between U and D, we formulate a
regulation-based statistic, gene regulation probability
(GRP), as the probability difference between the two
events, namely

T ¼ P Uð Þ−P Dð Þ ð1Þ

The statistic T∈[− 1,1] reflects how likely the gene is
differently regulated between the two conditions: The
larger the absolute value of T the higher the likelihood
of differential expression, and positive Ts mean that an
up-regulation event possibly occur in cancer while nega-
tive Ts mean that a down-regulation event possibly
occur in cancer. Biologically, genes with a positive T
would be onco-gene-like while those with a negative T
would be tumor suppressor-like. Note that T reflects an
absolute quantity of regulation probability and can be
completely rewritten as T = (P(U)-P(N))-(P(D)-P(N)) if
considering the probability of non-significant regulation
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event (P(N)). We can estimate the two probabilities,
P(U) and P(D), in a regulatory space in what follows.

A simple estimator of T in a tri-state regulation space
For simplicity, consider a regulation space consisting of
three statuses, i.e., up-regulated (1), down-regulated
(− 1), and non-regulated (0). Assume n tumor sam-
ples and m normal samples. Let a1i denote the ex-
pression level of gene g in the ith tumor, i = 1, 2, …,
n, and a2j the expression level in the jth normal
sample, the expression profile of gene g can be
denoted as y = [a11, a12, …, a1n, a21, a22, …, a2m].
We map the expression profile y into a tri-state
regulation space as follows:
For the ith tumor sample with expression level a1i, the

regulation status can be calculated as

r1i ¼
1 li≥τ
−1 1−li > τ
0 others

8<
: ð2Þ

where li ¼
P
k¼1

m

Iða1i≥a2kÞ=m represents the proportion

of normal samples that have an expression value not
lower than a1i in the total m normal samples, I(·) is an
indicator whose value is 1 if the condition is true and 0
else, and the parameter τ, 0.5 ≤ τ ≤ 1, can be referred to
as regulation confidence cutoff. Different values of τ can
be preset to capture the varying heterogeneity of gene
expression in practice.
Similarly, for the ith normal sample with expression

level a2i, the regulation status can be calculated as.

r2i ¼
1 ki≥τ
−1 1−ki > τ
0 others

8<
: ð3Þ

where ki ¼
P
k¼1

n

Iða2i≤a1kÞ=n represents the proportion of

tumor samples that have an expression value not lower
than a2i in the total n tumor samples. As a result, a
regulation profile of gene g across all the samples can be
represented as

R ¼ r11; r12;…; r1n; r21; r22;…; r2m½ � ð4Þ
Based on the resulting regulation profile in Eq.(4),

one can directly estimate the regulation probabilities,
P(U) and P(D), using the total probability theorem.
Take P(U) as example. Let Y1 and Y2 represent the
sample spaces of tumor and normal classes respec-
tively, we have

P Uð Þ ¼ P Y 1ð ÞP U jY 1ð Þ þ P Y 2ð ÞP U jY 2ð Þ ð5Þ
where P(Y1) and P(Y2) are the prior probabilities of
tumor and normal classes respectively, and the two

conditional probabilities, P(U|Y1) and P(U|Y2), can be
estimated based on the regulation profile in Eq.(4) as

P U jY 1ð Þ ¼ 1
n

Xn
i¼1

I r1i ¼¼ 1ð Þ

P U jY 2ð Þ ¼ 1
m

Xm
i¼1

I r2i ¼¼ 1ð Þ

8>>><
>>>: ð6Þ

Then, we have

P Uð Þ ¼ su
mþ n

ð7Þ

where su ¼P
i¼1

n

Iðr1i ¼¼ 1Þ þPm
i¼1 Iðr2i ¼¼ −1Þ. Similarly,

we have

P Dð Þ ¼ sd
mþ n

ð8Þ

where sd ¼P
i¼1

n

Iðr1i ¼¼ −1Þ þPm
i¼1 Iðr2i ¼¼ 1Þ . As a

result, a simple estimator of the regulation-based statistic
T in the tri-state regulation space can be formulated as

T ¼ su−sd
nþm

ð9Þ

which can be referred to as GRP model. It can be no-
ticed that the summation of P(U) and P(D), denoted by
S, depends on the hard regulation confidence cutoff τ,
i.e., S = 1 at τ = 0.5 but S < 1 at 0.5 < τ ≤ 1, and drops as τ
increases.

An unbiased estimator of T in regulation probability
space
The simple GRP estimator in Eq.(9) uses a hard cutoff
parameter to fit varying heterogeneities of gene expres-
sion in practice. However, no guidelines are immediately
available for choosing the parameter in practice due to
little or no knowledge on the heterogeneity of a given
data set. To overcome the problem, we consider estimat-
ing T in a regulation probability space as follows. For
calculating P(U), by removing the hard cutoff, we rewrite
the conditional probabilities in Eq.(6) as

P U jY 1ð Þ ¼ 1
n

Xn
i¼1

li

P U jY 2ð Þ ¼ 1
m

Xm
j¼1

k j

8>>><
>>>:

ð10Þ

Compared with Eq.(6), Eq.(10) skips the empirical
determination of regulation status in a sample and
makes the conditional probabilities independent on an
ad hoc hard cutoff. Essentially, this implies that regu-
lation confidence cutoff is forcedly set to zero and
that P(N) ≡ 0. As a result, an unbiased estimator of
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the occurring probability of the up-regulation event
can be obtained, i.e.,

P Uð Þ ¼ 1
nþm

Xn
i¼1

li þ
Xm
j¼1

k j

 !
ð11Þ

and similarly, an unbiased estimator for the occurring
probability of the down-regulation event is calculated as

P Dð Þ ¼ 1
nþm

Xn
i¼1

1−lið Þ þ
Xm
j¼1

1−k j
� � !

ð12Þ

which is 1 minus P(U) as expected. Finally, according to
Eq.(1), an unbiased estimator of T can be obtained:

T ¼ 2
nþm

Xn
i¼1

li þ
Xm
j¼1

k j

 !
−1 ð13Þ

with P(U) + P(D) ≡ 1. The statistic in Eq.(13) can be re-
ferred to as an adaptive GRP model (aGRP), which ex-
plores more details on regulation information and can
capture the intra-class or inter-class heterogeneity of ex-
pression in an adaptive way.

Asymptotical significance analysis of aGRP
For simplicity, we consider the case of normal distribu-
tion data to provide an asymptotical significance analysis
for the statistic aGRP. Supposing that the two groups of
samples come from two normal distributions, i.e., Y 1

� Nðμ1; σ2
1Þ and Y 2 � Nðμ2; σ2

2Þ, respectively, the follow
probability distribution holds:

P Y 1≥Y 2ð Þ ¼ φ
μ1−μ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2
1 þ σ22

p
 !

ð14Þ

where φðxÞ ¼ R x−∞ 1ffiffiffiffi
2π

p e−
t2
2 dt. Accordingly, the two regula-

tion probabilities, P(U) and P(D), and the aGRP statistic
all follow a normal distribution (see Additional file 1 for
the detailed proof ). Let q ¼ φð μ1−μ2ffiffiffiffiffiffiffiffiffiffi

σ21þσ22
p Þ, the unbiased esti-

mator of aGRP in Eq.(13) follows a normal distribution,
i.e.,

N 2q−1;
2 n2 þm2ð Þq 1−qð Þ

nm nþmð Þ2
 !

ð15Þ

Under the null hypothesis H0:μ1 = μ2, aGRP obeys the
following normal distribution:

N 0;
n2 þm2ð Þ

2nm nþmð Þ2
 !

ð16Þ

which can be used to asymptotically estimate the
significance for an observed aGRP in practice.

Results
Simple simulation data
We first evaluated the proposed method on simple
simulation data. The simulation data contain two groups
of genes:Group I consists of G = 1000 non-differentially
expressed genes between two classes of samples while
group II consists of G = 1000 differentially expressed
genes. For group I, the expression values of genes in all
samples were randomly sampled from standard normal
distribution, while for group II, the expression values of
genes in the two classes follow two normal distributions
with different means (zero or 0.15) and the same deviation
(0.1). Considering the influence of sample size, we varied
the sample size of each class n = 6, 10, 20, 50, and in each
scenario, twenty data sets were randomly generated and
used for avoiding randomness on algorithm evaluation.
We compared the simple GRP and aGRP models on the

simulation data. To investigate the property of P(U) and
P(D), we plotted P(U) against P(D) for each gene on the
simulation data. Results (Additional file 1: Figure S1) show
that the GRP model had a complex joint distribution of
P(U) and P(D): P(U) + P(D) =1 at τ = 0.5 but P(U) + P(D) <
1 at 1 ≥ τ > 0.5, and drops as τ increases, and in contrast
aGRP favored a line P(U) + P(D) =1 as expected, suggesting
the more favorable performance of aGRP. To examine the
asymptotical significance analysis procedure of aGRP, we
then compared the resulting p-values with those empirically
estimated by permutation tests with randomly shuffled
sample labels. Note that we considered B = 10, 50, 100,
1000 permutations of sample labels in the permutation
tests respectively to gradually approximate the null distribu-
tion. It was revealed that the permutated p-values become
closer to the asymptotic estimator as B increases (See Add-
itional file 1: Figure S2), suggesting the justification of the
derived significance analysis procedure.
We then investigated the type-I errors and power of the

aGRP and GRP models based on the two groups of genes, re-
spectively. Figure 1a barplots the average type-I errors at an
ad hoc p-value cutoff of 0.05 by aGRP and GRP over 20 ran-
dom data sets in each scenario of sample size. From a statis-
tical perspective, the type-I error at an ad hoc p-value cutoff
of 0.05 is expected to be 0.05. From this figure, it can be seen
that aGRP had type-I errors closer to 0.05 than those by any
of the GRP models in all the data scenarios. Figure 1b com-
pared the powers of aGRP and GRP in identifying the G=
1000 differentially expressed genes at an ad hoc p-value cutoff
of 0.05, showing that aGRP is more powerful than the GRP
models, especially when sample size is small (n= 6 and 10).

Simulated gene expression data
To evaluate the performance of aGRP on complex data,
we next simulated gene expression data by revising the
procedure in the reference [21]. The simulation data
mimic real gene expression by forcedly adding hidden
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dependence structures, i.e., correlation background. We
assumed totally G = 10,000 simulation genes and divided
them into 6000 non-differentially expressed genes be-
tween “tumor” and “normal tissue” and 4000 differen-
tially expressed genes, of which one half up-regulated in
tumor and the other half down-regulated. Let n be the
sample size of each class, we generated a correlation
background X [G × 2n] as follows: 1) randomly forming
gene clumps of size m∈{1, 2, 3,⋯, 100} and clump-wise
correlation ρ from U(0.5, 1). 2) generating noise vectors
e.j of dimension m × 1 from N(0m,(1-ρ)Im + ρ1m1’m) for
sample j, j = 1,2, …,2n, and obtaining the background
values of the m genes in the clump x.j=μ + diag(ω)e.j,
where μ and ω are an m × 1 vector of elements μg� 100
0χ25 and of elements ωg = eβ0/2μg

β1/2 respectively. The
correlation background increases the variability of data
and makes the expression patterns heterogeneous. In the
experiment, we set the parameters β0 = − 5, β1 = 2, and
rendered the true expression ratios of DEGs to vary

among 1þ 2−1=2eβ0=2δg � Uð1:29; 1:58Þ ,δg~U(1,2). To
investigate the effect of sample size, we considered the

four sample sizes n = 6, 10, 20 and 50, and as a result,
four simulation data scenarios were obtained. In each
scenario, 20 random data sets were generated and their
average results were used for algorithm evaluation to
overcome randomness.
We calculated the sensitivities, specificities, areas

under the ROC curve (AUCs) and accuracies of aGRP at
an ad hoc p-value cutoff of 0.05 in different scenarios of
the simulated gene expression data. For comparison, we
also applied previous methods, GRP models, Limma [8],
SAM [14] and another popular non-parametric method,
Rankprod [22], to analyze the simulation data. The
previous methods, Limma, SAM and Rankprod, were
implemented using the R packages Limma, siggenes,
RankProd from Bioconductor, respectively. Note that for
Limma, the proportional parameter was set as default.
Table 1 lists the average performances of aGRP and the
previous methods over 20 random data sets in each
simulation scenario. From this table, we can clearly see
that aGRP achieved higher accuracies than all the previ-
ous methods and comparable sensitivities and AUCs
with Limma in almost all the simulation scenarios,

Fig. 1 Average type I errors (a) and power (b) of aGRP and GRP models in different scenarios of sample size at an ad hoc p-value cutoff of 0.05
on Simple simulation data
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showing the best overall performances of aGRP. Espe-
cially, aGRP is more advantageous for data scenarios of
small (n = 6) or large (n = 50) sample size, and the higher
sensitivities suggest the superior power of detecting sub-
tle but consistent expression changes. For the GRP
model, different settings of the regulation confidence
cutoff led to similar results lying between those by aGRP
and another non-parameter method, RankProd, as
expected. Taken together, these results demonstrate the
ability of aGRP in dealing with complex expression
patterns for cancer biomarker identification.

Application to three real microarray data sets of lung
cancer
Lung cancer is one of the most malignant tumors world-
wide. We then applied the proposed method to identify
gene signatures for lung adenocarcinoma (LUAD) based
on three real-world lung cancer microarray datasets col-
lected from GEO (http://www.ncbi.nlm.nih.gov/geo/):
Selamat’s data (GSE32863), Landi’s data (GSE10072) and
Su’s data (GSE7670). When generated, Selamat’s data
used the HG-U133A Affymetrix chips for hybridization
with 25,441 probes, Landi’s data the Illumina Human
WG-6 v3.0 Expression BeadChips with 13,267 probes
and Su’s data the Affymetrix Human Genome U133A
array with 13,212 probes. All samples in the three data-
sets were divided into two classes, LUAD and normal
tissue of lung (NTL). For the Selamat’s data, there are
totally 117 samples, 58 of which are LUAD and 59 NTL
samples; for the Landi’s data, there are totally 107 sam-
ples, 58 of which are LUAD and 49 are NTL samples;
for the Su’s data, there are totally 54 paired LUAD/NTL
samples. To preprocess the three datasets, we mapped
probes into Entrez IDs and averaged the intensities of
multiple probes matching a same Entrez ID to be the ex-
pression values of the gene, and adopted the coefficient
of variation (CV) criterion with a CV cutoff of 0.05 to
remove non-specific or noise genes.
We separately analyzed the three lung cancer data sets

for identifying LUAD biomarkers in the experiment. To
control false positive rates, the resulting p-values for
each gene were corrected using the Benjamini-Hochberg
(BH) procedure [21]. The previous methods, GRP, Rank-
prod [9], Limma [8] and SAM [14], were also applied to
re-analyze these data sets for comparison. Figure 2a
shows the numbers of DEGs called by these methods on
each data set and the number of common DEGs across
the three data sets at an ad hoc BH-adjusted p-value cut-
off of 0.01. From this figure, we can clearly see that
aGRP called more DEGs than those by the previous
methods on almost all the three data sets and especially,
most common DEGs across these data sets. This is con-
sistent with the higher sensitivity on the simulation gene
expression data (Table 1). For the GRP model, τ = 0.7 led
to more DEGs than those of τ = 0.5 and 0.9 for two data
sets, Landi’s and Su’s, while τ = 0.9 led to more DEGs
than those of τ = 0.5 and 0.7 for Selamat’s data, implying
the necessity of choosing proper τs for different data
applications for the GRP model. In contrast, aGRP
adaptively captured the heterogeneity of data sets to
automatically reach the optimal performance.
We further investigated the DEGs more called by

aGRP than the previous methods, Limma, SAM and
RankProd. Figure 3a shows the histograms of fold
changes (FCs) of the DEGs for each of the three
methods on the lung cancer data sets. For comparison,

Table 1 Performance (mean ± std.%) comparison among
different methods on the simulated gene expression data

Sensitivity Specificity AUC ACC

n = 6

Rankprod 33.24 ± 1.35 89.49 ± 0.91 70.11 ± 2.24 67.79 ± 0.94

Limma 39.73 ± 3.07 95.01 ± 1.99 78.54 ± 3.18 72.9 ± 2.59

SAM 32.95 ± 0.07 82.36 ± 6.68 70.02 ± 5.14 65.4 ± 4

GRP0.5 29.92 ± 2.13 96.85 ± 1.07 78.48 ± 3.04 69.08 ± 1.61

GRP0.7 40.97 ± 0.05 94.06 ± 3.47 78.61 ± 2.67 71.73 ± 3.07

GRP0.9 42.99 ± 0.02 92.86 ± 1.03 77.98 ± 3.35 70.11 ± 3.62

aGRP 43.45 ± 4.3 93.16 ± 0.85 80.08 ± 2.98 73.63 ± 2.51

n = 10

Rankprod 56.96 ± 1.34 85.48 ± 0.31 73.22 ± 0.85 73.27 ± 0.57

Limma 57.04 ± 3.03 95.49 ± 1.28 88.32 ± 2.92 80.17 ± 1.77

SAM 51.08 ± 3.05 77.9 ± 5.75 70.73 ± 4.56 68.73 ± 3.45

GRP0.5 47.05 ± 3.59 95.34 ± 1.65 85.42 ± 2.87 76.7 ± 0.99

GRP0.7 51.35 ± 3.58 95.16 ± 1.68 85.85 ± 2.98 77.89 ± 1.21

GRP0.9 51.01 ± 4.09 96.35 ± 1.18 85.87 ± 1.66 77.81 ± 1.71

aGRP 56.47 ± 3.4 96.16 ± 1.06 87.36 ± 2.67 79.7 ± 1.64

n = 20

Rankprod 56.51 ± 1.29 85.4 ± 0.31 78.03 ± 0.92 73.84 ± 0.54

Limma 86.84 ± 1.01 95.30 ± 1.61 96.02 ± 0.43 91.06 ± 0.37

SAM 85.37 ± 0.1 92.45 ± 5.56 90.12 ± 3.73 86.46 ± 3.31

GRP0.5 80.5 ± 0.99 95.92 ± 0.92 94.00 ± 1.03 89.65 ± 0.87

GRP0.7 80.81 ± 1.58 96.28 ± 0.73 95.74 ± 0.85 89.97 ± 0.98

GRP0.9 80.69 ± 1.88 96.21 ± 1.02 94.43 ± 1.02 90.13 ± 0.85

aGRP 86.4 ± 1.7 95.70 ± 0.57 95.85 ± 0.5 91.75 ± 0.94

n = 50

Rankprod 69.93 ± 0.69 80.07 ± 1.08 83.43 ± 0.92 76.08 ± 0.58

Limma 98.94 ± 3.9 95.95 ± 0.73 99.76 ± 1.01 96.57 ± 0.44

SAM 92.97 ± 0 89.36 ± 2.85 88.35 ± 1.51 90.82 ± 1.71

GRP0.5 97.16 ± 0.90 95.82 ± 1.01 99.51 ± 0.27 96.37 ± 0.25

GRP0.7 98.39 ± 0.47 95.43 ± 0.73 99.73 ± 0.16 96.56 ± 0.34

GRP0.9 97.06 ± 1.09 95.36 ± 1.04 99.54 ± 0.15 96.08 ± 0.92

aGRP 98.96 ± 3.4 97.3 ± 0.85 99.85 ± 0.08 98.78 ± 0.51

Best values are in bold
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the aGRP statistics of these DEGs calculated on the
three data sets were shown in Fig. 3b. It can be clearly
seen that while the FCs are small with a distribution
around one, the corresponding aGRP statistics are ge-
nerally large, e.g., > 0.3, reflecting the high likelihoods of
being regulated between tumor and normal tissues. We
then looked into the biology of these DEGs by literature
survey and found that many of them are associated with
cancer. For example, gene PPP1R1A with a small FC of
0.97 but a large aGRP of 0.39 on the Selamat’s data is a
tumor promoter, whose depletion can significantly
suppress oncogenic transformation and cell migration.
Differential expression of PPP1R1A was often observed

in non-small cell lung cancers and colorectal cancers
[23]. Luo et al.. [24] revealed that PPP1R1A-mediated
tumorigenesis and metastasis relies on PKA phosphorylation
-activating PPP1R1A at Thr35 in ewing’s sarcoma. Another
gene CP110 with FC= 0.95 and aGRP=− 0.32 on Landi’s
data was previously reported to be involved in lung cancers
[25]. The inhibition of CP110 by MiR-129-3p are associated
with docetaxel resistance of breast cancer cells [26] and
centrosome number in metastatic prostate cancer cells [27].
Gene LRRC42 with FC= 1.45 and aGRP= 0.50 on Su’s data
was extensively observed to be significantly up-regulated in
the majority of lung cancers [28]. Taken together, these re-
sults demonstrate the special power of aGRP in capturing

A

B

Fig. 2 Comparison of the number of DEGs called among aGRP, GRP models and RankProd on the three LUAD data sets (a) and one HCC
RNA-Seq data set (b). GRP0.5, GRP0.7 and GRP0.9 mean GRP models with τ = 05,0.7,0.9, respectively
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subtle but consistent changes of gene expression for cancer
biomarker identification.
As described above, aGRP is featured with the ability

of discerning DEGs regulated in different directions by
the sign of the statistic aGRP. Totally, aGRP called 2023
common LUAD markers across the three data sets at an
ad hoc BH-adjusted p-value cutoff of 0.01. We then
divided the common DEGs into two categories: 1104
(Additional file 2: Table S1) with negative aGRP and 869
(Additional file 3: Table S2) with positive aGRP. Accord-
ing to the definition of aGRP, the former are likely
down-regulated in LUAD relative to normal lung tissues
as potential tumor suppressors. Take as an example
TCF21 whose aGRPs are − 0.99, − 0.90 and − 0.99 on
Landi’s, Selamat’s and Su’s data set respectively. Biologic-
ally, the gene encodes a transcription factor of the basic
helix-loop-helix family, and has been previously reported
to be a tumor suppressor in many human malignancies
including lung cancer [29]. Recently, Wang et al.... [30]
have reported that the under-representation of TCF21 is
likely derived from its hyper-methylation in LUAD. The
coordinated pattern of hyper-methylation and under-expres-
sion has been observed to be tumor-specific and very fre-
quent in all types of NSCLCs, even in early-stage disease
[31]. Smith et al. [29] used restriction landmark genomic
scanning to check the DNA sequence of TCF21, consolida-
ting the epigenetic inactivation in lung and head and neck
cancers. Shivapurkar et al. [32] employed DNA sequencing
technique to zoom in the sequence of TCF21, revealing a
short CpG-rich segment (eight specific CpG sites in the CpG
island within exon 1) that is predominantly methylated in

lung cancer cell lines but unmethylated in normal epithelial
cells of lung. We reason that the short CpG-rich segment
narrowed down may be responsible for the abnormal
down-regulation of TCF21 in LUAD.
On the other hand, the 869 markers with positive

aGRP may be potential onco-genes for LUAD. Take as
an example COL11A1 (aGRP = 0.92, 0.75 and 0.99 on
Landi’s, Selamat’s and Su’s data set respectively). Bio-
logically, the gene is a minor fibrillar collagen involved
in proliferation and migration of cells and plays roles in
the tumorigenesis of human malignancies. Recently,
many studies observed that COL11A1 is frequently
abnormally highly expressed both in NSCLC and in re-
current NSCLC tissues and suggested it to be a clinical
biomarker for diagnosing NSCLC. Using NSCLC cell
lines, Shen et al [33] witnessed the functional promotion
of the gene COL11A1 in cell proliferation, migration
and invasion of cancer cells, where the outcome of ab-
normal high expression of COL11A1 can be interceded
by Smad signaling [33]. In addition, COL11A1 was also
observed to over-express in ovarian and pancreatic cancer
and to be an indicator of poor clinical outcome of cancer
treatment [34]. Another markers worthy of noticing is
HMGA1 with aGRP = 0.93, 0.80 and 0.98 on Landi’s,
Selamat’s and Su’s data set respectively. Biologically, the
protein encoded by the gene is chromatin-associated and
plays roles in the regulation of gene transcription.
HMGA1 was previously reported to frequently over-ex-
press in NSCLC tissues and to be associated with the
metastatic progression of cancer cells. Using immunohis-
tochemistry, Zhang et al [35] experimentally observed that

A B

Fig. 3 Distributions of FC (a) and aGRP statistics (b) of DEGs more called by aGRP than Limma, SAM or Rankprod on the three Lung cancer
data sets
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high levels of HMGA1 protein are positively correlated
with the status of clinical stage and differentiation degree
in NSCLC, and suggested that HMGA1 may act as a con-
victive biomarker for the prognostic prediction of NSCLC.
To further assess the lung cancer markers identified by

aGRP, pathway analysis was done based on functional anno-
tation clustering analysis using DAVID, which is available at
http://david.abcc.ncifcrf.gov/home.jsp. As a result, DAVID re-
ported 38 KEGG pathways (Additional file 4: Table S3) that
are significantly enriched in the list of total 2023 DEGs at an
ad hoc q-value cutoff of 0.1. Literature survey showed that
many of these KEGG pathways are related to cancer, e.g. cell
cycle (Rank 1, p-value = 1.9 × 10− 5), extracellular matrix
(ECM)-receptor interaction (Rank 2, p-value = 1.6 × 10− 4),
and Pathways in cancer (Rank 11, p-value = 0.006). Of them,
cell cycle comprises of a series of events that take
place in a cell leading to the division and duplication
of DNA. The pathway, Complement and coagulation
cascades (p-value = 5.1 × 10− 4), has been recently
reported to dysfunction in lung cancer [36]. The ana-
lysis also reported another two lung cancer-related
pathways, PI3K-Akt signaling pathway (p-value =
0.009) and small cell lung cancer (p-value = 0.017).
Biologically, the former regulates many fundamental
cellular functions including proliferation and growth.
There exist many types of cellular stimuli or toxic in-
sults which can activate the signaling pathway. When
activated, the pathway first employs PI3K to catalyze
the production of PIP3 and then PIP3 as a second
messenger to activate Akt. An active Akt can phos-
phorylate substrates that are involved in many vital
cellular processes such as apoptosis, cell cycle, and
metabolism, which play important roles in tumorigen-
esis of cells. Accumulated evidences indicate that the
PI3K-AKT signaling pathway plays an essential role in
lung cancer development. For example, Tang et al.
[37] experimentally observed that Phosphorylated Akt
overexpression and loss of PTEN expression in
non-small cell lung cancer and concluded that the ac-
tivity of the pathway confers poor prognosis. Recently,
many clinical strategies have been suggested to target
PI3K-AKT signaling pathway for clinical treatment of
lung cancer [38], including the novel anticancer re-
agent sulforaphene [39]. In addition, Wang et al. [40]
reported the role of PI3K/AKT signaling pathway in
the regulation of non-small cell lung cancer radiosen-
sitivity after hypo-fractionated radiation therapy.

Comparison of consistency between aGRP and GRP
Both aGRP and GRP are a regulation-based statistic for
cancer biomarker identification, whose absolute values
and signs indicate the strength and direction of regula-
tion respectively. In the LUAD application, each marker
were identified with three values of aGRP (or GRP)

derived from the three data sets. Consider the same
LUAD topic of the three data sets, the consistency or
similarity among the results can be used to evaluate the
reasonability and reproducibility of these regulation-
based statistics. For this purpose, we divided the range
[0.5,1] into five intervals, [η, η + 0.1], η = 0.5,0.6,0.7,0.8,0.9,
and determined the genes whose absolute aGRP/GRP fall
within each interval. Figure 4a compares the proportions
of common genes in the union across the three data sets
in each interval between aGRP and GRPs with τ = 0.5, 0.7,
0.9. From this figure, we can clearly see that both aGRP
and GRP had a tendency of the proportion of common
genes gradually increasing with η, showing the reasonabi-
lity of regulation-based statistics. Compared with GRP,
aGRP led to the higher proportions, irrespective of inter-
val used, suggesting the better consistency of results by
aGRP. We further compared the proportions of genes
with a same regulation direction in the common genes
across the three data sets between aGRP and GRPs in
each interval, as shown in Fig. 4b. From Fig. 4b, it can be
clearly seen that aGRP achieved the proportions larger
than 94.44% (at η = 0.01) on all the intervals, confirming
the consistency of the results by aGRP. Although the GRP
model with τ= 0.9 had all the proportions of one, the
proportions of common genes obtained by it were far
lower than those by aGRP in all the intervals (Fig. 4a).
Taken together, these results demonstrated the robustness
and reliability of aGRP in cancer biomarker identification.
The advantage of aGRP should be related to the ability of
adaptively capturing the heterogeneity of expression
across data sets.

Application to RNA-seq expression data
We also evaluated the proposed method on RNA-seq
expression data. Hepatocellular carcinoma (HCC) is the
third leading cause of cancer-related deaths. We down-
loaded a HCC RNA-seq data set from the GEO data-
base: Yang’s data (GSE77509) [41], which were measured
using Illumina Hiseq 2000. All the samples in the data
set consist of 17,501-gene expression profiles of 40
matched HCC patients and adjacent normal tissues. For
quality control, we preprocessed the dataset by averaging
the raw counts with a same Entrez ID as the expression
levels of the corresponding gene. For comparison, we
also applied three previous count-based method, DEG-
Seq [12], DESeq2 [42] and edgeR [13], besides the GRP
model and Rankprod as above, to analyze the RNA-seq
data in the experiment.
We first examined the similarity between the statistics

of aGRP and DEGSeq on the RNA-seq data. As a result,
the Spearman correlation of the aGRP statistic and log2
fold change from DEGSeq and the Spearman correlation
of p-values derived from aGRP and p-values derived
using DESeq are 0.86 and 0.617, respectively. Both of
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the correlations are not equal to zero at a significance
level of < 2.2e-16 (t-test), respectively. Then, we com-
pared the numbers of DEGs called by aGRP and the pre-
vious methods at an ad hoc BH-adjusted p-value cutoff
of 0.01, as shown in Fig. 2b. From this figure, we can see
that aGRP still called more DEGs than those by previous
methods, GRP (0.9), Rankprod, DEGSeq, DESeq2 and
edgeR, on the RNA-Seq data, consistent with the results
on the simulation gene expression and the three lung
cancer microarray data, confirming the especial power
of aGRP in identifying subtle but consistent expression
changes. Among the 7234 DEGs identified by aGRP,
there are totally 3548 (Additional file 5: Table S4) and
3686 (Additional file 6: Table S5) with positive aGRP
statistics and negative aGRP statistics, respectively.
Literature survey shows that many of these genes are as-
sociated with HCC or other types of cancer. Among
the 3548 positive aGRP DEGs, for example, MMS19
(aGRP = 0.69) is a DNA repair gene playing important
role in Nucleotide Excision Repair (NER) pathway,
whose single nucleotide polymorphism, rs3740526 has
been reported to significantly distinguish adenocarcinoma
with squamous cell carcinoma and whose expression
levels are clinically related with ACT benefit of resected
non-small cell lung cancer patients [43, 44]. TRIB1
(aGRP = 0.66) has been previously evidenced to be
associated with tumorigeneses of various types of
cancer, e.g., leukemia and colorectal cancer [45, 46].
Especially, Gendelman et al... [47] computationally
inferred that TRIB1 is potentially a regulator of
cell-cycle progression and survival in cancer cells and
experimentally observed that the expression of TRIB1
is predictive of clinical outcome of breast cancer.
DDX59 (aGRP = 0.645) has been extensively observed
to be highly expressed in lung adenocarcinoma and
promote DNA replication in lung cancer development

[48, 49]. In addition, among the 3686 negative aGRP
DEGs, hormone receptor PGRMC2 (aGRP = − 0.635)
was previously reported to be a tumor suppressor and
an inhibitor of migration of cancer cell [50]. Recently,
Causey et al [51] also observed that the expression
level of PGRMC2 is informative in clinically staging
breast cancer and is potentially useful to distinguish
low stage tumors from higher stages.

Discussion
Currently, the expression heterogeneity remains challen-
ging in transcriptomics data analysis. Ignoring the hetero-
geneity often leads to inconsistent and non-reproducible
identification of cancer biomarkers across studies. To our
knowledge, there do not exist computational models that
are dedicated to address the problem of expression
heterogeneity. Compared with previous methods, aGRP
operates in a regulation space but not in the expression
space. This makes it possible to interrogate and adaptively
capture the inter- or intra-class heterogeneity of expres-
sion for biologically meaningful identification of cancer
biomarkers, as demonstrated in experiments on two types
of simulation data (Fig. 1 and Table 1). The advantage
endows aGRP with the power of detecting more subtle
but consistent DEGs across the three real-world lung can-
cer data sets (Figs. 2 and 3). We hope that this work can
encourage researchers to take advantage of prior know-
ledge on gene regulation in transcriptional data analysis.

Conclusions
In this paper, we have presented a novel computational
method, aGRP, for cancer biomarker identification. It
aims to deal with the problem of expression heteroge-
neity that complicates the identification of cancer bio-
markers. Specifically, two regulation events were defined
between tumor and normal tissues, whose occurring

A B

Fig. 4 Changes of proportions of intersection genes (a) and genes with the same regulation direction (b) by aGRP and GRP across the three
LUAD data sets with η. GRP 0.5, GRP 0.7 and GRP 0.9 are for the GRP model with τ = 05,0.7,0.9, respectively
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probabilities were estimated in an unbiased way, and
were used to transform the expression profiles of sam-
ples to a regulation profile. With the regulation profiles,
a new GRP-based statistic were finally formulated for
characterizing different expression of genes along with
an asymptotic estimator of significance. aGRP automat-
ically interrogates and adaptively captures the heterogen-
eity of gene expression so that subtle but consistent
expression changes can be detected in a flexible and
robust way. aGRP is also simple and easy to use in
practice. Comparison experiments with current state-
of-the-art methods on two simulation data sets and
three real-world lung cancer expression data sets and
one RNA-seq HCC data set demonstrated the effective-
ness and efficiency of aGRP in identifying cancer bio-
markers from transcriptomics data. Future work will be
extending the proposed method to assessment of the
heterogeneity of gene sets and meta-analysis of multiple
transcriptomics data sets for cancer biomarker
identification.
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