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Background: Towards discovering robust cancer biomarkers, it is imperative to unravel the cellular heterogeneity
of patient samples and comprehend the interactions between cancer cells and the various cell types in the tumor
microenvironment. The first generation of ‘partial’ computational deconvolution methods required prior information
either on the cell/tissue type proportions or the cell/tissue type-specific expression signatures and the number of
involved cell/tissue types. The second generation of ‘complete’ approaches allowed estimating both of the cell/
tissue type proportions and cell/tissue type-specific expression profiles directly from the mixed gene expression
data, based on known (or automatically identified) cell/tissue type-specific marker genes.

Results: We present Deblender, a flexible complete deconvolution tool operating in semi—/unsupervised mode
based on the user's access to known marker gene lists and information about cell/tissue composition. In case of no
prior knowledge, global gene expression variability is used in clustering the mixed data to substitute marker sets
with cluster sets. In addition, we integrate a model selection criterion to predict the number of constituent cell/
tissue types. Moreover, we provide a tailored algorithmic scheme to estimate mixture proportions for realistic
experimental cases where the number of involved cell/tissue types exceeds the number of mixed samples. We
assess the performance of Deblender and a set of state-of-the-art existing tools on a comprehensive set of
benchmark and patient cancer mixture expression datasets (including TCGA).

Conclusion: Our results corroborate that Deblender can be a valuable tool to improve understanding of gene
expression datasets with implications for prediction and clinical utilization. Deblender is implemented in MATLAB
and is available from (https://github.com/kondim1983/Deblender/).

Keywords: Gene expression, Cellular heterogeneity, Deconvolution, Matrix factorization, Particle swarm, Quadratic

Background

In the era of Systems Medicine, the comprehension of dis-
ease etiology and pathogenesis has undergone a paradigm
shift with the integration of multiple omics manifestations
playing the leading role [1-3]. The impact is more evident
in cancer research where integromics approaches have
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already shown their potential to provide a more effective
and accurate means for cancer biomarker discovery [4, 5].
A key component in these studies is the transcriptome
data descending from microarrays or RNA sequencing.
However, standard approaches for the analyses of expres-
sion data are highly affected by the cellular heterogeneity
present in tissue samples and the variations in cell type
composition [6, 7]. Tumor bulk tissue samples are still
often analyzed without considering their complexity and
the interactions among the cell types forming the tumor
microenvironment [8]. The microenvironment has been
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suggested to alter under different pathophysiological
states, contributing to the comprehension of diverse
diseases [9]. Thus, in order to detect the true expression
differences related to the different pathophysiological
states rather than alterations in cell/tissue type compos-
ition, it is imperative to deconvolve the recorded mixed
expression measurements into the component expression
profiles of each cell/tissue type.

Although experimental approaches like cell sorting,
laser-capture microdissection and single cell sequencing
can be used to unravel cellular heterogeneity, there is
also a growing interest in in silico deconvolution. The
advances in this field have shown that computational
prediction has its advantages such as low time consump-
tion and the ability to analyze expression responses from
multiple cell types simultaneously, and importantly,
avoiding experimentally perturbing the samples [10].
The majority of computational deconvolution ap-
proaches employ the linearity assumption in which the
gene expression level in a mixture of cell populations/
tissues is modeled as the sum of gene expression of the
constituent cell/tissue types weighted by their propor-
tion in the mixture [6, 11]. Methods for deconvolution
can be classified in two major types [12]: (a) partial de-
convolution methods requiring as input either cell/tissue
type-specific expression profiles or mixture proportions
[13-18]; (b) complete deconvolution methods estimating
both the cell/tissue type reference profiles and the pro-
portions directly from the global mixed gene expression
data. In the second type, the methods can be further di-
vided into semi-supervised and unsupervised. The first
assume that a set of marker genes is given for each cell/
tissue type [9, 19] while the latter require no such infor-
mation. In the latter case, one makes the assumption
that the variation in gene expression levels to a large ex-
tent is explained by the variation in mixture proportions
across samples and marker genes are derived from a set
of genes showing high variability in expression across
the mixed samples [7, 20, 21].

Computational tools can be further classified based on
the type of the gene expression data used as input with
most tools being designed for and tested on microarray
data and fewer for RNA-Seq data [6]. It has been ques-
tioned and analyzed whether methods developed for
microarray-based gene expression data can also be
applied to RNA-seq data. There are studies stating that
there are no confounding factors that make current
methods inappropriate for analysis of RNA-Seq data,
since they have observed a significantly linear associ-
ation between RNA concentrations and sequence
reads [10, 22], compared to the not-so-linear microar-
rays [10, 23]. Other studies like Liebner et al. [7] sug-
gest adaptation and incorporation of statistical models
appropriate for analysis of RNA-seq data. Recently,
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for DeconRNASeq [24] it has been shown that the estab-
lished linear latent model widely used in microarray-based
techniques can also be used for deconvolution of data
from RNA-Seq applied to mixed samples.

Here, we propose Deblender, a novel complete semi
—/unsupervised deconvolution tool for “deblending”
heterogeneous microarray and RNA-Seq data. The tool
covers many usage scenarios with respect to what infor-
mation is known, like available marker gene lists, number
of constituent cell/tissue types in the mixture, and
whether the mixed samples being studied outnumber the
cell/tissue types. One feature distinguishing it from other
published methods is that it utilizes as information source
the global gene expression differences across cell/tissue
types directly from the mixed dataset instead of genes
with the highest variability often regarded as cell
type-specific markers. These differences across cell types
have been observed in recent expression studies [25, 26].
Based on this assumption, we employ clustering as means
for distinguishing cell/tissue type-specific gene groups and
use those (along with their cluster exemplars) to substitute
marker genes. Similar ideas have also been explored by an
unpublished method, ClusDec R package [27]. In this way
we alleviate the need for marker genes known a priori and
for setting arbitrary thresholds for detecting genes show-
ing highly variable expression.

In contrast to most other existing methods, Deblender
requires no information about the number of cell/tissue
types present in the samples under analysis. Similar to
Wang et al. [21], we apply an information theoretic model
selection criterion based on the Minimum Description
Length (MDL) principle. Other information theoretic
model selection criteria, like Bayesian and Akaike Infor-
mation Criterion, and principal component analysis have
also been used to estimate number of cell subpopulations
in the mixture based on copy number aberrations, DNA
methylation or expression data [8, 24, 28]. Furthermore,
Deblender is able to analyze datasets where the number of
cell/tissue types exceeds the number of samples. Only a
few relevant deconvolution methods can be applied to
analyze such datasets [7, 21, 29].

The performance of Deblender has been assessed and
compared to those of a set of partial and complete
state-of-the art deconvolution methods summarized in
Table 1. For this, we used several benchmark and patient
mixture datasets with known mixture proportions or ap-
proximations of those. The results show that Deblender,
when executed in complete unsupervised mode, performs
on par with methods that require additional information
to perform deconvolution. Therefore, we believe that
Deblender can serve successfully at least as a tool for pre-
processing mixed datasets providing an initial approxima-
tion of the cell composition. This can be used to seed
other experimental or in silico reference-based techniques
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that may provide a more accurate deconvolution. The use  or RNA-Seq data (Fig. 1). The appropriate pipeline is de-
of such techniques can thus be broadened to cases where  termined by the availability of marker gene lists, whether

no external information is available. the number of constituent cell/tissue types is assumed to
be known, and whether the mixed samples outnumber

Results the cell/tissue types.

Deblender offers four pipelines (two semi- and two un- To examine the efficiency of Deblender for estimating

supervised) for estimating the mixture proportions and the mixture proportions, we employed several bench-
cell/tissue type-specific profiles from mixed microarray = mark mixture datasets (including both microarray and

Input:mixed
expression data
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Fig. 1 Overview of Deblender. Deblender is a flexible tool operating both on semi- and unsupervised mode based on the availability of marker
gene lists. More problem-specific pipelines are also available depending on the number of samples relative to the number of cell/tissue types (under-
determined refers to the case where the number of samples is lower than the number of involved cell/tissue types, otherwise over-determined) and
on information about the number of participating cell/tissue types

Stage 11

K: number of cell/tissue types
A: proportions
S: cell/tissue type specific profiles
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RNA-Seq data) with well-defined cell subpopulations
(see Additional file 1) comparing the performance of
Deblender with a set of other deconvolution tools. For
use in partial and complete semi-supervised methods,
we derived marker gene lists or gene expression signa-
tures for the cell/tissues in the datasets, either from the
literature [9, 30] or by use of other tools [16, 24]. Also,
two patient cancer expression datasets (one microarray
and one RNA-Seq) were explored and estimates of cell
type proportions obtained using deconvolution ap-
proaches were compared to analogous estimates from
flow cytometry and histology.

For completeness, we compared Deblender not only to
other complete semi-supervised and unsupervised tech-
niques, but also to two robust partial methods, CIBER-
SORT and DeconRNASeq. To assess the accuracy of
each method, we calculated the Root Mean Squared
Error (RMSE) and the Pearson correlation coefficient to
compare the estimated mixture proportions and the
known (or otherwise measured) cell type proportions.
RMSE was calculated both based on the full proportion
matrices as well as on the proportions of each cell/tissue
type separately with the arithmetic mean value reported
(mRMSE).

Estimating mixture proportions in benchmark expression
data
All methods were applied to the set of probe/gene ex-
pression data that fits to their operational mode (details
are provided in Additional file 1). Deblender operates
under two algorithmic schemes applied consecutively in
two stages (stages I and II). Here, we report primarily
the results from stage I (S1) while the result from stages
I and II (S1 & S2) is reported in cases where improved
performance was achieved. First, Deblender in the un-
supervised mode (S1) was tested on all recorded probes/
genes (annotated and un-annotated) and the perform-
ance in terms of correlation with known mixing propor-
tions ranged in [0.78 - 0.96], while on the preprocessed
datasets (i.e., using only annotated probes, one selected
per gene identifier) ranged in [0.72 - 0.89] (Additional
file 1: Tables S1-S2). Second, we report the estimated
proportions based on a ‘default’ filtering setting (retains
53 — 74% of the genes) that performs well across all data-
sets and is likely to work well on most real datasets.
Other settings are described in detail in Additional file 1.
The GSE19830 microarray dataset includes 33 mixed
samples composed of known proportions of pure rat
brain, liver and lung tissue. Partial and complete semi-su-
pervised methods were evaluated both on a set of 237
marker probes and a 171 probe signature matrix. Figure 2
summarizes the results obtained on the 237 marker
probes. In terms of how accurately they estimate mixture
proportions, Deblender in its complete semi-supervised
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mode and NMF-CELLMIX performed similar to each
other and to the partial CIBERSORT algorithm. Notably,
in S1 semi-supervised mode, Deblender applies the decon-
volution method implemented in DSA tool and thus re-
produces the same results therefore both tools are
reported. Similar results were obtained when the set of
171 signature probes was examined (see Additional file 1:
Table S3). When switching to unsupervised mode, de-
noted by *; Deblender* outperformed MMAD* (for other
settings see Additional file 1: Tables S4-S7). This dataset
serves as good example for exploring the estimation of
proportions with varying tissue ratios across samples (a
side-by-side comparison of Deblender* estimates relative
to real proportions is provided in Additional file 1: Table
S8). The performance of Deblender* was high (r=0.89)
also when all probes were utilized (without dataset pre-
processing - see Additional file 1: Table S1). Similar obser-
vations can be drawn for the GSE11058 and GSE19380
benchmark microarray datasets (Additional file 1: Figures
S1-S2, Tables S1-S2, S4-S7, S9-510).

Next, we analyzed an RNA-seq dataset which includes
10 mixed samples composed of human brain, muscle,
lung, liver and heart tissue, in known proportions [24]. A
set of 1520 signature genes was extracted by DeconRNA-
Seq. CIBERSORT and DeconRNASeq were run with the
full signature matrix while the complete semi-supervised
methods were run with the 5-fold differentially expressed
genes (i.e., genes expressed at least 5-fold higher in the re-
spective cell type relative to any of the other cell types).
The results are in agreement with those for the other
datasets (Fig. 3). Complete semi-supervised techniques
like Deblender/DSA and MMAD showed high perform-
ance and in some cases even higher than partial
techniques. When switching to complete unsupervised
mode, Deblender* outperformed MMAD* (see also
Additional file 1: Tables S2, S4, S6, S7). A side-by-side
comparison of Deblender* estimates against real propor-
tions is provided (Additional file 1: Table S11). Moreover,
we checked how common preprocessing steps in
RNA-seq analysis — such as adding a pseudo-count offset
to avoid zero values in downstream analyses — affected the
performance of Deblender* and MMAD*. We checked
two offsets, 0.0001 and 1. MMAD* did not perform well
with the offset of 0.0001 since it affected the identification
of highly variable genes by causing an inflation of the vari-
ance of low abundance genes after log transformation.
When tested with an offset of 1, MMAD* improved and
performed better than Deblender* in certain parameter
settings whereas Deblender* preserved its good perform-
ance as with the offset of 0.0001 (see Additional file 1:
Table S12).

The unsupervised methods were also run with different
parameters, dataset filtering settings and with noise added
(see Additional file 1: Tables S4-S7, S10, S13, S14).
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Fig. 2 GSE19830 dataset with 33 mixed samples including 3 tissues (brain, liver, lung). Evaluation of methods relative to real mixture proportions
based on known markers (partial: CIBERSORT, complete semi-supervised: Deblender, DSA, MMAD, NMF-CELLMIX) or without prior information
(complete unsupervised: Deblender*, MMAD?). Deblender* results are reported with (A) default preprocessing — S1 (B) default preprocessing — S1852.
mRMSE: arithmetic mean of the RMSE calculated for each tissue separately

J

Estimating mixture proportions in under-determined
cases based on benchmark expression data

We examined the under-determined case relevant for
semi-supervised and unsupervised methods where the
number of samples is less than the number of involved
cell/tissue types. We evaluated Deblender and MMAD
on a subset dataset from GSE11058 (i.e., 3 samples con-
taining 4 cell types) and on a subset dataset from the
RNA-Seq dataset (i.e., 4 samples containing 5 tissues).
For the first dataset, we checked the performance based
on known marker genes, while in the latter we checked
the unsupervised mode. For MMAD* we applied default
percentile (see also Additional file 1: Table S6). Deblen-
der outperformed MMAD in both cases (Fig. 4).

Estimating the number of cell/tissue types in benchmark
expression datasets

We evaluated the efficiency of MDL criterion integrated
in Deblender* for estimating the number of cell/tissue
types present in the mixture. For this, we selected the
GSE19830, GSE11058 and RNA-Seq datasets in which
all cell/tissue types are present in all mixed samples. For
all datasets we applied the unsupervised mode S1&S2
and recorded the MDL value with k ranging from 2 to 8

after filtering the 5% of genes with the lowest expression
vector norm and the 5% of genes with the highest ex-
pression vector norm. We also used a cutoff of CV =04,
since we observed that highly variable genes improve
MDL computation. As seen in Fig. 5, for all datasets the
minimum of the MDL curve predicted successfully the
correct number of cell/tissue types.

Estimating mixture proportions in patient cancer
expression data

We evaluated Deblender* and MMAD* on patient can-
cer expression datasets for which only estimates of the
real proportions are available. First, we examined
GSE65135 microarray dataset which contains 14 follicu-
lar lymphoma samples consisting of CD4+ T cells, CD8+
T cells and B cells, with proportions estimated based on
flow cytometry data. As shown in Fig. 6, Deblender* (de-
fault setting — S1) performed better in terms of correl-
ation with the flow cytometry proportions than did
MMAD* (default percentile, see also Additional file 1:
Tables S6 and S7, Figure S3 and Additional file 2). Fur-
ther, the MDL estimation indicated K=2 as the number
of involved cell types with K =3 being close to this min-
imal value (Additional file 1: Figure S4).
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Fig. 3 RNA-Seq dataset with 10 mixed samples including 5 tissues (brain, muscle, lung, liver, heart). Evaluation of methods relative to ground
truth mixture proportions based on a set of signature genes (partial: CIBERSORT, DeconRNASeq), on markers extracted from the signature set
(complete semi-supervised: Deblender, DSA, MMAD, NMF-CELLMIX) or without prior information (complete unsupervised: Deblender*, MMAD¥).
Deblender* result is reported with default preprocessing — S1

We also evaluated the performance of Deblender* and
MMAD* on the TCGA RNA-Seq data of 1093 breast
cancer primary solid tumor samples [31]. We used a
simplified model with three major tissue components for
which histological estimates are available for the main
types of tissue components recognized on the tissue
slides (normal, stromal and tumor). Of note, the MDL
estimation of Deblender showed that the number of in-
volved tissue components ranges between 15 and 26
(Additional file 1: Figure S4) and this observation ac-
cords well with the prediction of 23 cell types in the
TCGA samples by relevant study [8]. Deblender* and
MMAD* were tested both with their ‘default’ settings (as
used for the benchmark datasets), which include in the
analysis many of the lowly expressed genes, but also with
a ‘customized’ setting that discards them. Finally, ~76%
of the complete gene set was retained and for Deblen-
der* no other filtering was applied. We performed path-
way enrichment analysis on the three clusters identified
by Deblender* in the customized setting and checked
the enriched Gene Ontology (GO) categories and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathways.

The enriched terms were matched to each tissue compo-
nent after considering the cluster order configuration
that led to the highest correlation with the known
histology estimates (see Additional file 3). GO categories
reflecting immune response activity were top ranked
amongst the categories enriched in the cluster corre-
sponding to ‘Normal’. GO terms reflecting various meta-
bolic processes were significantly enriched in the cluster
that corresponded to ‘Stromal, as also reflected by the
enriched KEGG pathway terms. GO terms reflecting
metabolism at different levels were also enriched in the
cluster that corresponded to ‘Cancer’. Further, various
gene sets reflecting different cancer associated pathways
and insulin related signaling were enriched in the
‘Cancer’ cluster.

In Fig. 7, we show the results based on the ‘custom-
ized’ setting where Deblender* (S1) performed better
than MMAD* (default percentile) in terms of correlation
with the histological estimates (see also Additional file 1:
Tables S6 and S7 and Additional file 2). Similar were the
results for Deblender* when the ‘default’ setting was
applied (r=0.74). Notably, when looking each tissue
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Fig. 4 Evaluation of Deblender and MMAD (A) on a subset dataset extracted from GSE11058 with 3 samples including 4 cell types (semi-
supervised mode) and (B) a subset dataset extracted from the RNA-Seq with 4 samples including 5 tissues (unsupervised mode)

component independently, no significant correlation was
found between real proportions and MMAD* and Deblen-
der* estimates (Additional file 1: Figure S5), respectively.
The overall better correlation of Deblender* reflects its
ability to better recover for each sample the relative abun-
dance of each tissue component. The Deblender* mean
proportion value of the tumor component was lower
(S1:4=0.48, 0=0.08) than the respective histology-based
estimates (¢ = 0.74, 0 =0.18). When zooming into subsets
of samples with known molecular subtype (Luminal A,
Luminal B, Basal-like, Her2-enriched, Normal breast-like),
Deblender* (S1) showed higher performance for
Basal-like, Her2-enriched and Normal breast-like groups.
Since Deblender* used the full set of expression data
to assign mixture proportions, its results may depend
strongly on the set of samples included in the analysis.
To assess this dependence, we also applied Deblender*
on a bigger dataset including, in addition to the 1093

primary tumor samples, also 7 metastasis and 112 nor-
mal samples. The tissue composition is assumed to be
highly different between primary tumor, metastasis and
normal samples. We observed that only when applying
the customized setting and CV>1 (analyzing ~23% of
the complete gene set), the overall correlation of primary
tumor samples relative to known mixture proportions
decreased (S1: r = 0.54) but the normal samples achieved
higher mean proportion value for the ‘normal’ tissue
component (S1: y#=0.54, 0=0.10) relative to the mean
value of the primary and metastasis tumor samples re-
spectively (S1: 4 =0.19, 0=0.06). Also, the small cohort
of metastasis samples displayed mean values for all com-
ponents similar to those observed in the primary tumor
samples.

We further evaluated the agreement of Deblender* es-
timated proportions relative to the tumor purity esti-
mates (i.e., the proportion of cancer cells in the mixture)

10’ GSE19830 10 GSE11058 1o RNA-Seq
2 3.65 14
K3 * 4
1.98 ‘ 36
1.96 e * . * 2 ¢ *,
_| asege’ 0:% 10
Q| 194 * *. us " , ‘*
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i 345 P . 6
9% ¢ ¥
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¥ L *
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Number of cell types
Fig. 5 Performance evaluation of Minimum Description Length (MDL) criterion for detecting the number of cell/tissue types present in three
mixture datasets. The boxes mark the true number of involved cell/tissue types
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Fig. 6 GSE65135 dataset with 14 mixed samples including 3 cell types (CD4 T cells, CD8 T cells and B cells). Evaluation of the unsupervised mode
of Deblender* (default preprocessing — S1) and MMAD* (default percentile) relative to flow cytometry proportions. Pearson correlation (1) results
per cell type, Deblender*: CD4 T cells: -0.178, CD8 T cells: 0.535, B cells: 0.266, MMAD: CD4 T cells: 0.099, CD8 T cells: 0.301, B cells: 0.352

assigned by other relevant methods that used gene ex-
pression or other TCGA genomic data such as somatic
copy-number variation, somatic mutations and DNA
methylation. For this, we downloaded the results from
the different methods from Aran et al. [32], where a
systematic analysis of a set of methods (ESTIMATE, AB-
SOLUTE, LUMP, IHC) as well as an additional consen-
sus method (CPE) is presented. In this case, Deblender*
was run in the cohort of primary tumor samples both
with three tissue components and in a constrained fash-
ion with two — corresponding to tumor and non-tumor
component. We ran Deblender* using three tissue types
(S1) as aforementioned and also with two tissue types
using two different settings (S1, setting 1: no filtering,
setting 2: CV=3). We checked across all samples the
correlation of Deblender* tumor purity estimates relative
to those estimated by each method and found in general
a low but positive correlation with respect to the

consensus method (CPE) (S1: r=024, for the
three-tissue-component model, r=0.15 and r=0.35, for
the two-tissue-component model) (see also Additional
file 1: Figures S6-S11). However, when restricting our
analysis to the set of samples where Deblender* propor-
tions deviated in the range [-0.2, +0.2] from CPE results,
we found moderate or high correlations (S1: r=0.56, r =
080 for 64% and 43% of the samples) in the
two-tissue-component model. In the pairwise compari-
sons, Deblender* results correlated more with ABSO-
LUTE and LUMP scores.

Runtime

We recorded the elapsed time (tic-toc result in Matlab)
of Deblender* unsupervised mode for calculating mix-
ture proportions (S1 & S2) and MDL in two benchmark
datasets (GSE19830 and RNA-Seq) with the respective
default settings (Additional file 1: Figure S12). All tests
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Fig. 7 TCGA breast cancer RNA-Seq dataset with 1093 primary tumor mixed samples including 3 defined tissue components (normal, stromal,
tumor). Evaluation of the unsupervised mode of Deblender* (customized setting — S1) and MMAD* methods (customized setting — default percentile)
relative to histological estimates. Correlation is also reported for subsets of samples with known molecular subtype. Pearson correlation (1) results per
tissue component, Deblender*: Normal: — 0.051, Stromal: — 0.022, Tumor: -0.061, MMAD: Normal: — 0.041, Stromal: 0.071, Tumor: — 0.026
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were run on a 2.40 GHz Intel Core i7 with 7.65G RAM
running Windows 7.

Discussion

In silico deconvolution modeling started with partial ap-
proaches requiring as available, either the cell/tissue
type-specific expression profiles or mixture proportions,
but gradually complete semi-supervised and more im-
portantly unsupervised methods have gained ground.
The unsupervised ones showed that representative pro-
files - sufficient to decompose the signal - can be ex-
tracted directly from the mixed data alleviating the need
for additional experiments or borrowing reference data
from other sources.

In this work, we present Deblender, a new flexible
complete deconvolution tool with semi- and unsuper-
vised operational modes which integrates features intro-
duced by recent approaches [7, 9, 12, 19, 21, 33] and
proposes several novel concepts. First, Deblender adopts
the deconvolution model and constraints proposed by
others [9, 12, 19], based solely on marker gene lists, and
extends this concept into unsupervised by employing a
flexible assumption about the gene cell/tissue type-spe-
cific expression. In particular, we assume that many
genes show differences in terms of relative expression
among the different cell/tissue types [25]. Lately,
single-cell sequencing studies like Dueck et al. [26] have
shown that gene expression differs globally across tissues
in terms of the number of genes expressed, the average
expression pattern and the within-cell-type variation pat-
terns. Although each cell type exhibits a characteristic
transcriptome profile enriched in marker genes, the
marker gene expression is rarely if ever limited to the
relevant cell type [26]. Moreover, some marker genes
show significant variability within the relevant cell type,
indicating that these genes are not sufficient to deter-
mine the cellular phenotype [26]. Under this notion, we
apply clustering to identify groups of genes prone to be
more expressed in a specific cell/tissue type and employ
those clusters (along with their cluster exemplars) with
the constraints others use for the marker sets. In this
way, we overcome all the arbitrary cutoffs/criteria that
most partial and complete methods face when selecting
the small cohort of signature/marker genes. The
cluster-based concept was adapted to two different algo-
rithmic approaches. First, we adapted the unsupervised
algorithm of Zhong et al. [9] for estimating mixture pro-
portions after isolating the marker mixed gene expres-
sion profiles and subsequently estimating cell/tissue
type-specific expression profiles for all recorded genes
based on the estimated proportion result. Second, we
adapted the Non-negative Matrix Factorization scheme
of Gaujoux and Seoighe [12, 19] which estimates mix-
ture proportions and cell/tissue type-specific profiles
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based on all genes with the marker genes constrained to
express only in the relevant tissue/cell type. Deblender
runs primarily the first algorithm (referred to as S1)
which we have found to work well on a set of bench-
mark datasets. The results of this algorithm can further
be used to initialize the second (referred to as S2). We
suggest using S1&S2 after evaluating the clustering re-
sult where cluster exemplars that do not differentiate
well from each other might not serve as good candidates
for deconvolution with S1. Third, we extend our un-
supervised method by incorporating an information the-
oretic criterion to predict the number of cell/tissue
types. In the work of Wang et al. [21], this criterion eval-
uated the number of cell/tissue types based on predicted
small-sized marker gene sets. Here, we show that this
criterion can perform equally well in our proposed
cluster-based approach. Finally, we introduce an adapted
Non-negative Matrix Factorization (NMF) scheme to
deal with the challenging under-determined cases for
proportion estimation in semi- /unsupervised mode, i.e.,
cases where the number of cell/tissue types exceeds the
number of samples in the dataset.

We assessed the performance of Deblender on a set of
benchmark datasets where the real proportions of cell/
tissue types are available and cancer patient datasets
where only flow cytometry or histological estimates are
available. For comparison, we recruited several partial
and complete state-of-the-art methods (see Additional
file 1 for short description). The results on benchmark
datasets showed that both the semi-supervised and the
unsupervised mode of Deblender performed in both the
over- and under-determined cases similarly to the
comparative reference-based methods included in the
analyses. At this point it is worth commenting that the
extra information included in the partial deconvolution
methods as compared to the complete semi-supervised
ones (that is reference expression profiles in partial
methods compared to marker gene sets for the
semi-supervised ones) is not always translated into bet-
ter performance. With respect to unsupervised mode,
we showed that cluster sets (and their cluster exemplars)
descending from the mixed gene expression dataset can
serve as a successful alternative to externally defined
lists of marker genes. This indicates that large part of
the transcriptome carries considerable cell/tissue
type-specific information, i.e., many genes have cell/tis-
sue-type dependent expression levels. Therefore, cluster-
ing using expression across most genes can lead to
successful signal decomposition. We have also seen that
in some cases, it is beneficial to include only the highly
variable genes in the clustering. This may depend on
which cell/tissue types are included and also on how
much cell type proportions vary among the samples ana-
lyzed. If all samples have highly similar cell/tissue-type
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proportions, the approach will not work. Similarly, the
method is not appropriate for cases where the sample
cohort includes both mixture and one-cell-type samples
due to the clustering involved. Moreover, the results
showed that Deblender* is applicable on RNA-Seq data
and overcomes preprocessing challenges that one faces
when dealing with RNA-seq data, e.g., choosing the right
pseudo-count offset prior to log transformation. How-
ever, for some of the benchmark datasets and also on
both real datasets Deblender produced estimates that
considerably deviated from known (or otherwise approx-
imated) proportions. This can be attributed to (a) the
clustering which may determine cluster exemplars that
most likely do not represent well distinct cell/tissue
types (each cluster having contributions from multiple
underlying components), as compared to marker genes,
resulting so in higher errors in the estimates of cell type
proportions, (b) deconvolution results are affected by
the inherent measurement noise, biological variability
and the fact that the mixed data we have available has
been processed and normalized (e.g., quantile normal-
ized) as described in the original articles. The effect of
data processing is debated in the literature, and it has
been argued that the choice of normalization procedures
affects the deconvolution results [34, 35], (c) the multi-
collinearity issue of having correlated cell types in the
mixture [34] and (d) the fact that the flow cytometry
and histological estimations in real datasets are similarly
an approximation of the real proportions.

Moving forward, Deblender* performed better than
MMAD* in the cancer patient expression datasets. The
improved performance was more evident in the TCGA
breast cancer RNA-Seq dataset, where we checked inde-
pendently the sets of samples with known molecular
subtype identities, although deconvolution was realized
on the full set of samples irrespective of this informa-
tion. We observed the greatest differences for the
Basal-like, Her2-enriched and Normal breast-like sub-
types whereas similar performance was achieved for Lu-
minal A and Luminal B. In our simplified model with
three tissue types for the TCGA dataset, we observed
that the mean proportion value for the tumor compo-
nent was lower (S1:u=0.48, 0=0.08) compared to the
mean estimated by histology (4 =0.74, o=0.18). How-
ever, this difference may have other reasons. First, there
is more than one cell type in each tissue component,
and some of the signals from the tumor cell component
might resemble signaling from normal epithelial cells or
the stromal tissue. Second, we applied clustering with
the number of clusters being lower than the actual num-
ber of tissue components [8]. In this way, the identified
cluster exemplars most likely do not represent well dis-
tinct cell/tissue components (each cluster having contri-
butions from multiple underlying components), thus
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affecting deconvolution efficiency. Also, immune cells
might be dispersed in the different components, compli-
cating the differentiation of signals between the tissue
components. Lately, in the study of Onuchik et al. [8]
the intra-tumoral heterogeneity was explored by decon-
volving in silico the methylation data of mixed samples
into five different cancer epithelial cell types along with
one normal epithelial, one immune and one stromal
tissue. Third, differences between transcriptome-based
and pathology-based estimates have been reported
[36]. Here, they hypothesized that reasons for the dif-
ferences include interobserver bias and differences be-
tween the tissue sections of the samples examined
and those used for nucleic acid extraction [29]. Fur-
ther, we checked the performance of Deblender on a
cohort of samples with increased biological variability
in the inherent component profiles including, in
addition to primary tumor samples, metastasis and
normal samples. Our unsupervised analysis indicates
that lowly or moderately variable genes can reveal
more information for the samples with increased
heterogeneity, like primary tumor and metastasis sam-
ples. However, it is the subset of highly variable/
marker genes that can assist in more accurate propor-
tion estimation of samples with one or few tissue
components involved, like the normal samples.

Also, we showed in the TCGA breast cancer data that
the tumor proportions estimated by Deblender* in a
two-tissue-component model (tumor/non-tumor) using
76% of the complete gene set correlated well (S1: Pear-
son’s r=0.56), for a good proportion of the samples
(~64%), with the consensus tumor proportions descend-
ing from methods that use genomic information other
than gene expression, such as somatic copy-number
variation, somatic mutations and DNA methylation [32].
A confounding reason behind comparisons is the fact
that Deblender* uses expression information for the
whole set of samples before assigning mixture propor-
tions to each sample. Moreover, in this first round of
analysis we did not consider the intrinsic molecular sub-
types [37] and assumed simplistically that all samples
share common tumor and non-tumor profiles. On the
other side, the ESTIMATE method [36], which is the
method conceptually closest to Deblender, uses refer-
ence gene expression data to assign tumor purity in each
sample independently. Furthermore, with respect to AB-
SOLUTE which uses copy number data [38], it has
already been commented by Wang et al. [20] that such
values are generally ‘static, while gene expression values
are intrinsically ‘dynamic, a realistic assumption espe-
cially in cases where the samples are pooled during dy-
namic complex diseases like cancer. Also the technical
variability, i.e., noise, is significantly different between
copy number and gene expression signals.
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Conclusions

The Deblender tool represents a methodological frame-
work with a broad repertoire of operational modes for
datasets with limited or no access to reference cell/tissue
type-specific expression data, marker gene lists and in-
formation about the cell/tissue type composition. As
such, we believe that it will be of particular interest to
studies taking place in a realistic setting, i.e., highly com-
plex tissues and small patient cohorts. Deblender
extracts information from the whole transcriptome ra-
ther than searching features serving as hallmarks of
marker genes. As such, Deblender is a good candidate
tool for providing an initial virtual decomposition of the
tumor and its microenvironment, situation where the
definition of marker genes is not straightforward.

The increasing number of published partial and
complete semi-supervised computational deconvolution
methods and their recent achievements as predictive
and clinical tools [16] have indicated to a great extent
that in silico decomposition has great explanatory
power and can serve as an appealing low-cost alterna-
tive to physical cell separation techniques. Thus, it can
facilitate a more extensive adoption of microarray/
RNA-seq technology across the continuum from pre-
vention to detection, staging, prognostication and treat-
ment development in complex diseases. Nevertheless,
our notion is that this next generation of complete un-
supervised techniques - like Deblender - will be a step to-
wards integrating such tools into clinical decision
pipelines and allowing researchers to re-/meta-ana-
lyze public transcriptome data in a manner that de-
mands little time and performs in a robust fashion. In
this way, researchers will gain increased insight into
the true disease-dependent expression and mixture
proportion differences and be able to generalize re-
sults across studies.

Methods

Linear model on gene expression deconvolution

We adopt the linear model described in several decon-
volution algorithms [9, 12, 19]. Let S be a n x k cell/tis-
sue-type-specific gene expression matrix that contains k
cell/tissue types and n genes, A be a k x p matrix with
each column representing the mixture proportions of k
cell/tissue types in each sample, and X be a n x p mixed
expression matrix with n genes and p samples (contain-
ing the measured gene expression levels for the mixed
samples). The mixing process can be described in terms
of matrix notation as:

X =SA (1)

In complete deconvolution both S and A are unknown.
In our approach, first the proportion matrix A is

Page 12 of 17

calculated based either on marker gene lists (semi-super-
vised) or cluster sets (unsupervised mode). Then, we es-
timate the cell/tissue type-specific expression values for
each gene independently to finally formulate the whole S
cell/tissue type-specific gene expression profile matrix.

Estimating mixture proportions

Deblender employs the assumption that a subset of
genes called markers, i.e., those that are highly expressed
in a specific cell/tissue type and lowly expressed in all
other cell/tissue types known to be included in the
mixture, are appropriate to predict mixture proportions
(semi-supervised mode) [9, 12, 19]. In case this informa-
tion is not available, we extend these methods and
apply clustering on the gene expression dataset and
subsequently use representative profiles — cluster ex-
emplars — as an alternative. Deblender operates in
two stages: in stage I (S1), the proportions are esti-
mated using an approach based on that described by
Zhong et al. [9] and in stage II (S2), the proportions
are calculated using the method proposed by Gaujoux
and Seoighe [12, 19] after using as initialization (in
one of many replicated runs of stage II) the propor-
tion matrix (optionally also the cell/tissue
type-specific expression profiles based on this propor-
tion result) produced in S1.

Stage I We first assume S,,, a m x k matrix repre-
senting for each of the k cell/tissue types a set of
marker genes (or a cluster) highly expressed in a re-
spective cell/tissue type and zero in the remaining
cell/tissue types.

Xu = SpuA (2)

We simplify further the model (eq. 3) and assume that
a meta-marker average expression profile for each set
(or cluster exemplar) exists and formulate S (eq.4) as
follows:

&n 0 0
£ 0 0
0 &3 0
Sm = 0 84 0 (3)
0 &5 0
0 0 0
0 0 Emk
my 0 0
o 0 my ... 0
Sn=10 0 - o0 (4)
0 0 my

Similar toS,,, we create the X,, of the mixed data
by taking for each set the average of the mixed
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expression profiles of the respective marker genes (or
cluster exemplars) and then eq. 2 becomes:

X, =S,A (5)

Since §m is diagonal matrix, we can multiple both

sides with S;nl and obtain:
S1X,=A (6)

Based on the model constraint that the sum of propor-
tions for each sample sums to 1, a new system of
equations is formed with k unknown variables, i.e., the

diagonal elements of S_ :

(s},}xm)ij =1 (7)

k
i=1

When the number of mixed samples is greater than
the number of cell/tissue types involved, i.e., when p >k,
we can solve the overdetermined system of equations
(eq. 7) with k unknown parameters, non-negative con-
straints and as objective function the minimization of
the squared norm of the residual. After estimating the
unknown variables of eq. 7 we can return to eq. 6 and
estimate the A mixture proportion matrix. Throughout
all operation stages of Deblender, in case the sum of esti-
mated proportions for a given sample does not sum to
1, the proportions are scaled accordingly before subse-
quent analysis.

Stage II: In this stage, we adopt a Nonnegative
Matrix Factorization scheme proposed for describing
the deconvolution model based on marker genes [12, 19].
The general algorithmic structure of NMF approaches
is given a non-negative n x p matrix X, to find, after
minimizing common objective functions like the
Frobenius norm or the Kullback-Leibler divergence,
an approximation

X ~ WH (8)

where W (i.e., basis components), H (i.e., mixture coeffi-
cients) are nxr and rxp non-negative matrices,
respectively, and the factorization rank r is often such
that r < < min(n, p).This can be adapted to the deconvo-
lution model if the columns of H are constrained to sum
to one. X represents the mixed gene expression matrix,
the columns of the matrix W (i.e., S) correspond to the
cell/tissue type-specific expression profiles and each col-
umn of the matrix H (ie, A) provides the
sample-specific mixture proportions. In the work of
Gaujoux and Seoighe [19], more constraints were im-
posed on the cell/tissue type-specific expression matrix
S that refer to the marker genes. They demand both
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during initialization and in each of the iterations of the
algorithm, that the rows of S that correspond to the
markers of each cell/tissue type to be zero-valued in the
irrelevant cell/tissue types. During each iteration, the
remaining non-zero values of S across all genes are
updated. In Deblender, in an analogous way we adapt
the multiplicative update algorithm (‘nnmf” Matlab func-
tion [39]). In the unsupervised mode, we employ cluster
sets instead of marker sets. Specifically, for each cluster
set we choose the n % (user-defined) of genes closest to
exemplars and use these cluster subsets likewise with
markers. Then, the NMF-adapted process can be run ei-
ther on the complete gene set of the mixture dataset
(pseudocode is available in Additional file 1) where only
the cluster subsets are treated as markers or on the set
that includes only genes belonging to the cluster subsets.
In both cases the rows of S that correspond to each clus-
ter subset will be zero-valued in the irrelevant cell/tissue
types throughout the NMF iterations. Of note, as
initialization Ag, in one of the replicated experimental
runs, the proportion matrix A obtained in stage I (S1) is
used (optionally Sy can be the S produced based on
the proportion result of S1) and the objective func-
tion to be minimized is the root-mean-squared re-
sidual between X and S+A (as in ‘nnmf’ Matlab
function). Similar to [19], we apply the sum-to-one
constraint on the final A result.

Estimating cell/tissue type-specific expression profiles
Once the A mixture proportion matrix is known
(either from S1 or S1&S2), one can solve the system
of equations independently for each gene i, as pro-
posed in Zhong et al. [9], and calculate the S; by
minimizing:

|x—AS;||?, Si<ub and S;>1b

where ub and /b set the constraint that the resulting
values are within the boundaries set by the maximum
and minimum measurable gene expression levels.
Based on this least squares optimization, the average
gene expression values of each cell/tissue type are es-
timated. Similar to Onuchik et al. [8], we extend this
so that one can also calculate in this multiple linear
regression problem the standard error (SE) for each
of the coefficients (i.e., expression level of each gene
i) in each cell/tissue type j:

SE{Si;} = /IMSE(aa")] ", ©)

where MSE; (mean squared error for gene i):
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k
2
DR,
j=1

MSE; =
p-k

(10)

and p is the number of samples, k the number of cell/tis-
sue types and R the residual matrix (R = X - SA).

Unsupervised mode

Data preprocess

Deblender applies deconvolution in the linear space, as
established by others [9, 40]. As such, data need to be
raw normalized values (without log transformation).
Also, as preprocessing step prior applying Deblender, we
propose filtering of un-annotated probes and in case of
multiple probes per gene identifier (e.g., Entrez ID)
selecting the probe with the highest variance across
dataset. Deblender applies further filtering steps that
have been adopted by other similar approach [21]. The
user can first define the percentage cutoffs to filter genes
with high (outliers) and/or low (noise) expression vector
norms. Subsequently, genes can be further filtered by
setting a threshold on the coefficient of variation (CV),
defined as the ratio of the standard deviation of the raw
gene expression profile to the mean of the raw gene ex-
pression profile.

Clustering

The user can choose between k-means or k-medoids al-
gorithms for clustering with ‘correlation’ as distance
function in order to assign genes to a putative cell type.
Data prior to clustering can be either in linear or log
scale; we observed that the latter leads to increased per-
formance in some cases. Regardless of the cluster option
setting, the cluster exemplars used in S1 are defined in
linear scale and can represent for k-means the average
mean profile of the cluster members and for k-medoids
either the medoid or the average mean profile of the
cluster members. In S2, in order to define the cluster
subsets, the genes closest to the centroids/medoids (ex-
emplars), as defined in the respective cluster option set-
ting, are considered. In the ‘kmeans’ Matlab function
[41], setup parameters like ‘OnlinePhase’ have been
turned on to guarantee that the provided solution is a
local minimum of the distance criterion. Also, the ‘Repli-
cates’ parameter, i.e., the number of times to repeat clus-
tering using new initial cluster centroid positions, has
been set to 500 to achieve optimal performance and sta-
bility. We recorded (100 runs) the clustering objective
function value as well as the produced proportions in
multiple datasets (unsupervised mode — S1) and ob-
served no significant fluctuations. Also, with respect to
k-medoids (‘kmedoids’ Matlab function [42]), we chose
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the ‘large’ algorithm [43] (similar to k-means) due to the
large size of the datasets.

Cell/tissue type identity

When Deblender operates on unsupervised mode, there
is no prior information in which distinct cell/tissue type
each cluster exemplar should be assigned to. With re-
spect to benchmark datasets, we checked all possible
combinations and preserved the result giving the highest
correlation when comparing estimated with real propor-
tions. We validated this concept based on the reference
cell/tissue type-specific profiles of the benchmark data-
sets and observed that in most cases the best order con-
figuration was the one in which the majority of genes of
a given cluster showed maximal expression in the
assigned cell/tissue type.

Model selection

In case where the user has no knowledge about the
number of cell/tissue types involved in the mixture,
Deblender can automatically estimate, in the unsuper-
vised mode, the number k of cell/tissue types present in
the mixture. For this, we employ the Minimum Descrip-
tion Length (MDL) information criterion as recently
proposed by others for use in expression deconvolution
[21]. In particular, Deblender is applied multiple times
with a different k each time as candidate and the model
that explains the observed data, while avoiding unneces-
sarily complex models, is preferred. The formula of
MDL is defined as:

MDL(k) = -log(A(X|0(k))) + (k—21)p log(m)
+ kTmlog(p) (11)

where the first part refers to the joint likelihood func-
tion with X,,, being the mixed profiles of the genes after
filtering process and 6(k) the set of freely adjustable pa-
rameters in the model. The remaining part is the penalty
function where in case of A proportion matrix calcula-
tion for a given sample m genes participate, thus in total
contributing (k - 1)p log(m)/2 bits, while in the case of
S, calculation p scalar entries for a given gene are used,
thus contributing in total k m log(p)/2 bits.

Estimating proportions in under-determined cases

In case the number of cell/tissue types is higher than the
number of available mixed samples, Deblender offers the
option (when the number of samples is >2) to apply an
adapted NMF scheme to approximate the proportions
based on available marker gene lists (semi-supervised) or
cluster sets (unsupervised). More specifically, we solve
the system of eq. 2 after decomposing it into k subsys-
tems, i.e., subsets of equation systems, each one
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corresponding to a cell/tissue type-specific marker gene
or cluster subset. The cluster subsets are defined after
clustering the preprocessed dataset in k cluster sets and
retaining for each cluster set n% of genes that are closest
to the cluster exemplar.

Zooming into each subsystem (eq. 8), X is a ¢xp
mixed expression matrix with c cell-specific marker or
cluster subset genes and p samples, W a ¢ x 1 vector and
H a 1 x p vector representing the cell/tissue type-specific
S and A vectors (pseudocode and extended description
about the formulation of the subsystem is available in
Additional file 1). These vectors can be computed with
adapted NMF schemes that can optionally include
normalization of A and space bound constraints.
Specifically, one can apply the multiplicative update
algorithmic scheme (as implemented by ‘nnmf” Matlab
function) with or without normalization of A or a
UPSO-NMF scheme we designed motivated by others
[12, 19, 33, 44, 45] so as to offer to the user the option
to include space bounds during the calculation of the S
and A vectors. Finally, from each subsystem only the
vector of the cell/tissue type-specific proportions is pre-
served, all of which are subsequently concatenated into
one matrix and rescaled with the sum-to-one constraint
to form the final proportion matrix A.

Choosing a solver

Deblender provides different algorithms for solving the
series of equations describing the deconvolution model.
There is option to employ algorithms like ‘active-set’ and
‘trust region reflective’ that solve linear least-squares
problems with bounds or linear constraints (imple-
mented with ‘Isqnonneg’ and ‘Isqlin’ functions in Matlab
[46, 47]) or use algorithms like ‘interior point convex’ to
solve the problem with quadratic objectives and linear
constraints (implemented with ‘quadprog’ function in
Matlab [48]). Further, Deblender offers the user the op-
portunity to explore particle swarm optimization (PSO)
as an alternative for solving the series of equations. PSO
was introduced by Eberhart and Kennedy [49] and is in-
spired by behavior patterns seen in socially organized
colonies to probe the search space so as to find the
optimal solution. In PSO the population is called ‘swarm’
and the individuals (search points) are called ‘particles’.
Each particle moves in the search space with a velocity
adapted iteratively. Also, each particle keeps history of
its best position during iterations, i.e., the position with
the best objective function value and simultaneously
shares this information with the other particles of the
swarm. In the global variants of PSO, the neighborhood
of each particle is the whole swarm. In the local variants,
the neighborhoods are substantially smaller consisting of
few particles. In Deblender, we adapted and tailored to
the deconvolution problem the Unified Particle Swarm
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Optimization (UPSO) scheme [50] that combines the ex-
ploration and exploitation properties of both the local
and global PSO variants. Finally, with regard to
Non-negative Matrix Factorization (NMF), we apply the
multiplicative update algorithm (‘nnmf” Matlab function)
and also versions of this adapted to use in Deblender
and an adapted UPSO-NMF scheme.

Additional files

Additional file 1: Supplementary results, discussion and methods.
(DOCX 2.18 mb)

Additional file 2: Deblender mixture proportions estimates for
GSE65135 and TCGA. (XLSX 98 kb)

Additional file 3: Gene Ontology and KEGG pathway enrichment
results. (XLSX 690 kb)
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