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Abstract

Background: Molecular docking studies on protein-peptide interactions are a challenging and time-consuming
task because peptides are generally more flexible than proteins and tend to adopt numerous conformations. There
are several benchmarking studies on protein-protein, protein-ligand and nucleic acid-ligand docking interactions.
However, a series of docking methods is not rigorously validated for protein-peptide complexes in the literature.
Considering the importance and wide application of peptide docking, we describe benchmarking of 6 docking
methods on 133 protein-peptide complexes having peptide length between 9 to 15 residues. The performance of
docking methods was evaluated using CAPRI parameters like FNAT, I-RMSD, L-RMSD.

Result: Firstly, we performed blind docking and evaluate the performance of the top docking pose of each
method. It was observed that FRODOCK performed better than other methods with average L-RMSD of 12.46 Å.
The performance of all methods improved significantly for their best docking pose and achieved highest average L-
RMSD of 3.72 Å in case of FRODOCK. Similarly, we performed re-docking and evaluated the performance of the top
and best docking pose of each method. We achieved the best performance in case of ZDOCK with average L-
RMSD 8.60 Å and 2.88 Å for the top and best docking pose respectively. Methods were also evaluated on 40
protein-peptide complexes used in the previous benchmarking study, where peptide have length up to 5 residues.
In case of best docking pose, we achieved the highest average L-RMSD of 4.45 Å and 2.09 Å for the blind docking
using FRODOCK and re-docking using AutoDock Vina respectively.

Conclusion: The study shows that FRODOCK performed best in case of blind docking and ZDOCK in case of re-
docking. There is a need to improve the ranking of docking pose generated by different methods, as the present
ranking scheme is not satisfactory. To facilitate the scientific community for calculating CAPRI parameters between
native and docked complexes, we developed a web-based service named PPDbench (http://webs.iiitd.edu.in/
raghava/ppdbench/).
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Background
Protein-peptide interactions are essential in various bio-
logical processes involving signaling, cellular localization,
immune system, and apoptotic pathways. Such interac-
tions serve as structural components in approximately
40% of all macromolecular interactions [1, 2]. Peptides
can be used to prevent diseases involving malfunctioning
of proteins due to undesirable protein-protein interac-
tions [3, 4]. Many databases and algorithms have been
developed in the past specifically in the field of
peptide-based therapeutics [5–15]. There are more than
200 therapeutics peptides, approved by FDA for the
treatment of various diseases [16, 17]. Peptides are more
flexible than proteins and tend to adopt numerous con-
formations. Thus, modeling protein-peptide interactions
is a challenging and time-consuming task [18].
Numerous docking methods have been developed in

the past for structural determination of protein-peptide
complexes. Broadly, these methods can be classified into
the following 3 categories; i) protein-peptide docking, ii)
protein-protein docking and iii) protein-small molecule
docking. Protein-peptide docking methods [19–28] have
been specifically developed to dock peptide on protein
like pepATTRACT, FlexPepDock, HADDOCK,
PEP-SiteFinder, etc. Though protein-protein docking
methods [28–39] have been developed for docking two
proteins; some of these methods, for example, ZDOCK,
Hex can also be used to dock peptide on a protein. Simi-
larly, some of the software developed for docking
small-molecules on a protein [40–48] can also be used
to dock peptide on a protein, for example, AutoDock
and AutoDock Vina. In summary, a wide range of dock-
ing methods have been developed in past that can be
used directly or indirectly for docking peptide on a
protein.
Prediction of peptide interaction with receptor protein

is highly desirable to design peptide-based therapeutics.
However, utility of any prediction is entirely dependent
on the accuracy of the prediction. All the above docking
methods can be used to predict the interaction between
protein and peptides, thus evaluating the performance of
these methods is essential to understand their pros and
cons. Also, benchmarking is required to develop highly
accurate docking methods that can overcome the limita-
tion of the existing methods. There are a number of
benchmarking studies on protein-protein [49, 50],
protein-ligand [51, 52] and nucleic acid-ligand [53]
docking interactions. Comparatively, limited attempts
had been made to benchmark docking method on
protein-peptide complexes. Spoel and coworkers evalu-
ated the capability of AutoDock for docking studies of a
set of 8 protein-peptide complexes without having the
prior knowledge of the binding site [54]. Rentzsch and
Renard assessed the performance of AutoDock Vina on

a meta-data set of 47 protein-peptide complexes [55].
Recently, Hauser and Windshugel developed a
LEADS-PEP dataset to evaluate the performance of pep-
tide docking methods [56]. The major limitation of exist-
ing benchmarking studies is that they evaluated only a
limited number of docking methods, as well as dataset
used for evaluation contain small number of
protein-peptide complexes. In addition, there is no plat-
form or web server where users can benchmark or
evaluate the performance of their newly developed dock-
ing method.
In order to facilitate scientific community and to com-

plement previous benchmarking studies, we made a sys-
tematic attempt to benchmark docking methods on a
large set of protein-peptide complexes. The main aim of
this study is to evaluate the performance of major dock-
ing methods, as well as evaluation of scoring function
used by docking methods. We also perform a wide range
of analysis to understand the impact of the absence of
the binding site information, type of secondary structure,
and other molecular properties on the performance of
docking method. It is not practically possible to evaluate
all docking methods. Thus we select those methods,
which broadly satisfy following conditions; i) available
free for public use, ii) standalone version is available, iii)
widely used by scientific community and iv) performed
well in the Critical Assessment of PRediction of Interac-
tions (CAPRI) competition. CAPRI is an international
competition which provides a framework for evaluating
protein-protein interactions/docking and refinement
methods by blind testing on the set of unpublished tar-
gets [30, 36, 57–61]. Finally we select following 6 soft-
ware for benchmarking; ZDOCK 3.0.2, FRODOCK 2.0,
Hex 8.0.0, PatchDock 1.0, ATTRACT and pepAT-
TRACT. ZDOCK 3.0.2 is a rigid body docking method
based on the Fast Fourier Transform algorithm, and its
scoring function is a combination of pairwise shape
complementarity, desolvation and electrostatic energy
[62–64]. ATTRACT is a flexible protein-protein docking
method based on randomized search algorithm and em-
ploys Lennard-Jones potential and electrostatic energy as
a scoring function [30, 39]. Hex 8.0.0 is another popular
method which uses Spherical Polar Fourier (SPF) corre-
lations algorithm rather than Fast Fourier Transform
(FFT) based search [65, 66]. FRODOCK 2.0 is a rigid
body docking algorithm and is based on the principle of
3D grid-based potentials with knowledge-based potential
and spherical harmonics (SH) properties which help in
improving docking success rate more significantly [35,
36]. pepATTRACT is a flexible protein-peptide docking
algorithm which performs a rapid coarse-grained global
search on the protein surface and model peptide simul-
taneously during docking [67]. PatchDock 1.0 is also a
rigid body docking software which considers surface
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variability or flexibility implicitly marked through liberal
intermolecular penetration. Its scoring function is based
on geometry fit and atomic desolvation energy [47]. The
standalone versions of ZDOCK 3.0.2, Hex 8.0.0 and
PatchDock 1.0 docking methods are available for use on
the local machine. FRODOCK 2.0 provides an online
web service where a user can upload their docking part-
ner for docking. ATTRACT, and pepATTRACT pro-
vides a ready-to-use script, which can be downloaded
from their web-based service for performing docking of
each complex. The main dataset created and used in this
study comprises of highly annotated 133 protein-peptide
complexes; Table 1 shows detailed information about
these complexes. Also, methods were evaluated on data-
sets used in previous studies.

Results and discussion
In this study, a dataset called PPDbench has been used
to evaluate the performance of 6 docking methods. This
dataset contains 133 non-redundant complexes of
protein-peptides at 40%, it means no two proteins have
more than 40% sequence similarity. We removed redun-
dancy using commonly used software CD-HIT; detail
procedure is given in the Material and Method section.
In total, 117 clusters were obtained out of which similar-
ity among the proteins was present only in 12 clusters.
Detail information of the clustering result is provided in
Additional file 1: S1. We used CAPRI parameters (e.g.,
FNAT, I-RMSD, and L-RMSD) and the following 3 steps
for evaluating the performance of the methods. In the
first step, the structure of a protein-peptide complex is
obtained from PPDbench. In the second step, docking
methods use structures of protein and peptide to predict
the structure of the protein-peptide complex. Finally, the
performance of docking methods is determined by com-
paring the predicted and actual structure of a
protein-peptide complex. Overview of the PPDbench al-
gorithm has been shown in Figure 1.

Shifting Cartesian coordinates of peptide structure for
blind docking
Docking method requires structural coordinates of the
protein and peptide for docking peptide on the protein.
As we are providing structure coordinates of both pep-
tide and protein from the original complex, it means we
are giving actual docking pose to the docking software.
This docking pose information may affect the perform-
ance of a docking method. In order to avoid biasness in
the evaluation, we shifted Cartesian coordinate of the
structure without changing the structure of the peptide,
i.e. dihedral angles of both original and modified (shifted
Cartesian coordinates) peptide remains the same (see
Material and Methods). We compute the backbone
RMSD (B-RMSD) between the actual and modified

structure to verify that shifting of coordinates does not
affect peptide structure too much. It was observed that
B-RMSD value ranges from 0.067 to 0.827 for 133 pep-
tides with 123 peptides showing value ≤0.5 Å. In order
to understand the shifting of peptide structure from the
original position, we compute the distance between ac-
tual and modified peptide. As shown in Additional file 1:
S2, the modified peptide shifted/moved drastically from
its original position. It means modified peptide does not
maintain original docking position so it will not affect
the performance of docking methods in blind docking.

Blind docking ability of methods
Blind docking of two structures is one of the major chal-
lenges in the field of docking. We used default parameters
for blind docking and generated 20 docking poses for each
complex. In order to compute the performance of a
method on a protein-peptide complex, we compared its
top 20 poses one by one with original docking pose. The
average performance of different methods on the
PPDbench dataset is shown in Table 2. The pose which is
ranked first by the respective scoring function of method
is termed as “Top pose” while the pose for which we ob-
tain the lowest L-RMSD value among all the generated
poses is termed as “Best pose”. In the case of top docking
pose, FRODOCK performs better than any other method
and achieve average L-RMSD of 12.46 Å. It was noted that
the performance of different methods in term of I-RMSD
and FNAT also follow the same trend. The performance of
different methods on individual complexes is shown in
Additional file 1: S3-S5. The performance of best docking
poses out of top 20 poses generated by various methods,
also shows the similar trend; FRODOCK with average
L-RMSD of 3.72 Å performed better than other methods.

Re-docking ability of methods
Re-docking is preferred over blind docking if one knows
the binding site of peptide/ligand on protein/receptor.
Binding site information reduces searching space dras-
tically; thus, re-docking is fast and more precise. In
order to evaluate re-docking ability of methods, we per-
form re-docking on the PPDbench dataset. In this study,
we used default parameters for re-docking using instruc-
tions provided by different docking method (See Mater-
ial and Methods Section for detail). It is important to
note that we used the original structure of the peptide in
the case of re-docking instead of the modified structure
since we are already providing information of binding
site in the case of re-docking. We were unable to per-
form the re-docking experiment using FRODOCK, as
there is no provision for re-docking in this software.
Similarly, ATTRACT also didn’t perform re-docking, as
the server does not take the input of active residue infor-
mation. Thus, we performed re-docking only using 4
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Table 1 The list of all the considered complexes along with their PDB-IDs
Sr. No. PDB-ID Classification Protein Chain Peptide Chain Peptide Length PDB Resolution (Å)

1 1CJR Hydrolase B A 15 2.30

2 1CKA Oncogene protein A B 9 1.50

3 1D4T Signaling protein A B 11 1.10

4 1EG4 Structural protein A P 13 2.00

5 1H6W Structural protein A B 10 1.90

6 1HC9 Toxin protein A C 13 1.80

7 1JBU Hydrolase H X 15 2.00

8 1MFG Signaling protein A B 9 1.25

9 1NLN Hydrolase A B 11 1.60

10 1NQ7 Transcription A B 10 1.50

11 1NTV Signaling protein A B 10 1.50

12 1NX1 Hydrolase inhibitor A C 11 2.00

13 1OAI Nuclear transport A B 9 1.55

14 1OJ5 Transcriptional activator A B 14 2.21

15 1OW6 Transferase A D 12 2.35

16 1PZL Transcription A B 14 2.10

17 1QKZ Immune system H P 10 1.95

18 1RXZ Replication A B 11 2.00

19 1SFI Hydrolase A I 14 1.65

20 1SSH Contractile protein A B 11 1.40

21 1 T08 Cell cycle protein A C 15 2.10

22 1T4F Ligase M P 9 1.90

23 1T7R Growth factor protein A B 10 1.40

24 1TFC Transcription A C 11 2.40

25 1 U00 Chaperone protein A P 9 1.95

26 1UJ0 Signaling protein A B 9 1.70

27 1X2R Transcription A B 9 1.70

28 1XOC Transport protein A B 9 1.55

29 1YMT Transcription A B 10 1.20

30 1YUC Transcriptional Regulation A C 14 1.90

31 1YWO Signaling protein A P 10 1.81

32 2A31 Transferase A B 12 1.25

33 2AQ9 Transferase A X 12 1.80

34 2B9H Transferase A C 12 1.55

35 2BBA Signaling protein A P 14 1.65

36 2CCH Cell cycle protein D F 12 1.70

37 2D0N Signaling protein C D 9 1.57

38 2DRK Contractile protein A B 10 1.42

39 2FFF Transferase B A 15 2.23

40 2FKA Signaling protein A B 10 2.00

41 2FMF Signaling protein A B 13 1.99

42 2FTS Structural protein A P 13 2.41

43 2FVJ Signaling protein A B 10 1.99

44 2HO2 Protein binding A B 10 1.33

45 2HT9 Oxidoreductase A X 12 1.90

46 2O02 Toxin protein A P 14 1.50

47 2O4J Growth factor protein A C 12 1.74

48 2O9V Signaling protein A B 10 1.63
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Table 1 The list of all the considered complexes along with their PDB-IDs (Continued)
Sr. No. PDB-ID Classification Protein Chain Peptide Chain Peptide Length PDB Resolution (Å)

49 2P0W Transferase A P 15 1.90

50 2P1O Hydrolase B C 13 1.90

51 2P1T Hormone receptor A B 10 1.80

52 2P54 Transcription A B 12 1.79

53 2PEH Protein binding A C 10 2.11

54 2PUX Hydrolase B C 13 2.00

55 2PUY Transcription B E 10 1.43

56 2QBX Signaling protein B D 11 2.30

57 2QOS Immune System C A 11 1.81

58 2QSE Transcription B D 11 1.85

59 2R7G Transcription repressor C D 10 1.67

60 2V8Y Translation A B 14 2.10

61 2VR3 Cell adhesion protein B D 13 1.95

62 2VWF Signaling A B 14 1.58

63 2W2U Hydrolase A C 11 2.20

64 2WHX Hydrolase A C 14 2.20

65 2XRW Transcription A B 12 1.33

66 2XU7 Transcription B C 12 1.90

67 2XVC Cell cycle protein A B 13 2.15

68 2ZJD Apoptosis protein A B 10 1.56

69 3AWR Transport protein A C 12 2.00

70 3AYU Hydrolase A B 10 2.00

71 3BFQ Structural G F 15 1.34

72 3C3R Transport A B 13 2.02

73 3D32 Transport A C 12 1.30

74 3DS4 Viral protein A T 12 1.12

75 3FDO Cell cycle protein A B 12 1.40

76 3G2S Signaling protein A C 11 1.70

77 3GYT Transcription A B 10 2.40

78 3H1Z Transferase A P 15 1.83

79 3KMR Transcription A C 10 1.80

80 3KUJ Protein binding A B 15 1.40

81 3KUS Protein binding A C 11 1.40

82 3L0E Transcription A B 12 2.30

83 3LLZ Sugar binding A B 14 1.55

84 3OLF Hormone protein A B 11 1.90

85 3P72 Clotting protein A B 11 1.90

86 3P8F Hydrolase A I 14 2.00

87 3PTL Hydrolase A B 10 1.30

88 3QIS Hydrolase A B 13 2.30

89 3RQG Protein binding C E 12 2.50

90 3SFJ Signaling protein A B 10 1.24

91 3SO6 Protein binding A Q 13 1.37

92 3TZY Transferase B C 10 2.20

93 3UP3 Transcription A P 13 1.25

94 3V2X Protein binding A B 11 1.85

95 3VTC Transcription A B 11 1.50

96 3W1B Ligase A B 10 2.40
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methods (ZDOCK, Hex, PatchDock, and pepAT-
TRACT) and generated top 20 docking poses for each
complex and compute the performance of the methods.
We observed that the performance of all the docking
methods improved during the re-docking study (Table 3).
ZDOCK performed better than other docking methods
for the top pose as well as for the best pose; followed
by Hex. In the case of ZDOCK, L-RMSD improved
from 15.85 Å to 8.60 Å for top docking pose and
from 7.53 Å to 2.88 Å for the best pose. FNAT,
L-RMSD and I-RMD values for all the individual

complexes are given separately in Additional file 1:
S6-S8.

Ranking ability of methods
Ideally top pose assigned by a docking method should
have the best performance, but in reality, it is not always
correct. Thus, the docking method faces two major chal-
lenges, (i) how to generate the best docking poses and
(ii) ranking these docking poses based on their perform-
ance. In order to rank docking poses, the different
method uses different scoring functions. Thus, the

Table 1 The list of all the considered complexes along with their PDB-IDs (Continued)
Sr. No. PDB-ID Classification Protein Chain Peptide Chain Peptide Length PDB Resolution (Å)

97 3ZQH Transcription A C 12 1.60

98 4B4N Viral protein A B 15 1.81

99 4DCB Hydrolase A F 11 2.03

100 4E34 Transport B D 10 1.39

101 4EIK Protein binding A B 11 1.60

102 4ERY Transcription A D 14 1.30

103 4F14 Actin binding A B 11 1.20

104 4F1Z Cell adhesion protein A Q 14 2.30

105 4GQ6 Transcription A B 12 1.55

106 4GXL Protein binding A B 11 2.02

107 4GYW Transferase A B 14 1.70

108 4H4F Hydrolase A Q 10 1.90

109 4HOM Hydrolase A B 11 1.90

110 4HTP Hydrolase A C 10 2.25

111 4IIM Endocytosis A C 12 1.80

112 4J8S Protein binding A B 12 1.55

113 4K0U Protein transport A B 15 2.15

114 1CVU Oxidoreductase B F 9 2.40

115 1K5N Immune system A C 9 1.09

116 1OU8 Transport A C 11 1.60

117 1RST Signaling B P 9 1.70

118 2A25 Ligase A B 9 2.20

119 2 CE8 Transcription A X 9 2.03

120 2DYP Immune system A C 9 2.50

121 2FFU Transferase A P 9 1.64

122 2OEI Protein binding A B 9 1.35

123 2R9Q Hydrolase B Y 9 2.20

124 2VKN Membrane protein A C 9 2.05

125 3ASL DNA binding protein A B 9 1.41

126 3ERY Immune system A P 9 1.95

127 3I5R Protein binding A B 9 1.70

128 3IVV Ligase A D 10 1.25

129 3LL8 Protein binding A E 11 2.00

130 3OBQ Transport A B 9 1.40

131 3RM1 Protein binding A B 9 1.24

132 3TJV Hydrolase A B 9 2.40

133 3U9Q Transcription A B 9 1.52
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scoring function plays a crucial role in ranking docking
poses particularly in the identification of top/best pose
out of many poses generated by a method. We tested
the scoring function of all the 6 docking methods on the
PPDbench dataset using blind docking. We analysed top
3, 5, 10 and 20 poses generated by the different software
and computed performance of best poses (Table 2). The
sequential improvement was observed with the increase
of the number of selected poses in all the docking
methods. However, Hex, ZDOCK, PatchDock and AT-
TRACT docking methods show a higher deviation in
the results as clear from Table 2. The scoring function
of FRODOCK seems better for docking studies of pep-
tides compared to other docking methods. Percent of
success rate in reproducing the docked poses within
2.0 Å L-RMSD with the original pose is also presented
in Table 2. ZDOCK show the success rate of 32.33% on
considering the top pose whereas FRODOCK shows a
success rate of 39.09% Docking method pepATTRACT
performed worst among all the docking methods. It
takes the sequence of the peptide instead structure of
the peptide. The method itself predicts the structure of
the peptide from its sequence, and it is possible that pre-
dicted structure of the peptide is not correct.
In order to understand the limits of blind docking, for

each complex we analyse top 20 docking poses

generated by different methods. We identify best dock-
ing pose for a given peptide-complex generated by any
method and compute the performance of best pose. This
process is repeated for all complexes in PPDbench data-
set, and average performance is computed. We achieved
an average performance of 92.92% in term of FNAT,
which is better than the performance achieved by any in-
dividual method. Similarly, we calculated the perform-
ance in term of L-RMSD and achieved an average
L-RMSD value of 1.55 Å. This analysis shows that the
combination of all 6 docking methods can dock almost
all the peptides to their proteins with reasonably high
accuracy (Additional file 1: S9-S10).

Fig. 1 Schematic representation of the workflow of
PPDbench algorithm

Table 2 The performance of best docking pose generated by
different docking methods using blind docking on the
PPDbench dataset

Docking methods FNAT L-RMSD I-RMSD % Success

ATTRACT-20a 66.51 6.16 6.12 54.13

ATTRACT-10 57.44 8.86 8.75 48.87

ATTRACT-5 53.01 10.38 10.23 42.10

ATTRACT-3 48.95 11.74 11.53 39.09

ATTRACT-1 40.86 15.59 15.30 34.58

Hex-20 30.92 25.73 25.64 18.04

Hex-10 26.62 27.85 27.82 17.29

Hex-5 21.33 30.37 30.31 15.03

Hex-3 17.88 31.77 31.70 12.78

Hex-1 13.06 35.64 35.55 10.52

ZDOCK-20 69.67 7.53 7.40 63.90

ZDOCK-10 61.79 9.42 9.27 53.38

ZDOCK-5 57.16 10.87 10.78 48.87

ZDOCK-3 54.14 11.97 11.84 42.85

ZDOCK-1 42.88 15.85 15.74 32.33

PatchDock-20 55.99 7.98 7.79 26.31

PatchDock-10 48.01 9.93 9.78 21.05

PatchDock-5 39.78 12.45 12.30 18.79

PatchDock-3 34.55 14.61 14.39 17.29

PatchDock-1 21.83 19.97 19.71 11.27

pepATTRACT-20 27.25 13.76 13.57 1.50

pepATTRACT-10 22.70 16.04 15.84 1.50

pepATTRACT-5 18.67 18.24 18.07 1.50

pepATTRACT-3 16.22 19.55 19.31 0.75

pepATTRACT-1 12.32 22.12 21.88 0.00

FRODOCK-20 71.44 3.72 3.69 55.63

FRODOCK-10 70.79 4.06 3.94 55.63

FRODOCK-5 64.16 6.04 5.92 50.37

FRODOCK-3 62.92 6.79 6.69 50.37

FRODOCK-1 48.40 12.46 12.21 39.09
aNumber indicate number of top docking poses generated by method
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Figure 2(a-b) shows the deviation in the success rate
with the increase in the L-RMSD values. The success
rate is calculated as the percentile of the success in
obtaining the docked poses within the specified
L-RMSD values. In our study, we observed that the suc-
cess rate is not much affected by a slight increase in the
L-RMSD for most of the considered docking methods.
Considering the top 20 solutions, FRODOCK repro-
duced around 82.00% complexes within 4.0 Å L-RMSD.
Thus, the performance of FRODOCK is much better as
compared to other 5 docking methods. Figure 2(a-b) also
shows the complete failure of docking of all the docking
methods (more than 30 Å L-RMSD) for some of the
complexes. It is clear from Additional file 1 S11, devi-
ation in the success rate with the increase in the
I-RMSD values follow the same trend as the deviation in
the success rate with the increase in L-RSMD values.
Any successful scoring function should either produce
the top score pose as the best pose or should show the
minimum deviation between these two poses. In order
to understand the difference between top pose and best
pose generated by each method, we calculate the percent
of complexes having L-RMSD (difference in best and
top pose) in a different range (Table 4). In most of the
cases (~ 56.00%), top and best pose generated by

FRODOCK have no difference with L-RMSD 0.00. As
shown in Table 4, the scoring function of FRODOCK,
ATTRACT and ZDOCK are better than other methods.

Reproducibility of docking poses
Ideally, docking pose generated by a method and ranking
of docking poses should be same every time for a given
protein-peptide complex. In order to check reproducibil-
ity, we generate docking pose using blind docking for
each complex two times called “First docking” and “Sec-
ond Docking” for each docking method. Then we com-
pute the performance of each method for “First
Docking” and “Second Docking” as well as the difference
in the performance. As shown in Table 5, for most of
the methods, the difference was either zero or negligible.
It means the results of docking methods are reprodu-
cible (Table 5).

Molecular analysis
Resolution analysis
The quality of structure of a complex depends on the
resolution of the crystal structure. The quality of bench-
marking depends on the quality of the complex struc-
ture as it is used as a standard of truth or reference for
measuring quality docking pose. Thus, we divide
protein-peptide complexes into two groups having the
resolution between 1 and 2 Å and between 2 and 3 Å.
Then we compute performance in term of L-RMSD of
all methods using blind docking for above two group of
complexes. In case of top pose, the performance of all
method except FRODOCK improves for complexes hav-
ing resolution 1–2 Å (Figure 3(a)). In case of best pose,
the performance of all methods except Hex improves for
complexes having resolution 1–2 Å than complexes hav-
ing resolution 2–3 Å (Figure 3(b)). This is expected as
the quality of evaluation also depend on the resolution
of complex structures. Average value of FNAT and
I-RMSD was also analysed for the top pose (Add-
itional file 2:(a-b)) and best pose (Additional file 3:(a-b)).

Rotatable bonds
We group protein-peptide complexes based on rotat-
able bonds in the peptide to understand the effect of
rotatable bonds on quality of docking pose generated
by different methods (Tables 6, 7, 8). Considering
average L-RMSD, we found the different behaviour of
software in docking results with respect to the num-
ber of rotatable bonds. When the top pose was con-
sidered, FRODOCK and ATTRACT were found to
perform better for complexes either having a smaller
number of rotatable bonds or larger bonds while
other software showed a decline in the performance
with the increasing number of rotatable bonds. In
case of best pose, the situation was a little different.

Table 3 The performance best docking pose generated by
different docking methods using re-docking on the PPDbench
dataset

Docking methods FNAT L-RMSD I-RMSD % Success

Hex-20a 78.66 4.55 4.44 69.17

Hex-10 75.73 5.25 5.18 66.17

Hex-5 71.24 6.50 6.41 65.41

Hex-3 66.76 7.74 7.66 61.65

Hex-1 59.44 10.63 10.49 56.39

ZDOCK-20 89.61 2.88 2.81 85.71

ZDOCK-10 84.55 3.85 3.76 78.95

ZDOCK-5 80.77 5.14 5.04 75.19

ZDOCK-3 79.06 5.67 5.56 69.92

ZDOCK-1 68.44 8.60 8.44 55.64

PatchDock-20 63.14 5.14 5.05 32.33

PatchDock-10 55.64 6.73 6.63 29.32

PatchDock-5 48.30 8.22 8.08 24.81

PatchDock-3 43.25 9.46 9.27 23.31

PatchDock-1 29.03 13.36 13.13 18.80

pepATTRACT-20 39.07 8.21 8.07 3.76

pepATTRACT-10 34.82 9.17 9.02 2.26

pepATTRACT-5 30.32 10.03 9.83 2.26

pepATTRACT-3 27.20 10.87 10.70 2.26

pepATTRACT-1 21.11 12.32 12.07 1.50
aNumber indicate number of top docking poses generated by method
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ZDOCK and FRODOCK were found to perform bet-
ter than other software (Tables 6, 7, 8).

Secondary structure analysis
We divide protein-peptide complexes into two groups
based on the secondary structure of the peptides. The first
group contains peptides dominated by regular secondary
structure (e.g., Helix, Sheet). The second group is

dominated by the peptide structure comprising coils. We
compute performance of the docking methods using blind
docking on both groups of complexes separately. The per-
formance in term of L-RMSD for two group is shown in
Figure 4. In case of top pose, all methods except Hex per-
formed better on protein-peptide complex dominated by
the coil in comparison (Figure 4(a)). A similar trend was
observed for best docking pose, where most of the method

Fig. 2 L-RMSD values obtained for all the docking methods on the PPDbench dataset for the (a) Top poses and (b) Best pose

Table 4 Percentile of success rate where ‘Top pose’ and ‘Best pose’ are same or within the range of some specified differences

(Best – Top) RMSD (Å) ATTRACT Hex ZDOCK PatchDock pepATTRACT FRODOCK

0.00 24.81 14.28 24.81 18.04 12.03 55.63

0.00–1.00 18.79 0.75 14.28 1.50 12.03 0.75

1.00–2.00 0.75 9.77 6.76 3.00 8.27 0.75

2.00–5.00 11.27 15.78 14.28 9.77 16.54 5.26

5.00–10.00 10.52 16.54 10.52 13.53 13.53 5.26

> 10.00 33.83 42.85 29.32 54.13 37.59 32.33
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perform better for peptides dominated by the coils (Figure
4(b)). Average value of FNAT and I-RMSD was also ana-
lysed for the top pose (Additional file 4(a-b)) and best
pose (Additional file 5(a-b)). This analysis indicates that
docking peptides having regular secondary structure is
more difficult than peptides having no regular secondary
structure. One of the possible explanation for this result
could be the flexible nature and high degree of freedom of
coiled peptides in comparison to helical peptides which is
more rigid and possess a lesser degree of freedom. Coiled
peptide might adapt better conformational change during
docking to find the near-native pose. Also, in previous
studies, it has shown that the formation of coiled-coil in
peptide help in better docking with the receptor molecule
[68, 69]. Similarly, in another study, it was shown that the
docking method performed better on coiled peptides [70].

Categorization of PPDbench dataset and the performance
of the method
When we analysed the classification of the PPDbench
dataset (Table 1), we found that most of the complexes
belong to the enzymatic class, for example, hydrolase,
ligase, oxidoreductase, transferase (around 27%), tran-
scription (~ 17%) or to signaling proteins (~ 12%). Rest
of the complexes were present in other classes like
structural proteins, membrane proteins, binding pro-
teins, etc. Overall, a good amount of diversity was
present in the dataset. Based on the blind docking result
and considering the top pose with lowest L-RMSD value,
we analysed the group of complexes preferred by each
software (Table 9). FRODOCK performed best on 42
complexes out of 133 which belongs majorly to Tran-
scription and Signaling protein class. ATTRACT
achieved 2nd position by performing best on 35

complexes where most of them belong to the Enzymatic
class, Immune system class or Signaling protein class.
ZDOCK performed best on 30 complexes, and during
analysis, we didn’t find any specific class which is pre-
ferred over another. Likewise, PatchDock performed best
on 15 complexes in total, and the class diversity was a
mix. However, it didn’t cover complexes belonging to
Signaling proteins or Structural proteins class. Hex
showed lowest L-RMSD only for 8 complexes, belonging
to class Signaling proteins or Transcription and lastly,
pepATTRACT was found best only on 3 complexes.

Performance on benchmarking data used in previous
studies
Rentzsch and Renard evaluated the performance of
AutoDock Vina on a dataset of 47 protein-peptide com-
plexes, where the length of peptide varies from 2 to 5.
Rentzsch and Renard also generated 20 docking poses
and compute performance of top pose as well as the per-
formance of best docking pose. We also evaluated our
methods on this dataset; unfortunately, few methods fail
on certain PDB IDs, or there were certain issues due to
which we didn’t involve them in our study. For example,
pepATTRACT failed on PDB files 1PAU, 8GCH, 1JQ9
and 5SGA, ATTRACT failed on IDs 1PAU and 1BE9,
FRODOCK failed on 1PAU and 5SGA. After analysing
these files, we found that one potential reason for the
failure of different docking methods is the presence of
non-natural residues (example ACE, ACY) in the pep-
tide of these complexes. Likewise, we didn’t get any con-
tacts for the IDs 1BHX and 3TPI as per our criteria
(mentioned in Material and Methods) during re-docking
studies. Therefore, we excluded these 7 IDs and pro-
ceeded with 40 peptide-protein complexes instead of 47

Table 5 The performance of best docking pose generated by different methods and difference in performance of docking poses
generated in two events on the PPDbench dataset

Docking
Method

First Docking Second Docking Difference (First-Second)

FNAT L-RMSD I-RMSD FNAT L-RMSD I-RMSD FNAT L-RMSD I-RMSD

ATTRACT-20a 66.51 6.16 6.12 66.51 6.16 6.12 0.00 0.00 0.00

ATTRACT-1 40.86 15.59 15.30 40.86 15.59 15.30 0.00 0.00 0.00

Hex-20 30.92 25.73 25.64 30.60 25.77 25.72 0.32 0.04 0.08

Hex-1 13.06 35.64 35.55 12.33 35.39 35.38 0.73 0.25 0.17

ZDOCK-20 69.67 7.53 7.40 69.68 7.53 7.40 0.01 0.00 0.00

ZDOCK-1 42.88 15.85 15.74 42.86 15.85 15.74 0.02 0.00 0.00

PatchDock-20 55.99 7.98 7.79 56.00 7.98 7.79 0.01 0.00 0.00

PatchDock-1 21.83 19.97 19.71 21.87 19.97 19.71 0.04 0.00 0.00

pepATTRACT-20 27.25 13.76 13.57 27.26 13.76 13.57 0.01 0.00 0.00

pepATTRACT-1 12.32 22.12 21.88 12.33 22.12 21.88 0.01 0.00 0.00

FRODOCK-20 71.44 3.72 3.69 71.44 3.72 3.69 0.00 0.03 0.00

FRODOCK-1 48.40 12.46 12.21 48.39 12.46 12.21 0.01 0.00 0.00
aNumber indicate number of top docking poses generated by method
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for benchmarking methods used in this study. We re-
ferred this dataset (40 protein-peptide complex struc-
tures) as Vina dataset. We performed blind docking
using 7 docking methods including AutoDock Vina and
evaluate the performance of all methods (Table 10). In
the case of top docking pose, PatchDock got the average
L-RMSD value of 12.21 Å; performing better than other
methods. Similarly, FRODOCK achieved an average
L-RMSD value of 4.45 Å in case of best docking pose;
performing better than other methods. We also evaluate
the re-docking ability of four docking methods only as
some of the methods do not have provision for
re-docking. In the case of re-docking, we have not
evaluated the re-docking ability of AutoDock Vina in-
stead we have taken performance reported by authors
for these complexes. As shown in Table 10, AutoDock

Vina performed better than other methods. The per-
formance of different docking methods in detail is de-
scribed in Additional file 1: S12-S13.
Recently, Hauser and Windshugel used LEADS-PEP

dataset for benchmarked re-docking ability of four dif-
ferent protein-ligand docking software AutoDock, Auto-
Dock Vina, Surflex, and GOLD. We compare three
datasets (LEADS-PEP dataset, with our dataset of 133
complexes and 40 complexes of dataset created by
Rentzsch and Renard) and found 10 common
protein-peptide complexes (8 complexes from the
PPDbench dataset and 2 complexes from Vina dataset).
On these 10 common complexes, we evaluate the per-
formance of top and best docking pose generated by
docking methods used in our study. We have taken the
performance of other methods as reported by their

Fig. 3 The performance of different docking methods on the PPDbench dataset with resolution 1–2 Å and 2–3 Å for (a) Top pose and (b) Best
pose based on average L-RMSD value
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authors (Table 11). Z-DOCK achieved an average
L-RMSD value of 4.87 Å and 2.14 Å for the top and best
docking pose respectively, which is better than other
methods.

Platform for benchmarking
In order to facilitate the scientific community, we devel-
oped a web server or portal called PPDbench for bench-
marking docking methods. This web server consists of
following modules: (i) Single: This module is developed
to provide a tool to calculate FNAT, I-RMSD and
L-RMSD values for a single docked protein-peptide
complex. (ii) Batch: This module is designed to calculate

the above parameters for more than one complex. The
user needs to submit the original and their respective
docked poses separately in zip format for batch mode. A
complete dataset used in this study with all the recep-
tors, ligands and their respective complexes are available
in the web server for downloading. PPDbench web ser-
vice is freely accessible at http://webs.iiitd.edu.in/
raghava/ppdbench/.

Conclusions
In this study, we selected 133 protein-peptide complexes
to rigorously validate the applicability of 6 widely used
docking methods for studying protein-peptide interac-
tions. We generated 20 docked poses for each
protein-peptide complex using different docking
methods to evaluate their performance. The study shows
that in the case of blind docking FRODOCK performed
best among all methods whereas, in the case of
re-docking, ZDOCK performed best. One of the possible
explanation for this result is that ZDOCK is a FFT based
docking algorithm and its scoring functions comprise of
pairwise shape complementarity with desolvation and
electrostatics. When binding site information is not
present the method performs a complete search over the
protein surface for locating the ligand binding site. How-
ever, when the binding site information is known, it re-
stricts the search to the complementarity region and
hence probability of obtaining near-native pose is much
higher. This could be one of the reasons why ZDOCK
performs better in re-docking in comparison to blind
docking. However, FRODOCK is an initial stage rigid
body docking algorithm which optimizes different inter-
actions such as van der Waals interactions, electrostatic
interaction and desolvation potentials using a new fast

Table 6 The performance of best docking poses having
different number of rotatable bonds in term of FNAT; poses
generated by different methods on the PPDbench dataset

Docking
methods

Rotatable bonds

0–40 41–60 > 60

ATTRACT-20a 62.90 63.85 79.91

ATTRACT-1 40.93 38.55 48.25

Hex-20 31.96 29.78 33.08

Hex-1 08.12 15.06 13.58

ZDOCK-20 78.51 65.30 71.41

ZDOCK-1 41.15 42.98 44.83

PatchDock-20 55.09 59.25 46.95

PatchDock-1 27.00 22.02 14.37

pepATTRACT-20 43.60 21.69 22.41

pepATTRACT-1 22.03 09.26 08.70

FRODOCK-20 73.42 69.47 75.08

FRODOCK-1 49.78 46.17 53.75
aNumber indicate number of top docking poses generated by method

Table 7 The performance of best docking poses having
different number of rotatable bonds in term of L-RMSD; poses
generated by different methods on the PPDbench dataset

Docking methods 0–40 41–60 > 60

ATTRACT-20a 6.00 6.76 4.49

ATTRACT-1 11.78 17.03 16.21

Hex-20 23.55 26.07 27.63

Hex-1 33.56 35.72 38.21

ZDOCK-20 4.76 8.26 8.98

ZDOCK-1 11.96 16.97 17.62

PatchDock-20 9.16 7.28 8.51

PatchDock-1 16.54 20.16 24.05

pepATTRACT-20 9.44 15.61 13.81

pepATTRACT-1 16.64 22.80 27.48

FRODOCK-20 2.75 4.28 3.25

FRODOCK-1 10.25 13.97 10.70
aNumber indicate number of top docking poses generated by method

Table 8 The performance of best docking poses having
different number of rotatable bonds in term of I-RMSD; poses
generated by different methods on the PPDbench dataset

Docking methods 0–40 41–60 > 60

ATTRACT-20a 5.99 6.73 4.42

ATTRACT-1 11.33 16.77 16.11

Hex-20 23.35 25.99 27.66

Hex-1 33.42 35.65 38.13

ZDOCK-20 4.74 8.09 8.85

ZDOCK-1 11.73 16.92 17.49

PatchDock-20 8.93 7.09 8.39

PatchDock-1 16.32 19.84 23.93

pepATTRACT-20 9.31 15.34 13.79

pepATTRACT-1 16.49 22.47 27.40

FRODOCK-20 2.73 4.22 3.29

FRODOCK-1 9.97 13.70 10.53
aNumber indicate number of top docking poses generated by method
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Fig. 4 The performance of different docking methods on the PPDbench dataset with different secondary structure for (a) Top pose and (b) Best
pose based on average L-RMSD value

Table 9 Clustering result of docking method showing the PDB IDs for which it performed best during blind docking when top
pose was considered

Sr.
No.

Docking
Method

Number of
Complexesa

PDB ID

1 ZDOCK 30 1CJR, 1CKA, 1H6W, 1YMT, 2AQ9, 2CCH, 2D0N, 2DRK, 2FTS, 2HO2, 2P1T, 2VWF, 2WHX, 2XU7, 2ZJD, 3G2S, 3H1Z,
3KMR, 3KUS, 3V2X, 3VTC, 4F1Z, 4J8S, 4K0U, 1RST, 2DYP, 3ASL, 3I5R, 3IVV, 3LL8,

2 ATTRACT 35 1D4T, 1JBU, 1NLN, 1PZL, 1QKZ, 1RXZ, 1SFI, 1SSH, 1UJ0, 2A3I, 2B9H, 2BBA, 2FKA, 2HT9, 2O4J, 2PUY, 2V8Y,
3AYU, 3BFQ, 3D32, 3KUJ, 3OLF, 3P8F, 3QIS, 3SFJ, 3SO6, 4E34, 4EIK, 4ERY, 4F14, 4GXL, 4H4F, 2 CE8, 2VKN, 3ERY

3 FRODOCK 42 1MFG, 1NTV, 1NX1, 1OJ5, 1OW6, 1 T08, 1T4F, 1T7R, 1TFC, 1 U00, 1YUC, 1YWO, 2FFF, 2FMF, 2O9V, 2P0W, 2P1O,
2P54, 2PEH, 2PUX, 2QOS, 2QSE, 2R7G, 2W2U, 2XRW, 2XVC, 3C3R, 3FDO, 3GYT, 3L0E, 3TZY, 3UP3, 3W1B, 4GYW,
4HTP, 1K5N, 1OU8, 2FFU, 2R9Q, 3OBQ, 3RM1, 3TJV

4 PatchDock 15 1HC9, 1X2R, 1XOC, 2O02, 2VR3, 3DS4, 3P72, 3PTL, 3RQG, 4B4N, 4DCB, 4GQ6, 4HOM, 1CVU, 2A25

5 Hex 8 1EG4, 1NQ7, 2FVJ, 2QBX, 3AWR, 3LLZ, 4IIM, 3U9Q

6 pepATTRACT 3 1OAI, 3ZQH, 2OEI
aNumber of complexes for which software performed best
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rotational algorithm based on spherical harmonics (SH).
In the previous studies, SH has been shown to enhance
the docking efficiency [65, 71] and inspired by these
studies, FRODOCK implemented the same in their algo-
rithm for enhancing the docking efficiency. This ap-
proach increased the searching by accelerating the 3
rotational degrees of freedom. This novel approach
could be one of the main reason for the better perform-
ance of FRODOCK over the other methods in case of
blind docking. Also, the procedural differences (such as
the use of search constraints, the definition of interface

residues in the evaluation, statistical differences in the
number of runs and different sampling sizes) and differ-
ent approximations probably facilitates FRODOCK to
provide better results compared to ZDOCK in blind
docking [35]. Therefore, based on our study we pro-
posed FRODOCK for performing blind docking and
ZDOCK for re-docking.
It was observed that most of the docking method fails

to rank their docking pose successfully, as the perform-
ance of their best pose is much better than the top pose
(Table 2). Thus, there is a need to develop new scoring
functions which can rank docking poses with high preci-
sion. We combine docking pose generated by different
methods for a protein-peptide complex and compute
performance of best pose. It has been observed that the
performance of best pose obtained from different
methods collectively is much better than the perform-
ance of pose generated by any individual method. This
observation suggests the need for a universal scoring
function that can rank pose generated by any method.
Our study also suggests the utilization of high-resolution
protein-peptide complex structures for benchmarking.
In order to facilitate scientific community, we develop a
web-based platform that provides benchmarking dataset
as well as tools to evaluate the performance of docking
poses.

Material and methods
Dataset for benchmarking
We created a dataset of 133 protein-peptide complexes
by combining peptiDB dataset and ACCLUSTER dataset.
The peptiDB [72] and ACCLUSTER [73] datasets consist
of 103 and 251 protein-peptide complexes respectively.
We removed all those complexes having more than 1
protein chain or where the length of the peptide was less
than 9 or more than 15 residues. We also removed com-
plexes containing any modified residue and complexes
corresponding to obsolete PDB entry. After applying the
above filters, we were left with 44 protein-peptide com-
plexes from the peptiDB dataset and 115 from
ACCLUSTER dataset. We combined both the datasets
and selected unique protein-peptide complexes since
there were some common PDB IDs in both the datasets.
Finally, we were left with unique 133 protein-peptide
complexes, and this dataset is referred as PPDbench or
main dataset. The detail information of all the selected
complexes is given in Table 1. We processed the pro-
teins and peptide chains before docking. All heteroatoms
(for example metal ions, water molecules) were re-
moved, if an atom has alternative locations (coordinates)
then the only ‘A’ coordinates were considered, and rest
were removed, missing atoms (if any) in the PDB file
were modeled and completed using Modeller software
[74]. We also calculated redundancy among the 133

Table 10 The performance of different docking methods on
Vina dataset (40 protein-peptide complexes) in terms of average
L-RMSD

Docking methods Blind docking Re-docking

Autodock Vina-20a 9.80 2.09

Autodock Vina-1 17.13 4.25

Hex-20 23.70 3.50

Hex-1 30.16 9.98

ZDOCK-20 11.16 11.48

ZDOCK-1 17.76 18.25

PatchDock-20 4.54 3.49

PatchDock-1 12.21 8.96

pepATTRACT-20 7.28 4.31

pepATTRACT-1 13.57 7.89

FRODOCK-20 4.45 NA#

FRODOCK-1 13.77 NA

ATTRACT-20 8.13 NA

ATTRACT-1 14.43 NA
aNumber indicate number of top docking poses generated by method; #NA
re-docking provision is not available

Table 11 The performance of different docking methods on
common 10-protein-peptide complexes, in term of their re-
docking ability

Docking
Method

L-RMSD

Top pose Best pose

AutoDock 8.31 5.77

Autodock Vina 8.37 4.57

Surflex-Dock 8.02 4.96

GOLD (ASP)a 8.52 4.65

GOLD (CP)a 9.59 5.51

GOLD (CS)a 9.86 4.99

GOLD (GS)a 6.39 3.95

Hex 12.27 9.55

ZDOCK 4.87 2.14

PatchDock 11.98 4.22

pepATTRACT 13.07 7.66
aASP, CP, CS and GS are different scoring functions

Agrawal et al. BMC Bioinformatics 2019, 19(Suppl 13):426 Page 118 of 242



proteins using CD-HIT software [75]. The redundancy
was calculated at 40% sequence similarity at default pa-
rameters (−c = 0.4, −n = 3, and -M = 400) since it is a
well-established standard approach [76, 77].
Complexes present in the PPDbench or main dataset

contain long peptides with the number of residues be-
tween 9 to 15 residues, in contrast to previous studies
where small peptides were used. To provide a compre-
hensive picture, we also evaluated the performance of
the above docking methods on protein-peptide com-
plexes used in previous studies. The first dataset is of 47
protein-peptide complexes having peptide length up to 5
residues, used in a study by Rentzsch and Renard. In this
study, authors evaluated the performance of AutoDock
Vina on a meta-data set of 47 protein-peptide complexes
based on existing 11 publications, with peptide length
up to 5 residues. Re-docking and Semi-blind docking
were performed with the maximum number of poses set
to 20, energy range to 10 and exhaustiveness level-up to
1024. At the end of the study, authors concluded that in-
creased sampling made the result more reproducible and
improved the primary rigid docking result however no
change in the case of flexible docking was observed.
Also, there was no correlation present in between the
ranked pose and the native pose. The overall perform-
ance of AutoDock Vina performance was case
dependent and poor for peptides with more than 4 resi-
dues [55]. However, in our study, we used only 40 com-
plexes out of 47 which are suitable for docking (reason
for excluding 7 complexes is explained in the results sec-
tion). We referred this dataset as Vina dataset.
The other dataset was the LEADS-PEP dataset, used

for benchmarking different docking methods in a study
by Hauser and Windshugel [56]. The dataset comprises
53 protein-peptide complexes with peptide length 3–12.
Authors evaluated the performance of four docking
methods namely AutoDock, AutoDock Vina, Surflex and
GOLD with different scoring functions. The result
showed that all the software were able to reproduce con-
formations of the peptides up to 4 residues. However,
performance declined with increasing peptide length.
Author also concluded that implementing the scoring
function, the performance of the methods improved in
identifying near-native pose. Overall the performance of
GOLD:ASP in combination with CS rescoring was the
method of choice in this study.

Shifting Cartesian coordinates of peptides for blind
docking
In order to evaluate blind docking ability of a docking
method, one should not provide any information related
to peptide binding site. The Cartesian coordinate of pep-
tide structure already has information of binding site
since we have taken the peptide from the

protein-peptide complex. Thus, it is important to change
the Cartesian coordinates of a peptide without changing
the structure of the peptides. In this study, we converted
the Cartesian coordinates to Internal coordinates and
back from Internal to Cartesian coordinates using the
following approach. The Cartesian coordinates of 133
peptides were converted to internal coordinates using
“dihed.pl”, a perl script of MMTSB toolkit [78]. All dihe-
dral angles of ligand were calculated and using these di-
hedral angles, the structure of the ligands was
reconstructed using “tleap” module of AMBER [79]. In
this way, original information of peptide coordinates is
lost in the new structure.

Re-docking on PPDbench dataset
Re-docking is preferred over blind docking if one knows
the binding site of peptide/ligand on protein/receptor
[80]. We also performed re-docking to generate docking
pose using different methods on the PPDbench dataset
of 133 protein-peptide complexes. In order to perform
re-docking, we obtained information about all interact-
ing residues, which were in contact with any of the pep-
tide heavy atom within range of 5 Å using the script
from pdbtools [81]. This binding site information was
provided to all docking methods for performing
re-docking. In the case of re-docking, we used original
peptides instead of a modified structure with shifted
coordinates.

Docking protocol
Detail description of all the 6 docking methods along
with the parameters used for running the experiment is
given below.

Attract
The method is based on the randomized search algo-
rithm. It performs a systematic docking based on energy
minimization of the protein in the translational and ro-
tational degree of freedom. This docking approach
adopts the protocol where each amino acid of a protein
is represented by up to three pseudo-atoms. This reduc-
tion of protein helps in faster energy minimization and
also helps in finding docking energy minima on the pro-
tein surfaces. Scoring function used in this program is
Lennard-Jones type effective potentials and electrostat-
ics. It is relatively simple and distinguishes between
hydrophobic and hydrophilic side chains. Here,
residue-residue potential has been used which ranks
amount of surface complementarity, hydrophilic or
hydrophobic nature of contracting protein regions dur-
ing docking experiment. This docking approach was
built to provide fast docking method that can account
for side-chain conformational flexibility. The program is
written in Python and C++ and is part of the
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object-oriented PTools library. This library consists of
several routines to manipulate the structure of proteins,
to prepare and perform docking and to analyze the re-
sults obtained after docking.
For blind docking, we uploaded the receptor and lig-

and file onto the “Partners” tab of the server with Gener-
ate Harmonic Mode and RMSD calculation option off.
No files were loaded in the “Sampling” tab. In “Energy
and Interaction” tab, grid-accelerated docking option
was checked but not the iATTRACT refinement [82].
The number of poses was set to 20 in “Analysis” tab and
lastly in computation 1 processor core was used. In AT-
TRACT we can provide grid size but in our case soft-
ware itself calculated it. After providing this information,
we download the ready-to-use script. The script was fur-
ther run on the local machinery. ATTRACT performs
1000 minimization steps on each starting structure by
default since the grid option was provided. No provision
of re-docking is available in the ATTRACT, and hence
re-docking study was not performed.

Hex 8.0.0
Hex 8.0.0 is another popular and widely used method
for protein-protein docking. This program uses Spherical
Polar Fourier (SPF) correlations rather than Fast Fourier
Transform (FFT) based search. In SPF search, 5 rota-
tional and 1 translational degree of freedom is present
which reduces the execution time to few minutes
whereas in FFT based search 3 rotational and 3 transla-
tional degrees of freedom is there. This SPF algorithm of
Hex has been validated in CAPRI blind docking ex-
periment [34]. Hex uses the strategy of densely sam-
pling the search space and then cluster the solutions
showing similar orientation. In its scoring scheme,
Hex calculates shape complementarity excluded vol-
ume with an optimal in vacuo electrostatic contribu-
tion. The Hex docking algorithm has also been
implemented in the form of a web server known as
HexServer. This server takes PDB files as an input
and provides high-quality docking predictions for fur-
ther refinement. In recep.mac file (which is a macros
file) we set the docking receptor samples to 492,
docking ligand sample to 492, docking alpha samples
to 128, receptor range angle to 30, Ligand range
angle to 30, twist range angle to 30, R12 range as 31,
R12 step to 0.75, grid size to 0.6, docking main scan
to 16 and docking main search to 25. These values
are macros value, and we have taken it from the Hex
manual pdf. These values were common for both
blind and re-docking. The only difference was that in
blind docking we used ‘nopos’ option in the script
file, whereas during re-docking we used ‘pos’ option
because this option position ligand near receptor dur-
ing docking.

PatchDock 1.0
PatchDock 1.0 is a molecular docking method, which is
based on shape complementarity theory. The algorithm
of PatchDock is inspired by the technique of object rec-
ognition and image segmentation. Surfaces of the two
given molecules are divided into different patches on the
basis of their shape. These patches are matched with the
corresponding generated patterns. Once the identifica-
tion of patches is completed, they are mapped using the
shape-matching algorithm. The patches identified
retained the “hot spot” residues. For surface-patch map-
ping, PatchDock implies hybrid of the Geometric Hash-
ing and Pose-Clustering machine algorithms. Complexes
are ranked according to their geometric shape comple-
mentarity score. PatchDock algorithm is available as a
web server for docking. Here in this study, option “drug”
was given as complex type during blind docking with
the default clustering RMSD parameter of 4 Å. The
‘drug’ option is given when docking is performed for the
small molecules like peptide, drug, etc. However, in the
case of re-docking, we provided additional information
about residues involved in receptor active site which was
used during docking.

ZDOCK3.0.2
ZDOCK3.0.2 is one of the widely used protein-protein
docking method developed at Weng lab and is based on
rigid-body Fast Fourier Transform docking algorithm.
The scoring function of ZDOCK is a combination of
pair-wise shape complementarity (PSC) with desolvation
(DE) and electrostatics (ELEC) where desolvation is the
main component of the ZDOCK’s competitive function.
The algorithm performs the global search over the pro-
tein rotational and translational space in the absence of
binding site information. Chen and Weng benchmarked
these scoring functions individually and in combination
and showed that the overall combination of PSC + DE +
ELEC performed best and is responsible for the better
performance of ZDOCK. ZDOCK web server has also
been developed for the docking purpose to help
researchers.
In case of blind docking, receptor and ligand file were

processed using “mark_sur” and “uniCHARMM” binary
files as mentioned in the README file of the software.
ZDOCK generate the grid size according to the size of
the protein. The default spacing between the grid cells
was constant of 1.2 Å, and by default, the receptor was
fixed during docking with the initial rotation of the lig-
and with Euler angle 0. However, during the re-docking
study, we blocked those residues which were not present
in the receptor active site using perl script ‘block.pl’
given in the software along with the above-mentioned
default parameters.
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pepATTRACT
pepATTRACT is a recently developed docking approach
specifically for docking peptide and protein. This pro-
gram is a part of ATTRACT and is quite flexible in na-
ture. pepATTRACT takes the sequence of the peptide as
an input and generates its own peptide models. pepAT-
TRACT performs rapid coarse-grained ab-initio global
docking onto protein surfaces. This docking method se-
lects top models on the basis of ATTRACT ranking
score and performs atomistic refinement using iAT-
TRACT [82]. After the refinement, top 1000 models are
selected and refined using molecular dynamics simula-
tions with AMBER14. Finally, models are clustered using
the fraction of common residue contacts and are ranked
on the basis of the average energy value of the top 4
ranking members.
In case of blind docking, receptor and ligand file were

uploaded onto the “Partners” tab of the server with
RMSD calculation option off. In the case of pepAT-
TRACT, no “Sampling” tab is there. In “Energy and
Interaction” tab, grid-accelerated docking and iAT-
TRACT refinement options were checked. Number of
poses were set to 20 in “Analysis” tab and lastly in com-
putation 1 processor core was used. It performs 1000
minimization steps on each starting structure by default
since grid option was provided. After providing this in-
formation, we download the ready-to-use script with the
above-mentioned information. The script was further
run on the local machinery. In case of re-docking, in
addition to the above-mentioned parameters, we provide
the list of active residues directly involved in the inter-
action in the Protein section of Partner tab.

FRODOCK 2.0
FRODOCK is one of the popular and widely used servers
for protein-protein docking. It was ranked 4th among the
18 docking/scoring function tested. Earlier version of FRO-
DOCK was based on the principle of 3D grid-based poten-
tials with spherical harmonics (SH) properties. However,
recently developed version FRODOCK 2.0 includes an
extra knowledge-based potential, which helps in improving
docking success rate more significantly. It combines 3 bind-
ing energy van der Waals, desolvation, and electrostatics
interaction and optimizes it by using new fast rotational
docking algorithm based on spherical harmonics which is
coupled with systematic translational search. The scoring
function was improved by adding complementary
coarse-grained knowledge-based protein-protein docking
potential [83]. FRODOCK allows the user to predict
protein-protein complexes using unbound components in a
few minutes. Scoring function in the server has been opti-
mized for 3 different types of interactions, i.e.
enzyme-substrate, antigen-antibody and others.

Web server was used in the case of FRODOCK for
performing docking studies. Files were uploaded onto
the server with the type of interaction “Unknown” which
is the default case. Web server methodology section tells
that in case of FRODOCK electrostatic contribution is
calculated in the range of ±10 Kcal/mol e. buried surface
area of receptor and ligand is calculated using a generic
probe of radius 1.7 Å at the grid points near to the cor-
responding surface. In the case of FRODOCK, there is
no provision of re-docking. Therefore, only blind dock-
ing study was performed using this method.

Performance evaluation parameters
In order to measure the performance of docking poses gen-
erated by the different method, we used parameters namely
FNAT, I-RMSD, and L-RMSD adopted in worldwide com-
petition CAPRI (Critical Assessment of PRedicted Interac-
tions). Mendez et al. proposed “A pair of residues on
different sides of the interface was considered to be in con-
tact if any of their atoms were within 5Å” [84, 85]. FNAT is
the fraction of correct (native) residue-residue contact in
predicted complex divided by residue–residue contacts in
the original complex. We computed L-RMSD and I-RMSD
for measuring the overall geometric fit between the original
complex and predicted complex tertiary structure.
L-RMSD is the backbone root-mean-square deviation of
the ligands in the original and predicted complexes based
on superpositioning of backbone atoms. I-RMSD is the
root-mean-square deviation of the backbone atoms of the
interface (contact) residues in the original and predicted
complexes. In our study, Ptools [86] (an open source mo-
lecular docking library) is used for calculating FNAT and
I-RMSD values and PyMol for calculating L-RMSD values.

Grouping of complexes for molecular analysis
We divided our dataset into two categories based on the
resolution of the structure. In the first group, we put all
those structures whose resolution was in between 1 and
2 Å (89 complexes out of 133 complexes), and the other
group consists of structures whose resolution was in be-
tween 2 and 3 Å (44 complexes out of 133 complexes).
We evaluated the performance of docking methods each
group of complexes. We calculated the number of rotat-
able bonds present in the peptides using PADEL soft-
ware [87]. All 133 complexes were divided into three
groups based on the number of rotatable bonds present
in the peptides (i) peptides having a number of rotatable
bonds in between 0 and 40 (ii) peptides having a number
of rotatable bonds in between 41 and 60 and (iii) pep-
tides having a number of rotatable bonds above 60.
Similarly, we group complexes based secondary struc-

ture of peptides. We assign secondary structure of all
peptides in complexes using DSSP software [88, 89]. We
made two groups of protein-peptide complexes (i)
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regular secondary structure and (ii) coil. Regular second-
ary structure was assigned to that complex whose sum
of helix and sheet content is 60% or more. Rest of the
complexes were assigned to coil category. We also ana-
lysed the class of 133 complexes present in PPDbench
dataset to observe the class preference of different dock-
ing methods. For this, we considered blind docking re-
sult obtained for the top pose. Method which showed
the lowest L-RMSD value for the complex was consid-
ered best for that particular complex.
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