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Abstract

Background: Because driver mutations provide selective advantage to the mutant clone, they tend to occur at a
higher frequency in tumor samples compared to selectively neutral (passenger) mutations. However, mutation
frequency alone is insufficient to identify cancer genes because mutability is influenced by many gene characteristics,
such as size, nucleotide composition, etc. The goal of this study was to identify gene characteristics associated with the
frequency of somatic mutations in the gene in tumor samples.

Results: We used data on somatic mutations detected by genome wide screens from the Catalog of Somatic Mutations
in Cancer (COSMIC). Gene size, nucleotide composition, expression level of the gene, relative replication time in the cell
cycle, level of evolutionary conservation and other gene characteristics (totaling 11) were used as predictors of the
number of somatic mutations. We applied stepwise multiple linear regression to predict the number of mutations per
gene. Because missense, nonsense, and frameshift mutations are associated with different sets of gene characteristics,
they were modeled separately. Gene characteristics explain 88% of the variation in the number of missense, 40% of
nonsense, and 23% of frameshift mutations. Comparisons of the observed and expected numbers of mutations
identified genes with a higher than expected number of mutations– positive outliers. Many of these are known driver
genes. A number of novel candidate driver genes was also identified.

Conclusions: By comparing the observed and predicted number of mutations in a gene, we have identified
known cancer-associated genes as well as 111 novel cancer associated genes. We also showed that adding the
number of silent mutations per gene reported by genome/exome wide screens across all cancer type (COSMIC data)
as a predictor substantially exceeds predicting accuracy of the most popular cancer gene predicting tool - MutsigCV.

Keywords: Catalog of somatic mutations in Cancer, COSMIC, Somatic mutations, Missense, Nonsense, Frameshift
mutations, Cancer genes

Background
Predictive differentiation between functional and
neutral somatic and germline mutations was and
continues to be a hot topic of bioinformatics research.
A number of tools using a number of predictors in-
cluding, level of evolutionary conservation, effect on
protein structure, functional DNA sequences, e.g. tran-
scription factor binding sites and other have been

developed [1–7]. However, more specific topic, namely
development of tools for identification of cancer-asso-
ciated genes gets less attention.
In many cases cancer development is driven by som-

atic mutations. [8] Mutations providing a proliferative
or survival advantage to the mutant clone (drivers)
occur more frequently in tumor samples compared to
selectively neutral (passenger) mutations. [9, 10]
Known cancer-associated genes are among the most
frequently mutated genes. In general, the number of
somatic mutations per gene indicates the gene’s in-
volvement in cancer development. However, a simple
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counting of somatic mutations can be misleading be-
cause the number of mutations per gene depends not
only on the involvement of the gene in tumorigenesis
but also on the gene’s intrinsic mutability that in turn
depends on gene characteristics.
A number of gene characteristics have been shown to

be associated with mutability. It has been shown that
genes with a higher expression level tend to have a higher
frequency of somatic mutations. [11, 12] Another known
gene characteristic associated with mutability is relative
replication time within cell cycle: later replicating genes
tend to have a higher number of somatic mutations. [11,
12] Chromatin accessibility has been shown to be posi-
tively associated with the density of somatic mutations.
[13] Differences in mutation rate of different nucleotide
substitutions, e.g. high frequency of transitions in CpG
sites [14] suggest that nucleotide composition of the gene
also may be associated with mutability. Those and other
gene characteristics are inter-correlated. Gene length has
been shown to be correlated with selective codon usage
(nucleotide composition) [15] Replication timing is corre-
lated with gene expression level [16] We found that size
of the gene positively correlates with the level of evolu-
tionary conservation. [17] Inter-correlations between pre-
dictors call for a multivariate regression model to predict
the number of somatic mutations in the gene. According
to our initial analyses, missense, nonsense and frameshift
may have different sets of predictors (gene characteristics)
and therefore need to be modeled separately. A recent
study by Martincorena et al. [18] used normalized ratio of
non-synonymous to synonymous mutations to identify
genes under positive or negative selection in cancer
evolution. The authors noted that about half of the
identified driver mutations “occur in yet-to-be-discov-
ered cancer genes”.
Our analysis is based on the hypothesis that

inter-gene variation in the number of somatic muta-
tions has two sources: (1) the variation due to differ-
ences in gene characteristics, and (2) the variation due
to the involvement of the gene in cancer development.
We tried to explain the intergenic variation in the
number of somatic mutations by the variation in gene
characteristics. Outliers – genes for which the number
of somatic mutations cannot be explained by gene
characteristics are candidate cancer genes.

Methods
Design of the study
The goal of this study is to build statistical model for
prediction of the expected number of somatic muta-
tions in a given gene based on the gene characteristics.
To build the model we used somatic mutation data
generated by whole exome sequencing of tumor sam-
ples. We separately predicted missense, nonsense, and

frameshift mutations. Residuals from the models were an-
alyzed to detect outliers – genes with a higher-than-ex-
pected number of mutations. The excess of mutations
unexplained by gene characteristics is due to the gene
involvement in cancer development and can be used to
identify cancer-associated genes.

Mutation data
We used mutation data from the Catalog of Somatic
Mutations in Cancer (COSMIC) (accessed August 17,
2017). To ensure uniform testing across all genes, only
mutations detected by whole genome screens were
used. All cancer types were included in the analysis. A
total of 19,147 tumor samples were analyzed. Muta-
tions reported as SNPs were excluded from the ana-
lysis. In total there were 2,233,115 missense, 163,823
nonsense, and 85,272 frameshift (FS) mutations, in-
cluding those resulted from nucleotide insertions as
well as nucleotide deletions.

Gene characteristics
The following gene characteristics were used as predictors:

1.) Gene size. We used data from the NCBI Consensus
coding sequence project to estimate gene coding
region sizes. [19] When multiple transcripts were
reported for the same gene, the largest transcript
was used. A moving average was used to illustrate
the relationship between the gene size and the
number of somatic mutations in it. In brief, genes
were ranked based on the size from shortest to
longest. The sliding window of 100 nucleotides was
moved along the genes with one nucleotide step.
We found that this size of the sliding window is
optimal for smoothing of the relationship while
keeping the effects of strong outliers like TP53
visible. The average size and average number of
mutations were computed for each position of the
window. Scatterplots were used to visualize the
relationship between the gene size and the number of
mutations. The moving average approach was used to
visualize the relationships between the number of
mutations in the gene and other predictors.

2.) Number of potential sites for a given type of
mutations. The type of mutation produced by a
single nucleotide substitution (SNS) depends on
type of SNS (e.g. C > T) and its position in a given
codon. There are three possible SNSs per each
nucleotide position which makes the total number
of all possible SNSs in the gene equal to 3xN, where
N is the length of the coding region in nucleotides.
We predicted outcomes of all possible SNSs in each
gene to estimate the number of SNSs producing
missense, nonsense or silent mutations in the gene
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– the number of potential sites in a gene for a given
type of somatic mutations.

3.) Nucleotide composition. For each gene we estimated
the proportions of each of the four nucleotides in
the coding region of the gene. The relationship
between the percentage of each nucleotide and
mutation densities were analyzed. Mutation
densities were computed as the ratios of the total
number of mutations to the size of the coding
region of the gene in nucleotides. We used the
density rather than the number of mutations per
gene to account for the effect of the gene size.

4.) Percentage of CpGs. Mutation rate is known to be
higher in CpG dinucleotides [14] suggesting that
genes with a higher proportion of CpG may have a
higher mutation rate and as a result a higher
number of somatic mutations. We used percentage
of CpGs as a predictor of mutation density.

5.) Evolutionary conservation. Some studies indicate
that evolutionary conservation of the gene
correlates with mutability. [20] As a measure of
evolutionary conservation of the gene we used
conservation index. [21] Orthologs for each gene
were identified among 20 species with complete
genome sequences: Pan troglodytes, Macaca
mulatta, Canis lupus familiaris, Bos taurus, Mus
musculus, Rattus norvegicus, Gallus gallus, Xenopus
tropicalis, Danio rerio, Drosophila melanogaster,
Anopheles gambiae, Caenorhabditis elegans,
Saccharomyces cerevisiae, Kluyveromyces lactis,
Eremothecium gossypii, Schizosaccharomyces pombe,
Magnaporthe oryzae, Neurospora crassa,
Arabidopsis thaliana, and Oryza sativa.
Conservation index of 1 was assigned to the
genes with 0 or 1 orthologs, conservation index 2
was assigned to the genes with 2 or 3 orthologs
and so on.

6.) Gene expression level. It has been shown that the
expression level of the gene negatively correlates
with the density of somatic mutations. [11, 12]
Gene expression data for 1037 cancer cell lines
were downloaded from the Cancer Cell Line
Encyclopedia (CCLE). [22] For each gene we
computed average expression across CCLE cell lines
and used it as a predictor of the mutation density.

7.) Nucleotide diversity. We noted bell-shaped curves
describing the relationship between the percentage
of nucleotides and the density of missense mutations
suggesting that genes with similar percentages of all
nucleotides (25% each) may tend to have a higher
density of somatic mutations. To account for this
effect we devised a single measure characterizing how
strongly the proportions of four nucleotides deviate
from being equal. We called this measure nucleotide

diversity (ND). ND was defined as the probability
that two nucleotides randomly selected from the gene
coding sequence are different: ND = 1-(P(A)

2 +
P(C)

2 + P(G)
2 + P(T)

2), where P(A), P(C), P(G), and P(T)
are the percentages of each nucleotide in the gene.
ND was computed for each gene and used as a
predictor.

8.) SNP density. Genes with a high propensity to mutate
are also expected to have a higher density of germline
polymorphisms.We used SNPs to estimate the
density of germline polymorphisms in a gene. SNP
density was computed as a ratio of the total number
of unique SNPs in the coding region to its size in
nucleotides. SNPs detected by the 1000 genomes
project [23] were used in this analysis to ensure
that different genes were targeted the same
number of times.

9.) Density of the silent mutations. Even though some
silent mutations are known to be functional [24],
most of them are neutral and therefore the density
of silent mutations in the gene can be used as a
quantitative measure of mutability of the gene. We
computed the density of silent mutations for each
gene and used it as a predictor.

10.) Relative replication time. Late-replicating genes
tend to have a higher number of mutations. [11, 12]
We used the relative replication time data from
Ryba et al. (2012). [25] Human genome build
GRCh38 was used to match the positions of probes
with positions of the genes. When several probes
were mapped to the same gene, average replication
time for all probes in the gene was used as a
predictor. The closest probe was used when there
were no probes in the gene. The relative replication
time (negative for early and positive for late-
replicating genes) was used as a predictor.

11.) Chromatin accessibility. Chromatin accessibility has
been shown to be associated with mutability of the
region. [13] Data from the study by Sos et al. [26]
were used in chromatin accessibility analysis. The
study used transposon hypersensitive sites
sequencing assay to assess chromatin accessibility.
The mean chromatin accessibility across 10
lymphoblastic cell lines was computed for each
gene and used as a predictor for density of
missense, nonsense and FS mutations separately.

12.) Covariates from MutsigCV. We also included three
predictors (co-variates) used by MutsigCV: “expr”,
“hic” and “reptime” [12]. “Expr” is the expression
level of this gene, averaged across 91 cell lines in
the Cancer Cell Line Encyclopedia. “Reptime” is
replication time of this gene (measured in HeLa
cells), ranging from 100 (very early) to 1000 (very
late). “Hic” chromatin state of this gene (measured
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from HiC experiments in K562 cells) ranging from
− 50 (very closed) to + 50 (very open). We used
similar predictors gene expression, relative
replication time and chromatin accessibility. The
difference of our predictors from those used by
MutsigCV was sources of the data: we used
different studies to estimate the same gene
characteristics. By using different sources we can
assess the reliability of the predictors and their
sensitivity to the source of the data.

Statistical analysis
As a first step for statistical analysis we examined de-
scriptive statistics for predictors and outcome and esti-
mated pairwise correlations between predictors across
15,610 genes. We used non-parametric Spearman’s
rank order correlation. We used a stepwise multiple
linear regression model implemented in STATISTICA
(StatSoft) to identify a best subset of predictors of the
number of mutations per gene. Residual analysis was
used to detect outliers – genes with a higher than ex-
pected number of missense, nonsense, or FS muta-
tions. For each gene, residual Z-scores were computed
separately for missense, nonsense and FS mutations.
Residuals from the prediction models follow standard
normal distribution N(0,1). Z-score is the signed value
of standard deviations from mean which is zero for
standard normal distribution. Positive Z-score indi-
cates an excess and negative - a deficit of mutations in
the gene compared to the expected numbers. The ab-
solute value of Bonferroni corrected Z values based on
15,610 tests (the total number of genes used in the
analysis) was further corrected as being a maximum of
three Z-scores. Only genes with complete data for all
predictors were used in this analysis. Under the as-
sumption of independence of the 3 scores, the thresh-

old used for significance was: Φ−1ð ffiffiffiffiffiffiffiffiffiffiffiffiffi

1−α=n3
p Þ , where

Φ−1(p) denotes the quantile function of the normal
distribution, α = 0.05 and n = 15,610, which yielded a
cutoff value of 4.74.

Results
As expected, strong positive associations between the
gene size and the number of mutations were detected
for all types of mutations (Fig. 1). Similar relationships
were detected with the number of potential sites
(Additional file 1).
Figure 2 shows the relationship between the nucleo-

tide composition and the density of missense (first col-
umn), nonsense (second column) and frameshift (third
column) mutations. For nonsense mutations, there was
a linear relationship between the percentage of each
nucleotide and the mutation density, as expected from
the nucleotide composition of stop codons (TAA,
TAG, and TGA). Peaks on the curves are driven by
CDKN2A and TP53. These genes have a much larger
number of nonsense mutations compared to the genes
with a similar nucleotide composition. For missense
mutations, the peaks are driven by TP53 and KRAS. A
curvilinear shape describes the relationships between
the percentages of “A” and “C” nucleotide percentage
and density of missense mutations. The peak coincides
with nucleotide densities close to 0.25.
We observed an up-going tail on the left side of the

curve describing the relationship between the percent-
age of “G” and the density of missense mutations. A
similar up-going tail was observed on the right side of
the curve describing the relationship between the per-
centage of “T” and the density of missense mutations.
Both tails are driven by olfactory receptor genes (total
368). We found that the density of missense mutations
in olfactory receptors is twice that of other genes in
the human genome: 107.5 ± 2.9 versus 49.4 ± 0.4 muta-
tions per 1 kb. Densities of nonsense and FS mutations
in olfactory genes are not elevated. Olfactory genes
also have an unusually low percentage of “G” and a
high percentage of “T”. The percentages of “A”, “C”,
“G” and “T” in olfactory genes are correspondingly
22.1 ± 0.3, 26.6 ± 0.3, 20.2 ± 0.3, and 31,1 ± 0.3, while
the corresponding percentages in all other genes are
24.3 ± 0.1, 26.3 ± 0.1, 27.8 ± 0.1, and 21.6 ± 0.1. The
combination of an “abnormal” nucleotide composition

Fig. 1 The relationship between the number of missense, nonsense, and frameshift mutations and gene size
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and a higher density of missense mutations result in
up-going tails for missense mutations: left for the per-
centage of “G” and right for the percentage of “T”.
When olfactory genes were removed from the analyses,
the up-going tails disappeared (Additional file 2).
For frameshift mutations, we detected a positive

linear relationship between the percentage of “A” and
the density of mutations and a negative relationship
with the percentage of “G”. Densities of missense and
nonsense mutations were negatively associated with
both the percentage of CpGs and the level of
evolutionary conservation (Additional files 3 and 4,
respectively).

We observed a negative association between the
average expression level in CCLE cancer cell lines and
the mutation densities (Fig. 3a). Because the curves
were L-shaped, we log-transformed gene expression
values. The transformation improved the R2 derived
from linear regression from 0.59 to 0.69 for missense,
and from 0.18 to 0.27 for nonsense mutations. Correl-
ation between gene expression and the density of
frameshift mutations was not significant. We also
noted a strong positive association between the density
of silent mutations in the gene with the densities of
other mutation types (Fig. 3b). Figure 3c shows the re-
lationship between the mutation densities of missense,

Fig. 2 The relationship between the nucleotide composition and the density of missense (first column), nonsense (second column), and
FS (third column) mutations
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nonsense and FS mutations and the relative replication
time. Consistent with published studies [11, 12] we ob-
served a strong positive association between the repli-
cation time and the mutation density for missense and
nonsense mutations but not for frameshift mutations.
A positive association between the nucleotide diver-

sity (ND) and the densities of missense and nonsense
mutations was noted (Additional file 5). A significant
negative association between chromatin accessibility
and the density of missense and nonsense mutations in
the gene has been observed (Additional file 6).

Correlations between predictors
We found that gene characteristics used in this analysis
are highly correlated (Table 1). Out of 120 possible pair

wise correlations, 112 pairs were statistically significant.
Aside from expected correlations, e.g. correlation between
the number of potential sites for mutations and gene size,
we observed a number of unexpected correlations. For ex-
ample, we noted that larger genes tended to have a higher
percentage of “A” nucleotides. Larger genes also tended to
have higher evolutionary conservation indices. Genes with
a higher expression level tended to replicate earlier. Be-
cause of widespread correlations among predictors we
used stepwise best subset multivariate regression.

Univariate analyses
Below we present the results of univariate regression
with the number of mutations in the gene as the out-
come and gene characteristics as predictors.

Fig. 3 (a) The relationship between average expression in CCLE cancer cell lines and the mutation densities. (b) The relationship between the
density of silent mutations and the densities of missense, nonsense and frameshift mutations. (c) The relationship between the relative replication
time and the densities of missense, nonsense, and frameshift mutations
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Missense mutations
In the univariate analysis, the most significant pre-
dictor of the number of missense mutations was the
number of silent mutations in the gene (Table 2). Gene
size and the number of potential missense mutation
sites were the next most significant predictors with
similar levels of significance. Relative replication time
from MutsigCV (“reptime”) and our analogous pre-
dictor (relative replication time) show similar levels of
significance. Our predictor “Gene expression in CCLE
cancer cell lines” was more significant compared to the
analogous predictor from MutsigCV – “expr”. For
chromatin accessibility, MutsigCV predictor “hic” was
more significant compared to our predictor “Chroma-
tin accessibility”.

Nonsense mutations
Table 3 shows results of univariate analysis for nonsense
mutations. The number of potential sites for nonsense
mutations was the most significant predictor, followed by
the gene size and number of silent mutations. Compared
to missense mutations nucleotide composition seem to be
more important for the prediction of nonsense mutations.
This is likely due to the fact that a subset of codons cap-
able to produce nonsense mutations tends to be A-rich
and G-poor.

Frameshift mutations
Table 4 shows the results of univariate analyses for FS
mutations. The gene size was the most significant

Table 1 Pair-wise correlations between gene characteristics

% “A” % “G” % “C” % “T” ND % “CpG” CDS SNPD EC NPS NPM AGE LAGE RRT HA NSM

% “A” 1.00 − 0.71 − 0.88 0.47 0.35 − 0.72 0.11 − 0.22 0.09 0.27 0.12 0.19 0.18 −0.26 − 0.04 − 0.01

% “G” −0.71 1.00 0.60 −0.78 −0.46 0.76 −0.11 0.20 −0.06 − 0.22 − 0.12 − 0.06 − 0.04 0.27 0.06 −0.03

% “C” − 0.88 0.60 1.00 −0.69 − 0.44 0.74 − 0.06 0.22 − 0.13 − 0.22 −0.07 − 0.24 −0.23 0.25 0.04 0.06

% “T” 0.47 −0.78 −0.69 1.00 0.54 −0.71 0.04 −0.18 0.10 0.13 0.04 0.11 0.10 −0.24 −0.06 − 0.04

ND 0.35 −0.46 −0.44 0.54 1.00 −0.60 0.08 −0.09 0.16 0.12 0.09 0.10 0.09 −0.09 −0.02 0.09

% “CpG” −0.72 0.76 0.74 −0.71 −0.60 1.00 −0.13 0.15 −0.04 − 0.24 −0.14 − 0.09 −0.08 0.19 0.04 −0.03

CDS 0.11 −0.11 −0.06 0.04 0.08 −0.13 1.00 −0.10 0.08 0.97 1.00 −0.09 −0.07 − 0.05 −0.01 0.81

SNPD −0.22 0.20 0.22 −0.18 −0.09 0.15 −0.10 1.00 −0.17 − 0.13 −0.10 − 0.13 −0.13 0.09 0.02 0.02

EC 0.09 −0.06 −0.13 0.10 0.16 −0.04 0.08 −0.17 1.00 0.08 0.09 0.27 0.27 0.08 −0.01 0.01

NPS 0.27 −0.22 −0.22 0.13 0.12 −0.24 0.97 −0.13 0.08 1.00 0.97 −0.06 −0.04 − 0.09 − 0.02 0.74

NPM 0.12 −0.12 −0.07 0.04 0.09 −0.14 1.00 −0.10 0.09 0.97 1.00 −0.09 −0.07 − 0.05 − 0.01 0.81

AGE 0.19 −0.06 −0.24 0.11 0.10 −0.09 −0.09 − 0.13 0.27 − 0.06 −0.09 1.00 0.98 0.19 0.07 −0.26

LAGE 0.18 −0.04 −0.23 0.10 0.09 −0.08 −0.07 − 0.13 0.27 − 0.04 −0.07 0.98 1.00 0.20 0.08 −0.26

RRT −0.26 0.27 0.25 −0.24 −0.09 0.19 −0.05 0.09 0.08 −0.09 − 0.05 0.19 0.20 1.00 0.18 −0.17

HA −0.04 0.06 0.04 −0.06 −0.02 0.04 −0.01 0.02 −0.01 − 0.02 − 0.01 0.07 0.08 0.18 1.00 −0.05

NSM −0.01 −0.03 0.06 −0.04 0.09 −0.03 0.81 0.02 0.01 0.74 0.81 −0.26 −0.26 − 0.17 −0.05 1.00

ND- Nucleotide diversity, CDS CDS size, SNPD - SNP density, EC - Evolutionary conservation, NPS - N potential stops, NPM - N potential missense, AGE - Average
gene expression, LAGE - LOG of average gene expression, RRT - Relative replication time, HA - Chromatin accessibility, NSM - N of silent mutations

Table 2 Gene characteristics associated with the number of
missense mutations per gene in univariate regression models

Predictor T-test P-value Beta (ß)

Number of silent mutations
in the gene

289.9 2.5 × 10− 1409 0.92

Number of potential missense
mutation sites

167.5 5.8 × 10− 805 0.80

Gene size in nucleotides 167.1 1.6 × 10− 803 0.80

“reptime” from MutsigCV 28.6 1.4 × 10− 126 0.23

Relative replication time −27.5 1.0 × 10− 124 0.21

Gene expression in CCLE
cancer cell lines*

−26.5 9.6 × 10− 118 − 0.21

“hic” from MutsigCV −24.5 6.6 × 10− 113 − 0.20

“expr” from MutsigCV −16.8 1.5 × 10− 54 − 0.14

Percentage of “CpG” − 16.3 1.7 × 10− 53 −0.02

Percentage of “G” − 15.9 3.1 × 10− 51 −0.13

Nucleotide diversity 14.7 5.5 × 10− 45 0.12

Percentage of “A” 11.2 5.7 × 10− 28 0.10

Chromatin accessibility −7.7 3.1 × 10− 51 −0.06

Percentage of “C” −7.1 5.5 × 10− 45 − 0.06

Percentage of “T” 7.0 5.7 × 10− 28 0.06

Density of SNPs
(1 K Genomes Project)

−3.7 1.6 × 10− 14 − 0.03

Evolutionary conservation 1.5 1.1 × 10− 12 0.01
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predictor followed by the number of silent mutations.
The nucleotide composition was also significant with
C + G rich genes having lower number of FS muta-
tions. The level of evolutionary conservation was posi-
tively associated with the number of FS mutations in
the gene.

Prediction of the number of missense, nonsense and
frameshift mutations together
Table 5 shows predictors for missense, nonsense and
frameshift mutations analyzed together. The results of
this analysis are similar to the results of the analysis of
missense mutations.

Predictors for multivariate analysis
We selected predictors for multivariable analysis based
on their significance in univariate analyses and the lin-
earity of the association with the outcome. Table 6
shows the gene characteristics selected for each type of
mutations. In all multivariate analyses we also included
three covariates from MutsigCV (not shown in Table 6).
Olfactory genes were excluded because of their dis-
tinctive nucleotide composition and high density of
missense mutations. TP53, CDKA2, and KRAS were
also excluded from the analyses because they were ob-
vious outliers in univariate analyses.

Multivariate analysis
Prediction of missense mutations
Table 7 shows missense mutations predictors that
remained significant in the stepwise best subset linear
regression. The most significant predictor was the
number of silent mutations in the gene. Nucleotide di-
versity and the percentages of “C” and “G” nucleotides
were also significant. The R2 for the whole model was
0.88. Additional file 7 shows the relationship between
the predicted and the observed numbers of missense
mutations.

Prediction of nonsense mutations
Table 8 shows gene characteristics that remained sig-
nificant in the multiple linear regression model for
nonsense mutations. The most significant predictor
was the number of potential sites for nonsense muta-
tions. The other significant predictors included num-
ber of the detected silent mutations and the gene size.
The model R2 was 0.40. Additional file 8 shows the re-
lationship between the predicted and the observed
numbers of nonsense mutations.

Prediction of frameshift mutations
Table 9 shows predictors that remained significant in
the multiple linear regression model for FS mutations.
Gene size was the most significant predictor followed
by the nucleotide diversity (negative association) and
the percentages of “A” and “C” nucleotides that were

Table 3 Gene characteristics associated with the number of
nonsense mutations in the univariate linear regression model

Predictor T-test P-value Beta (ß)

Number of potential
nonsense mutation sites

91.3 3.1 × 10− 427 0.59

Gene size in nucleotides 84.7 7.8 × 10− 395 0.56

Number of silent mutations
in the gene

80.0 1.6 × 10−371 0.54

Percentage of “A” 24.2 1.4 × 10−102 0.19

Percentage of “G” −22.6 1.0 × 10−91 −0.18

Percentage of “CpG” − 21.9 1.2 × 10−87 0.01

“reptime” from MutsigCV 20.1 2.6 × 10−76 0.17

Percentage of “C” −19.6 1.0 × 10− 72 − 0.15

Relative replication time − 19.4 1.7 × 10− 71 − 0.15

“hic” from MutsigCV − 17.1 4.5 × 10−58 − 0.14

“expr” from MutsigCV −16.0 1.1 × 10− 51 − 0.13

Percentage of “T” 14.4 2.7 × 10− 43 0.11

Nucleotide diversity 12.6 2.0 × 10− 34 0.10

Gene expression in CCLE
cancer cell lines*

−11.2 1.1 × 10− 27 − 0.09

Density of SNPs
(1 K Genomes Project)

−8.8 3.5 × 10−18 −0.07

Evolutionary conservation 5.0 3.7 × 10−7 0.04

Chromatin accessibility −4.9 6.7 × 10− 7 −0.04

Table 4 Gene characteristics associated with the number of FS
mutations per gene in univariate linear regression model

Predictor T-test P-value Beta (ß)

Gene size in nucleotides 65.6 1.7 × 10− 354 0.46

Number of silent mutations
in the gene

52.3 1.2 × 10− 288 0.39

Percentage of “A” 14.6 2.8 × 10− 44 0.12

Percentage of “G” −14.1 1.8 × 10− 41 − 0.11

Percentage of “CpG” −12.7 1.3 × 10−34 − 0.10

Percentage of “C” − 7.9 2.5 × 10− 15 − 0.06

Evolutionary conservation 6.4 1.6 × 10− 10 0.34

“reptime” from MutsigCV 5.9 1.9 × 10− 9 0.05

Density of SNPs
(1 K Genomes Project)

−5.7 7.6 × 10− 9 − 0.05

“expr” from MutsigCV −4.9 5.9 × 10− 7 − 0.04

Relative replication time − 4.8 9.4 × 10− 7 − 0.04

Percentage of “T” 4.2 1.6 × 10−5 0.03

“hic” from MutsigCV − 3.4 3.4 × 10− 4 − 0.03

Gene expression in CCLE
ancer cell lines*

−1.7 4.7 × 10− 2 − 0.01

Chromatin accessibility −1.4 8.4 × 10− 2 − 0.01

Nucleotide diversity 0.2 4.2 × 10− 1 0.00
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positively associated with the number of FS mutations
in the gene. The R2 of the model for FS mutations was
0.23. Additional file 9 shows the relationship between
the predicted and the observed numbers of FS
mutations.

Prediction of the number of missense, nonsense and
frameshift mutations together
Table 10 shows predictors for missense, nonsense and
frameshift mutations analyzed together. The gene size
was the most significant predictor, followed by the nu-
cleotide diversity (negative association) and the per-
centage of “A” and “C” nucleotides (positive
associations). The R2 of the model for all mutations
was 86%.

Mutation type specific models
We tested how well the pan-mutation model works for
predicting missense, nonsense and FS mutations separ-
ately. We compared them with mutation type specific
models by the prediction accuracy. R2s were used to
evaluate how well the model accounts for gene charac-
teristics. R2s were computed by comparison of the
observed and predicted number of mutations in the
genes.
The pan-mutation model predicts missense mutations

almost as well as the missense-specific model described
earlier: R2 = 0.86 vs R2 = 0.88. This is likely because the
majority of the mutations are missense mutations (88%)
so when we build a pan mutation model it is mostly

built for missense mutations. For nonsense mutations R2

for the pan-mutation was 0.34 while R2 for the
nonsense-specific model was higher - R2 = 0.46. The
type-specific model was also more accurate for frame-
shift mutations R2 = 0.22 versus R2 = 0.16. Therefore, the
pan-mutation model works well for missense mutations,
but for nonsense and frameshift mutations type-specific
models perform better.

Additional gene characteristics to improve the prediction
accuracy of MutsigCV
MutsigCV is one of the most popular and efficient tool
for identification of cancer genes from mutation data
[27]. MutsigCV predicts the number of mutations in a
gene based on the gene size and the number of silent
mutations detected in a given set of tumor samples.
Three other characteristics, “expr” – gene expression,
“hic” – open chromatin and “reptime” – relative repli-
cation time are used as co variates. We tested if the in-
clusion of additional gene characteristics could
improve prediction accuracy of MutsigCV. We used
MutsigCV to identify cancer genes for analyses three
different TCGA datasets: LUAD (Lung adenocarcin-
oma), LUSC (lung squamous cell carcinoma) and
SKCM (skin cutaneous melanoma) with similar results.
Here we show the results generated by an analysis of
LUAD data as an example. MutsigCV identified ten
lung adenocarcinoma associated genes: KRAS, TP53,

Table 6 Gene characteristics selected for the model building for
the missense, nonsense, and frameshift mutations

Predictor Used for

Missense Nonsense Frameshift

Density of SNPS
(1 K Genomes Project)

yes no yes

Evolutionary conservation yes yes no

Gene expression in CCLE
cancer cell linesa

yes yes no

Gene size in nucleotides yes yes yes

Nucleotide diversity yes yes yes

Number of potential
substitution sites

yes yes yes

Number of silent mutations
in the gene

yes yes yes

Percentage of “A” no yes yes

Percentage of “C” yes yes no

Percentage of “G” yes yes yes

Percentage of “T” yes yes no

Percentage of “CpGs” yes yes yes

Replication time yes yes no

Chromatin accessibility yes yes no
aAverage gene expression across 1037 cancer cell lines from the Cancer Cell
Line Encyclopedia (CCLE)

Table 5 Gene characteristics associated with the number of
missense, nonsense and frameshift mutations analyzed together
in univariate linear regression model

Predictor T-test P-value Beta (ß)

Number of silent mutations in the gene 265.2 3.6x− 1328 0.90

Gene size in nucleotides 172.5 2.7x− 856 0.81

“reptime” from MutsigCV 28.0 2.1x− 128 0.23

Relative replication time −26.8 6.5x− 120 − 0.21

Gene expression in CCLE cancer cell lines* −24.8 1.2x− 106 − 0.19

“hic” from MutsigCV −23.8 8.0x− 100 − 0.19

Percentage of “CpG” −17.9 1.8x− 62 − 0.14

Percentage of “G” − 17.7 1.8x− 61 − 0.14

“expr” from MutsigCV −17.0 3.1x−57 − 0.14

Percentage of “A” 15.3 7.3x− 48 0.12

Nucleotide diversity 14.4 4.9x− 43 0.11

Percentage of “C” −9.0 5.6x−19 − 0.07

Percentage of “T” 8.0 1.6x− 15 0.06

Chromatin accessibility − 7.5 1.0x− 13 − 0.06

Density of SNPs (1 K Genomes Project) −4.7 1.6x− 6 −0.04

Evolutionary conservation 2.4 8.4x−3 0.02
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STK11, KEAP1, SMARCA4, EGFR, RBM10, C3orf27,
ZNF831, and OR5M11. Stepwise multivariate mutation-
specific regression models identified a partially overlapping
set of 21 cancer-associated genes: EGFR, TP53, KRAS, SI,
STK11, FLG, PTPRD, COL11A1, LRP1B, FBN2, NEIL3,
CSMD3, SPTA1, CDH10, PCLO, MYH1, USH2A, SPHKAP,
ZNF804A, XIRP2, and ZNF831.
We tested if inclusion of additional gene character-

istics identified in our study improves the prediction
accuracy of MutsigCV. The inclusion of the nucleo-
tide composition, the nucleotide diversity, gene ex-
pression, and the replication time only slightly
improved R2 compared to the set of predictors used
by MutsigCV: 0.60 versus 0.58. Hovewer, adding the
number of silent mutations reported by genome wide
screens in COSMIC led to substantial improvement
in prediction efficacy: 0.66 vs 0.58. Similar results
were obtained for LUSC and SKCM data. Therefore,
incorporating the number of silent mutations re-
ported by genome wide screens across different can-
cer types can significantly improve prediction
accuracy of MutsigCV.

Genes with a higher than expected number of mutations
(positive outliers)
We identified 111 positive outliers - genes with a sig-
nificant excess of missense, nonsense, or frameshift
mutations, after the adjustment for multiple testing
(Additional file 10). TP53 and PTEN have a higher
than expected number of all three types of mutations.
Five genes, ATM, LRP1B, CSMD3, FBXW, and SMAD4
have an excess of missense and nonsense mutations.
Three genes, COL11A1, SLC25A5, and PCLO show a
significant excess of frameshift and missense muta-
tions. Twelve genes: APC, AXIN1, TET2, ASXL1,
ARID2, RB1, NF1, VHL, PBRM1, KMT2D, KMT2C,
and ARID1A, show an excess of frameshift and non-
sense mutations.

Z-scores for known cancer-associated genes
We computed Z-scores for known tumor suppressor
genes (TS) and oncogenes (OGs) and compared them
with Z-scores for other genes in the human genome.
TS and OGs were defined by UniprotKB database [28,
29]. There are 233 OGs and 176 TSs. Genes that are
not reported as TSs or OGs (other genes) were used as
a reference group. The mean Z-score for known TSs
was significantly higher for FS, missense, and nonsense
mutations compared to Z-scores for all other genes.
For known OGs the mean Z-score was higher for mis-
sense mutations only (Fig. 4). A higher Z-score for
missense mutations is expected because typically acti-
vating missense mutations in oncogenes drive tumori-
genesis. [30, 31].

Major findings
We found that gene characteristics can explain consid-
erable proportion of inter genic variation in the num-
ber of somatic mutations: 88% for missense, 40% for
nonsense, and 23% for frameshift mutations. Many
genes with a higher-than-expected number of muta-
tions (positive outliers) were also identified. Over hun-
dred positive outliers were not previously reported by
the COSMIC cancer consensus database and therefore
can be considered as novel candidate cancer genes.

Discussion
A goal of this study was to identify gene characteristics
associated with the number of somatic mutations in
tumor samples. Since gene characteristics we used as
predictors are inter-correlated, we applied stepwise
best subset regression model. Regression models ex-
plain 88% of variation in the number of missense, 40%
nonsense, and 23% of frameshift mutations. If we as-
sume that the unexplained variation in the number of
mutations is due to an involvement of the gene in can-
cer development, the results show that FS most

Table 7 Gene characteristics significant in stepwise best subset
multiple linear regression model for the prediction of the
number of missense mutations

Predictor T-test P-value Beta (ß)

Number of silent mutations
in the gene

136.47 1.8 × 10− 376 0.76

Replication time −7.74 1.0 × 10−14 −0.03

Percentage of “C” − 7.64 2.4 × 10− 14 − 0.06

Nucleotide diversity −6.65 3.1 × 10−11 − 0.03

Percentage of “G” − 6.14 8.2 × 10−10 − 0.03

“reptime” from MutsigCV 5.24 1.7 × 10− 7 0.02

Evolutionary conservation −4.57 4.9 × 10− 6 − 0.01

Percentage of “CpGs” − 3.62 3.0 × 10− 4 − 0.02

“expr” from MutsigCV 2.79 5.3 × 10− 3 0.01

Number of potential sites
for missense mutations

2.57 1.0 × 10−2 0.42

Table 8 Gene characteristics significant in stepwise best subset
multiple linear regression model for nonsense mutations

Predictor T-test P-value Beta (ß)

Number of potential sites
for nonsense mutations

27.77 3.42 × 10−132 0.782

Number of silent mutations
in the gene

26.03 1.66 × 10− 129 0.301

Gene size in nucleotides −16.22 5.10 × 10− 49 − 0.498

Percentage of “G” − 3.07 4.60 × 10− 4 − 0.028

Replication time −2.35 7.10 × 10− 3 − 0.021

Evolutionary conservation 2.23 2.26 × 10− 2 0.016
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frequently associated with tumorigenesis followed by
nonsense and missense mutations.
Each gene in the human genome acquires mutations

on background level based on intrinsic mutability of
the gene which depends on gene characteristics. Can-
cer associated genes are expected to have extra muta-
tions due to selection of clones with driver mutations.
In our analysis positive outliers (genes with a
higher-than-expected number of mutations) were con-
sidered as candidate cancer associated genes. The ma-
jority of outliers are known cancer-associated genes.
We also identified a number of novel putative
cancer-associated genes. We considered a gene as a
novel cancer-associated gene when the following three
criteria were satisfied: the gene is not listed among (1)
COSMIC cancer census genes; (2) Mayo Clinic 50 gene
cancer panel [32] or (3) Foundation Medicine 315 gene

panel. We have identified 18 novel cancer-associated
genes with an excess of missense mutations: MUC4,
CSMD3, FLG, USH2A, DNAH8, FAT4, MUC17,
MUC16, SYNE1, COL11A1, RP1, SI, SACS, SLC25A5,
DMD, DST, XIRP2, and PKHD1L1. We also identified
67 genes with an excess of FS and/or nonsense muta-
tions: ACVR2A, SOX9, RPL22, CDCP2, CRIPAK, FAT1,
BAX, BCL9L, SON, TTK, ZFP36L2, RBMX, XYLT2,
USP35, WBP1, BMPR2, ZDBF2, MBD6, TCF7L2,
PABPC3, ESRP1, ZC3H18, TDG, SLC23A2, JPH4,
UBR5, PDS5B, IL32, BCL9, SYCP1, PRRT2, ROBO2,
TEAD2, ZNF626, CASP8, RBM10, WNT16, PTCHD3,
CD3G, RTKN2, PLEKHA6, AKAP7, DDX27, SEC63,
ADNP, NKTR, NDUFC2, MANEA, SYNJ2, TMEM60,
ARV1, LARP4B, PHACTR4, TBX3, HNRNPL, PRRG1,
MCPH1, CEP290, MAP7D1, CCDC73, GPATCH4,
TGIF1, FAM111B, CLOCK, SCLT1, HOXB3, and SRRT.
A larger number of novel cancer-associated genes
identified through the analyses of FS and nonsense
mutilations compared to the analysis of missense mu-
tations can be due to the fact that a large proportion of
variation in number of mutation is due to gene in-
volvement in cancer development.
For some genes in the human genome, the total

number of missense mutations does not differ signifi-
cantly from the expected number, hovewer, those mu-
tations are clustered. For example, the observed
number of missense mutations in AKT1 oncogene is
113. This does not differ significantly from the ex-
pected number of the mutations (70), Z(M) = 0.86.

Table 9 Gene characteristics significant in stepwise best subset
multiple linear regression model for frameshift mutations

Predictor T-test P-value Beta (ß)

Gene size in nucleotides 50.93 3.34 × 10− 218 0.38

Nucleotide diversity −10.69 5.56 × 10− 26 − 0.1

Number of silent mutations
in the gene

6.86 5.65 × 10− 09 0.1

Percentage of “C” 5.26 3.84 × 10−7 0.09

Percentage of “A” 5.16 6.52 × 10− 7 0.09

Gene expression in CCLE
cancer cell lines

4.21 5.64 × 10−5 0.03

Percentage of “CpGs” − 4.1 8.84 × 10− 5 − 0.06

Percentage of “G” − 3.62 5.52 × 10− 4 − 0.04

“hic” from MutsigCV 2.25 3.14 × 10− 2 0.01

Evolutionary conservation 2.09 4.42 × 10− 2 0.01

Table 10 Gene characteristics significant in stepwise best
subset multiple linear regression model for missense, nonsense,
and frameshift mutations analyzed together

Predictor T-test P-value Beta (ß)

Number of silent mutations
in the gene

121.8 1.6x− 789 0.72

Gene size in nucleotides 41.6 1.4x− 220 0.23

Nucleotide diversity −8.5 3.3x−17 −0.04

Relative replication time −7.0 1.7x−12 −0.03

Percentage of “G” − 7.0 2.6x− 12 − 0.04

Percentage of “C” − 7.0 3.1x− 12 − 0.05

“reptime” from MutsigCV 5.4 4.1x− 8 0.03

Percentage of “CpG” −3.7 1.0x− 4 − 0.02

Evolutionary conservation − 3.3 4.7x− 4 − 0.01

Percentage of “A” 2.6 4.8x− 3 0.02

“expr” from MutsigCV 2.5 6.4x− 3 0.01

Fig. 4 Z-scores for known tumor suppressor genes (TS), oncogenes
(OG) and the genes that are not reported by UniprotKB as TS or OG
– other genes. Z-scores for FS, missense (Mis.) and nonsense (Non.)
mutations are shown separately. Vertical bars indicate the standard
error of mean
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However, the majority (86 out of 113) of the mutation
counts are p.E17K mutation. If we exclude p.E17K, in
the reminder of the AKT1 gene the observed number
of mutations is lower than expected: 27 observed ver-
sus 70 expected. The lower number of mutations in
the rest of the gene may be due to the fact that most
of the coding region (85%) is occupied by functional
domains. Missense mutations in functional domains
may be loss-of-function mutations and as a result are
negatively selected in tumors. Because our modeling
does not take into account the distribution of muta-
tions within the coding region, it may miss cancer
genes with a clustering of functional mutations but a
similar number of observed and expected mutations.
Interestingly, many novel cancer-associated genes

identified by the excess of missense mutations are large
genes with repetitive functional domains: LRP1B,
CSMD3, FLG, USH2A and others. In these genes func-
tional mutations tend to be uniformly distributed
across repetitive functional domains. For example, one
of the frequent mutations in CSMD3 gene is G > A
substitution. It leads to arginine (R) to glutamine (Q)
substitution. The mutation is reported at position 11
of the repetitive sushi domain: sushi domain #5 (2 mu-
tations), sushi domain #7 (4 mutations), sushi domain
#9 (7 mutations), and sushi domain #13 (6 mutations).
Taking into account that 92% of mutations in the gene
are singletons, the observed pattern is likely to reflect
the existence of multiple peaks distributed across re-
petitive functional domains.
We found that a small number of gene characteris-

tics predict a large part of variation in the number of
mutations per gene. “Number of silent mutations in
the gene” alone explains 84.3% of variation in the
number of missense mutations per gene. Adding “Per-
centage of “C”” and “Nucleotide diversity” improves
prediction accuracy to 85.7 and 85.8% correspondingly.
Adding last four predictors listed in Table 8 increases
R2 from 85.7 to 88.1%. Therefore, the first three pre-
dictors explain most of the variation in the number of
missense mutations per gene.
For nonsense mutations, the number of potential sites for

nonsense substitutions alone explains 34.7% of variation.
Adding the number of silent mutations in the gene as a pre-
dictor increases R2 to 37.4%. Adding the gene size as a pre-
dictor further increases R2 to 39.4%. Including all significant
predictors listed in Table 8 makes R2 equal to 39.6%.
For frameshift mutations, the gene size alone explains

21.6% of variation. Adding 8 other significant predictors
listed in Table 10 leads to only an incremental increase in
R2 to 22.8%.
We found that the number of silent mutations re-

ported by COSMIC genome wide screens across all
cancer types is the most significant predictor of

missense mutations. It also contributed significantly to
the prediction of nonsense as well as frameshift muta-
tions. The number of silent mutations is the most im-
portant predictor of the number of somatic mutations
in the gene because it is an integrative indicator of the
background mutability of the gene.
The strongest predictor of nonsense mutations was the

number of potential sites for that type of substitutions. It
explains 34.7% of total variation. Only 21 out of possible
64 codons are capable of producing nonsense mutations
by SNSs. The number of potential sites for nonsense mu-
tation varies an order of magnitude across genes, from
0.03 per nucleotide for MUC21 to 0.29 for KRTAP20–1.
The ability of the gene to generate nonsense mutations
depends on codon composition.
We also found that the total number of silent mutations

per gene reported by genome screens in COSMIC across
different cancers improves the predicting accuracy of
MutsigCV. MutsigCV uses the number of silent muta-
tions in analyzed set of tumor samples as a predictor. The
number of silent mutations in a single sample tends to
have a large variation because the typical sample size is
small. Also different cancer types tend to have different
mutation spectra (mutation signature). [33] An underesti-
mation of the number of silent mutations in a sample can
lead to false positives by MutsigCV but not by our ana-
lysis. In our analysis of LUAD data, MutsigCV identi-
fied “Chromosome 3 Open Reading Frame 27”
(C3orf27) as statistically significant with adjusted
P-value of 0.02. The C3orf27 is an unexpected candi-
date: it is a small gene with no evidence reported to
date that it is cancer related. There are no reported si-
lent mutations in the gene in LUAD sample which im-
plies that the overall mutability of the gene is low
suggesting non-silent mutations in the gene are cancer
related. Based on COSMIC data, C3orf27 has a ratio of
silent to non-silent mutations of 0.21, which does not
differ significantly from the average ratio of 0.34. In
our regression model C3orf27 was not significant.
Therefore, the total number of silent mutations per
gene generated by whole genome (exome) mutational
screens across different cancer types is a key predictor
of somatic mutations and needs to be included in can-
cer gene prediction models including MutsigCV to in-
crease the specificity of the results.
We found that top predictors for missense, nonsense

and FS mutations are different. As a result, the
mutation-type specific prediction models work better
for identification of cancer-associated genes compared
to the pan-mutation model. Though the pan-mutation
model performs acceptably in predicting the number
of missense mutations, its prediction accuracy for non-
sense and frameshift mutations is poor compared to
the mutation-specific models.
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Conclusions
We analyzed a number of gene characteristics associated
with missense, nonsense, and frameshift mutations. We
applied stepwise best subset multivariate model to predict
missense, nonsense, and FS mutations using gene charac-
teristics, and by comparison of the observed and expected
number of mutations identified novel cancer-associated
genes. We showed that including the total number of
silent mutations per gene identified by whole genome/ex-
ome screens across different cancer types led to a substan-
tial improvement in the prediction efficacy, indicating that
this variable needs to be included in existing prediction
algorithms, e.g. MutsigCV. We also generated a list of
novel candidate cancer-associated genes that may warrant
further analysis.
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Additional file 1: The relationship between the number of potential
sites for a given type of mutations and the number of the mutations of
the same type. As expected, there is a strong positive association between
the number of potential sites and the number of reported mutations similar
to what was observed for the gene size. (DOCX 1370 kb)

Additional file 2: Olfactory genes and densities of missense mutations.
First row shows the proportion of olfactory genes in a sliding window of
100 genes, when it moves from lowest to highest nucleotide content.
Second row shows the distribution of olfactory (red) and other (blue) genes
across mutation densities bins. Olfactory genes have a higher density of
missense but not nonsense mutations. Third row shows the effect of
excluding of olfactory genes on the relationship between percentage of “T”
in the gene and density of missense mutations. (DOCX 2413 kb)

Additional file 3: The relationship between the proportion of CpG sites
and the mutation densities. Proportion of CpGs was computed as the
ratio of the number of CpGs in the gene to the gene size in nucleotides.
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mutation density. (DOCX 1044 kb)
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the mutation densities for missense, nonsense and frameshift mutations.
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number of missense mutations. Each dot represents a gene. (DOCX 566 kb)

Additional file 8: The relationship between the observed and expected
number of nonsense mutations. Each dot represents a gene. (DOCX 654 kb)

Additional file 9: The relationship between the observed and expected
number of frameshift mutations. Each dot represents a gene. (DOCX 654 kb)

Additional file 10: Genes with a higher than expected number of
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maximum Z value. (DOCX 51 kb)
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