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Abstract

Background: Phylogeny estimation for bacteria is likely to reflect their true evolutionary histories only if they are
highly clonal. However, recombination events could occur during evolution for some species. The reconstruction of
phylogenetic trees from an alignment without considering recombination could be misleading, since the
relationships among strains in some parts of the genome might be different than in others. Using a single, global tree
can create the appearance of homoplasy in recombined regions. Hence, the identification of recombination
breakpoints is essential to better understand the evolutionary relationships of isolates among a bacterial population.

Results: Previously, we have developed a method (called ACR) to detect potential breakpoints in an alignment by
evaluating compatibility of polymorphic sites in a sliding window. To assess the statistical significance of candidate
breakpoints, we propose an extension of the algorithm (ptACR) that applies a permutation test to generate a null
distribution for comparing the average local compatibility. The performance of ptACR is evaluated on both simulated
and empirical datasets. ptACR is shown to have similar sensitivity (true positive rate) but a lower false positive rate and
higher F1 score compared to basic ACR. When used to analyze a collection of clinical isolates of Staphylococcus aureus,
ptACR finds clear evidence of recombination events in this bacterial pathogen, and is able to identify statistically
significant boundaries of chromosomal regions with distinct phylogenies.

Conclusions: ptACR is an accurate and efficient method for identifying genomic regions affected by recombination
in bacterial genomes.
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Background
Recombination is an important force of evolution in
prokaryotes that results in genetic exchange, usually
involving transformation, transduction and conjugation
[1]. In bacterial populations, when some strains acquire
genetic changes from other strains, it can produce the
appearance of homoplasy (where the same change at a site
appears to have occurred multiple times independently,
in separate branches). In a multiple sequence alignment,
the polymorphic sites may have different phylogenetic
relationships compared with other sites, i.e., phylogenetic
incongruence [2, 3]. Studies have explored the effect of
recombination in phylogeny estimation and indicated that
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the impact depends on the extent of recombinant events
and the relatedness of taxa [1, 4, 5]. The true evolu-
tionary history of a set of taxa may not be reflected
if recombination events occurred during evolution yet
are ignored. Growing evidence indicates that recombina-
tion has occurred in the evolution of many pathogenic
bacterial species, including Mycobacterium avium [6],
Mycobacterium intracellulare [7], Neisseria meningitidis
[8, 9], Salmonella enterica [10], Staphylococcus aureus
[11–13], Streptococcus pneumoniae [14] and Streptococcus
pyogenes [15]. Hence, it is essential to identify recom-
bination regions among bacterial isolates before infer-
ring a phylogeny, to better understand their evolutionary
histories.
Over the last four decades, many methods have been

proposed to detect the presence of recombination in
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bacterial genomes, applying concepts of maximum like-
lihood, phylogenetic incongruence, substitution patterns,
distance-based approach, or character compatibility [16–22].
Commonly used methods to identify recombination
breakpoints include ClonalFrameML [22], RDP [18] and
GARD [19]. All are phylogenetic-based programs. Clon-
alFrameML utilizes a maximum-likelihood tree to recon-
struct ancestral states of internal nodes. It then applies a
hidden Markov model (ClonalFrame) to infer the recom-
bination parameters and recombination locations of each
branch of the tree using an Expectation-Maximization
(EM) algorithm [22]. RDP characterizes homoplasy sig-
nals using pairwise scanning of the alignment, with
the integration of several non-parametric recombination
detection methods [18]. GARD applies Akaike’s Infor-
mation Criterion with a genetic algorithm to search the
recombinant locations heuristically [19]. Compatibility-
based methods are considered to be more efficient than
phylogenetic-based methods to identify recombination,
since they do not require the reconstruction of phyloge-
netic trees [16]. The Reticulate program uses compatibil-
ity matrices to calculate a neighbor similarity score (NSS),
and clusters compatible sites by randomly shuffling the
matrices [17]. Bruen et al. define the pairwise homoplasy
index (PHI) in terms of a pairwise incompatibility score of
each site and its downstream sites in a global alignment,
and then they obtain a p-value by computing the cumu-
lative probability under a normal distribution generated
from expected mean and variance of the PHI statistic [20].
Both programs are compatibility-based methods and able
to detect recombination and report informative sites, but
they do not report breakpoints.
(paragraph on compatibility integrated into Methods...)
In our previous work, an average compatibility ratio

(ACR) method was introduced to identify the potential
recombination breakpoints in a bacterial genome by ana-
lyzing the pattern of SNPs among a collection of isolates
using a sliding window [23]. The ACR method detects
the presence or absence of recombination by calculating
an overall compatibility score among pairs of sites. Next,
ACR will scan the entire alignment with a sliding window
of fixed size to identify regions where the local compat-
ibility among pairs of sites in the region decreases and
reaches a local minimum. However, the local minima may
include false positives. In this paper, we propose the use
of a permutation test on the positions of local minima to
assess the statistical significance of potential breakpoints
in the genome. We also extend the ACR method to test
the compatibility of multi-state characters by applying an
efficient algorithm based on Buneman’s theorem [24]. The
performance of ptACR is evaluated on simulated datasets
with varying mutation rates and rate heterogeneity among
sites. The sequences are simulated by evolving along dis-
tinct trees with changes in topology, where a group of taxa

have been moved from one branch to another randomly.
The simulation results show that the integration of the
permutation test has lower false positive rate than basic
ACR method. Yet both methods have a similar level of
sensitivity for the detection of recombination breakpoints.
We use ptACR to identify genomic regions of recombina-
tion in clinical isolates of Staphylococcus aureus.

Methods
Characters and compatibility
The concept of compatibility was initially described by
LeQuesne in 1969 for binary-state characters [25]. For a
multiple DNA sequence alignment, a character is defined
as a set of states (nucleotides) for all taxa at a given site. A
binary character is a polymorphic site with 2 nucleotides.
Two binary-state characters are compatible if a single phy-
logenetic topology is enough to explain both characters:

Definition 1 Pairwise compatibility for binary char-
acters: Two sites of binary characters are compatible if
and only if there exists a tree for which each site can be
explained by one change.

For a pair of binary characters at two sites, the four
gamete test is a quick way in polynomial time to deter-
mine their compatibility [26]. It converts the state of taxa
at each site to 0 and 1, and concatenates the states at two
sites for a given taxon as one of the following combina-
tions: {00, 01, 10, 11}. If at most three combinations exist,
then the two sites are compatible. For a set of binary char-
acters in an alignment, there exists a perfect phylogeny if
all characters are jointly compatible. For a set of 3 or more
binary-state sites in a region of genome, if all pairs of sites
are pairwise compatible, then they are jointly compatible,
i.e. a tree exists that can explain all sites.
More generally, in a whole-genome alignment of multi-

ple taxa, some sites can also have multiple states, e.g., 3 or
4 nucleotides.

Definition 2 Pairwise compatibility for multi-state
characters: Two sites of multi-state characters are compat-
ible if and only if there exists a tree for which each site can
be explained by number of change that equals to number of
distinct states minus one (the minimum number of changes
required for a site with n nucleotides is n-1).

To determine the compatibility of a pair of multi-state
characters (two sites at a time), the problem can be
reduced to triangulating colored graphs problem [27] and
then solved in polynomial time [24]. Two characters are
firstly converted to a partition intersection graph by the
following steps. For each character, the taxa of the same
state are denoted as a vertex. An edge between two ver-
tices is added if the vertices contain the same taxon/taxa
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to form the partition intersection graph. Next, if their
derived partition intersection graph is acyclic, then they
are determined to be compatible [24]. The method to
determine the compatibility of two characters is illustrated
in Algorithm 1. For multi-state characters, pairwise com-
patibility does not guarantee setwise compatibility.The
question of determining whether a set of n > 2multi-state
sites is compatible is reducible to the problem of finding the
maximum clique, which is NP-complete [24].

Algorithm 1 Pairwise compatibility of two multi-state
characters
Require: Characters χp and χq at the site p and site q
Ensure: True if they are jointly compatible and False if

they are incompatible;
function CHARCOMPAT(χp, χq)

Collect the sets of taxon/taxa of the same state
(nucleotide), where the number of unique states are
denoted as r1 and r2:

χ ′
p ← {xi}, i = 1, ..., r1

χ ′
q ← {yj}, j = 1, ..., r2

Initialize an undirected graphG by the adjacency list
Add sets in χ ′

p and χ ′
q as nodes to G

Add an edge between node u and node v by G(u, v)
to update the graph G:

for all xi in χ ′
p do

for all yj in χ ′
q do

if xi ∩ yj �= ∅ then
G ← G(xi, yj)

end if
end for

end for
Check for cycles in G by depth first search (DFS)
return True if there is no cycle in G, False otherwise

end function

Given a multiple sequence alignment of n taxa and m
informative sites, at each informative site i, ACR calculates
a pairwise compatibility score between all pairs of infor-
mative sites within a sliding window of size 2w centered on
the ith SNP (from i-w to i+w). The pairwise compatibility
score is 1 if characters χp and χq are compatible; other-
wise, the score is 0 (Eq. 1). Next, it averages the scores of
all pairs of sites within the region to obtain the average
compatibility ratio, σiw , for the region (Eq. 2).

CompatPWpq=
{
1, if characters χp and χq are compatible
0, otherwise

(1)

σiw = 1(
2w+1
2

)
i+w−1∑
p=i−w

i+w∑
q=p+1

CompatPWpq (2)

The lower the value of the average compatibility ratio
(σiw ), the less jointly compatible the sites in a win-
dow are. Hence, a site of local minimum means that
sites in the region are least compatible locally, suggest-
ing phylogenetic incongruence between the upstream and
downstream regions. Sites with local minima of average
compatibility ratio are regarded as potential breakpoints.
An example of applying ACR on a recombined alignment
of 5200 sites using the window size of 200 is demonstrated
in Fig. 1.
To assess the statistical significances of potential break-

points, we apply a permutation test. The test statistic, siw ,
for a potential breakpoint at the site i is defined as the
summation of all compatibility scores of pairs composed
of a site from the upstream region [ i − w, i − 1] with the
other site from the downstream region [ i+1, i+w] (Eq. 3).

Fig. 1 Example of applying ACR on an alignment of several recombined regions using the window size of 200. Among 5200 sites, six sites are
identified as the potential breakpoints and labeled in red
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siw =
i−1∑

p=i−w

i+w∑
q=i+1

CompatPWpq (3)

This statistic is compared to a null distribution gen-
erated by permuting the sites in the window. The null
hypothesis is that the level of compatibility between the
sites in the window is independent of the sequential order
of the sites, i.e. whether sites are compared from upstream
or downstream of site i does not matter. The alterna-
tive hypothesis is that the order of the sites in the local
sequences is crucial and does not happen by chance. So
the sites within the region are randomly shuffled multiple
times (default: 10,000) to produce the sampling distribu-
tion of values siw obtained under the null hypothesis. Let
the distribution of values from random permutations on
sites in the window be denoted by Ds. The significance of
observed value siw is determined by computing the pro-
portion of times that the permuted statistics in Ds are less
than or equal to the observed value to get the empirical
p-value (Eq. 4).

p = P
(
x ≤ siw forx ∈ Ds

)
(4)

If the p-value is lower than a given threshold
(default: 0.05), then it rejects the null hypothesis of
no recombination, hence ptACR will report the site
as a probable/significant breakpoint. To correct the p-
value threshold due to multiple comparison, we use the
Bonferroni correction and set the adjusted p-value cutoff
to 0.05/n, where n is the number of local minima identi-
fied by ACR, to limit the false discovery rate to at most

5%. An example of a statistic determined as significant in
the histogram of a null distribution is illustrated in Fig. 2.
To make the permutation test more efficient, we convert
all characters in nucleotides of the alignment to patterns
in numbers and make character patterns as a unique
set. Then we record pairwise compatibility information
among all pairwise patterns in the set in a hash table.
Hence, the compatibility information of any two shuffled
sites can be looked up in the hash table in constant time.

Estimation of phylogenies and homoplasy
Given a sorted list of candidate breakpoints, local phy-
logenetic trees of each region between two adjacent
breakpoints is constructed by the maximum parsimony
method using the function of dnapars in PHYLIP 3.66
[28]. To estimate the level of homoplasy for each region,
the homoplasy ratio and excess changes are calculated by
applying the Sankoff Algorithm [29] on each local tree.
The homoplasy ratio, which is also called the ratio of
changes per site, is defined as the summation of actual
state changes (Sankoff score) divided by the summation
of minimum number of changes (number of nucleotides
at each site minus one). The number of excess changes
for a site is defined as the difference between the
number of actual changes and minimum number of
changes. For a given region, the homoplasy ratio of
1.0 means all sites are congruent (homoplasy-free); a
homoplasy ratio > 1.0 means some sites are homopla-
sic, requiring excess changes in the maximum-parsimony
tree.

Fig. 2 Example of the assessment of statistical significance for a compatibility score in the histogram of a null distribution (N=10k). Observed
compatibility score at the site i was 12800, among pairs selected upstream and downstream sites. Distribution shows scores from randomly selected
pairs in window of [i − w, i + w]. The p-value in this case is 0.0092 (at the tail)
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Fig. 3 Histogram of evolutionary branch swapping distance between the original tree and 300 alternative trees generated using HGT-Gen

Fig. 4 True positive rate (a), false positive rate (b) and F1 score (c) of 3 scenarios of increasing evolutionary branch swapping distance (no
heterogeneity)
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Performance on simulated datasets
To evaluate the performance of ptACR, we generated
simulated sequence data with known recombinations by
random branch swaps. Our goal was to evaluate the sen-
sitivity and specificity of detecting known breakpoints,
and how this depends on mutation rate and differences
in topology. To simulate sequences with predetermined
recombination events, a bifurcating tree with 10 taxa is
generated by GenPhyloData [30] under a birth-death pro-
cess with a birth rate of 0.2 and a death rate of 0.1.
Next, 300 alternative trees with recombination between
a random pair of donor and acceptor branches based
on the original tree are obtained using HGT-Gen [31].
Then, Seq-Gen 1.3.4 [32] is applied to generate aligned
sequences of 1000 sites evolved along each tree. Param-
eters for substitution rate and heterogeneity are varied
in the experiment, as described below. The sequences
are simulated under the Hasegawa-Kishino-Yano model
(HKY85) [33] with nucleotide frequencies A:0.2, G:0.3,
C:0.3, T:0.2 and 2-to-1 ratio of transitions to transver-
sions. Lastly, we concatenate sequences for the original
tree, one of the modified trees, and the original tree again
to obtain a simulated alignment with 3000 total sites that
has recombination breakpoints around coordinates 1000
and 2000 and a distinct phylogeny in the middle.
The true positive rate (sensitivity), false positive rate

(1-specificity), and F1 score for the ptACR method are
defined as follows. For an alignment with a predeter-
mined recombination region, the inferred breakpoint that
is located within 50 bp of an actual breakpoint (ground
truth) is counted as true positive (TP), and one that is
identified by our method but not within this range is
denoted as false positive (FP). Failure to detect a known

breakpoint at any site within 50 bp is counted as false neg-
ative (FN). The true and false positive rates are defined
by dividing by the total number of true breakpoints, and
the total number of negative sites outside the breakpoint
windows, respectively, TP

TP+FN and FP
FP+TN . The precision is

defined as the number of accurately inferred breakpoints
to the number of identified breakpoints, TP

TP+FP . The F1
score, which is the harmonic mean of sensitivity and pre-
cision, is TP

2TP+FP+FN ; higher F1 is better. For each scenario,
we average the statistics over all the replicates.

Effect of evolutionary distance
Because recombination events among deeper branches
should involve strains with more differences and make
incompatibility easier to detect, we expect that sensitiv-
ity and specificity will vary as a function of the magnitude
of the changes in the simulated trees. To quantify this,
we defined an metric called evolutionary branch swap-
ping distance (EBSD) to divide the alternative trees into
3 groups: small, medium, and large evolutionary changes.
While there are several generalized methods for com-
paring topologies of arbitrary labeled trees (sharing the
same taxa) [34–36], assuming that the change between
two trees involves only a single branch swap (as generated
by HGT-Gen, simulating recombination), we developed a
quantitative measure that reflects the magnitude of evolu-
tionary distance involved in the change. First, we identify
the group of taxa that changes position in the tree. Call
this group A, and let B be the complement in the tree (rest
of the taxa). We define the evolutionary branch swapping
distance between the two trees (T1 and T2) as the average
absolute value of the difference in distances between each
pair of taxa i in A and j in B in trees T1 and T2 (Eq. 5).

Fig. 5 Proportion of nucleotides in 4 scenarios of increasing substitution rate
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EBSD(T1,T2) = 1
|A| ∗ |B|

∑
i∈A

∑
j∈B

|distT1(i, j)−distT2(i, j)|

(5)

The distance between two taxa is defined as the sum of
branch lengths on the connecting path in a tree. The dis-
tances between pairs of taxa that are both in A or both in
B should be unaffected by the branch swap; only pairs of
strains between the two groups will exhibit changes in rel-
ative position, and hence changes in distance. If a strain
(or group of strains) recombines with a nearby branch,
the average change of distances among them will be small;
however, if they recombine with a more remote branch
of the tree, representing exchange of genetic material
with a more divergent strain, then the change in relation-
ships will be more pronounced, and the average change
in relative distances among the strains will be larger. The

distribution of EBSD distances between the original tree
and the 300 alternative trees ranged from 0.77 to 9.22 (see
histogram in Fig. 3). The alternative trees are categorized
into three groups according to the tree distance with the
original one, including small (< 3.0), medium (3.0-5.0)
and large distance (> 5.0) groups. There are about 100
trees in each category.
The true positive rate, false positive rate and F1 score of

replicates in the three groups are shown in Fig. 4. Impor-
tantly, there is a great reduction in false positives (Fig. 4b)
without much loss of true positives (Fig. 4a) for ptACR
on ACR. In general, a replicate in the large evolutionary
branch swapping distance group has sequences simulated
from a more distinct alternative topology compared to
the original tree, which makes the sites in the middle
of the alignment tend to exhibit more homoplasy. Thus,
the boundaries of the recombination event are easier to

Fig. 6 True positive rate (a), false positive rate (b) and F1 score (c) of 4 scenarios of increasing substitution rate
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detect. In contrast, replicates in the small distance group
have closer relatedness of taxa since the alternative tree is
less different to the original tree. As evolutionary branch
swapping distance decreases, both sensitivity and speci-
ficity are reduced.

Effect of substitution rate and heterogeneity
Sequences were simulated in four scenarios by setting the
substitution rate parameter of Seq-Gen to 0.01, 0.02, 0.04
and 0.08. Only recombined trees in the large evolutionary
branch-swap distance group were used in this experiment,
as the sensitivity of ptACR is higher. The default substi-
tution rate heterogeneity parameter in Seq-Gen was used
(α = ∞, which means no heterogeneity). The proportion
of nucleotides in each scenario is shown in Fig. 5. With
low substitution rate, there are 62% monomorphic sites.
As substitution rate increases, the fraction of informative
sites increases. The true positive rate, false positive rate
and F1 score of the four scenarios are plotted in Fig. 6.
With low substitution rate, the true positive rate is high,
the false positive rate is low and the F1 score is high. The
ptACR approach performs better than the ACR in terms
of lower false positive rate and higher F1 score.
To examine how substitution rate heterogeneity affects

ptACR performance, we varied the heterogeneity α (shape
parameter of the gamma distribution) in Seq-Gen, which
influences the variability of substitution rates among indi-
vidual sites. Sequences are simulated in four scenarios
of heterogeneity parameter α ranging from 0.2, 0.8, 1.6
to ∞ (with the fixed substitution rate of 0.01). The
scenario where α is equal to ∞ represents sequences

simulated with a uniform rate at all sites. The propor-
tion of nucleotides in alignments in each scenario is listed
in Fig. 7. With low heterogeneity (α = ∞), there are
37% polymorphic sites and 12% of there are multi-state
characters. As heterogeneity increases, the fraction of
informative sites decreases. The true positive rate, false
positive rate and F1 score of four scenarios are plotted in
Fig. 8. The red bars stand for the results from the previ-
ous ACR method while the green bars show the results
of incorporating the permutation test (ptACR). With low
heterogeneity, the true positive rate is high, the false pos-
itive rate is low and the F1 score is high. Only at the
highest heterogeneity are the sensitivity and specificity
reduced. Hence, ptACR accurately detects recombination
breakpoints in the alignments, including multi-state char-
acters, except in the most extreme divergent situations
(where there is more background homoplasy) occurring
stochastically even without recombination.

Results
We applied ptACR to analyze a collection of 30 clinical
isolates of Staphylococcus aureus [12] aligned with 5
reference strains, including ST8:USA300 (NC_010079.1),
SACOL (CP000046.1), EMRSA-15 (HE681097.1), N315
(BA000018.3) and ATCC 25923 (NZ_CP009361.1).
Recombination has previously been observed for the
species [12, 13]. The alignment of Staphylococcus aureus
contains 2.87 Mb nucleotides where 113,936 sites are
informative (polymorphic) and 3,625 sites (3.18%) have
over two nucleotides. The overall compatibility ratio
over the genome is 88.34% and the homoplasy ratio

Fig. 7 Proportion of nucleotides in 4 scenarios of increasing heterogeneity
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is 1.4484, suggesting recombination occurs among
the population. The global phylogenetic tree is shown
in Fig. 9.
Figure 10 illustrates that 86 local minima (labeled in

red) are identified by ACR as potential breakpoints using
a window size of 250 informative sites, and then 65
breakpoints (labeled in green) are identified as statisti-
cally significant by ptACR with permutation test, where
the Bonferroni-adjusted p-value threshold is 0.000581
(0.05/86). Hence, 66 regions are obtained.
Any two adjacent regional phylogenetic trees con-

structed by their corresponding local alignments have dis-
tinct tree topologies, reflecting the identified boundaries
are confident, since changes in phylogenetic relationships
occur between each pair of adjacent regions.
The plots of the homoplasy ratio and the excess changes

for each region based on the global tree and a regional
tree are shown in Fig. 11. For each region, both homoplasy

ratio and excess changes decrease from the global tree
to the regional tree, showing that the regions identi-
fied by ptACR have different topologies from the global
tree, and each local tree is able to accommodate more
sites within the corresponding region. Figure 12 shows
local phylogenetic trees for three consecutive regions,
starting from the 37th segment, as an example for fur-
ther analysis. The recombined groups of isolates are
labeled in rectangles of the same color. According to the
tree topologies, the 37th region shows that the strain
ERR410042 receives a copy from an ancestor of two
strains, ERR410056 and ERR410060. Yet in the 38th region
the strain ERR410042 receives a copy from an ancestor
of three strains, ERR410044, ERR410046 and N315, while
a parent of ERR410056 and ERR410060 receives a copy
from an ancestor of ERR410038, ERR410039 and EMRSA-
15. In the 39th region the strain ERR410042 receives the
copies from parents of the strain ERR410058 instead. The

Fig. 8 True positive rate (a), false positive rate (b) and F1 score (c) of 4 scenarios of increasing heterogeneity (fixed substitution rate)
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Fig. 9 Global phylogenetic tree of 35 strains for S. aureus. This figure was produced using SplitsTree [37]. The network of parallel edges indicates that
sites exist that are not congruent with a perfect monophyletic tree

information of region size, number of informative sites
(SNPs), genes, overall compatibility ratio (Compat), the
excess changes based on global tree (ECglobal) and local
tree (EClocal), and the reduction ratio of excess changes
(Ratio) for the three regions is listed in Table 1. The num-
ber of excess changes decreases from the global tree to the
local tree, showing that the local trees significantly reduce
the apparent homoplasy based on the global tree.
(paragraph on S. aureus moved to Discussion...)

To visualize the relationships among strains, a plot of
the most closely related reference strain for each strain
in each region is shown in Fig. 13. Strains ST8:USA300,
EMRSA-15, ATCC 25923 and N315 were used as ref-
erences, spanning several different lineages/strain types
worldwide. For each strain, the most closely related ref-
erence strain is defined as the one that has the least
differences in a region. Figure 13 shows that for several
strains, the most closely related reference strain changes

Fig. 10 Identified breakpoints using window sizes of 250 informative sites for S. aureus
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across the genome (i.e., pattern is mosaic), indicating
that they are likely recombined (especially ERR410042).
This is consistent with previous studies that found
extensive recombination in this collection of S. aureus
isolates [12, 13].

Discussion
Our evaluation of ptACR demonstrates that it is not only
sensitive to the true positives but robust to the false
positive signals. Experiments with simulated data show
that the sensitivity of ptACR increases for recombina-
tion between more divergent strains (with higher evolu-
tionary distance). The performance is also influenced by
substitution rate and heterogeneity. Including substitu-
tion rate heterogeneity among sites is more biologically
realistic since some essential genes are more conserved
while other genes tolerate more genetic changes during
evolution over time. The extent of substitution rate het-
erogeneity is inversely related to the shape parameter in
the gamma distribution. As the substitution rate hetero-
geneity decreases, more informative sites are obtained,
and the ptACR performs better in terms of true posi-
tive rates. However, in the scenarios of higher substitution
rate heterogeneity, there are more false positive signals.
With the assessment of statistical significance of break-
points using the permutation test, ptACR outperforms
our previous method by filtering out more false positive
signals. Also, substitution rate is varied to explore the
influence of selection and genetic drift during evolution.
When the substitution rate is lower, the true positive rate
is higher and false positive rate is lower. As the substitu-
tion rate increases, more informative sites with a higher
proportion of multi-state characters are obtained, and the
alignment becomes more divergent. Furthermore, ptACR
is robust even in the presence of coincident SNPs, where

homoplasy is caused by the rapid evolution due to the high
mutation rate instead of the structure of tree [38]. In our
compatibility model, the coincident SNPs in the region
would become background noise since all regional sites
are shuffled to generate the null distribution of the statistic
in the permutation test.
Bruen et al. [20] proposed a similar method called pair-

wise homoplasy index (PHI) based on pairwise incompat-
ibility scores of the entire genome to detect the presence
of recombination. They apply a permutation test on the
entire alignment to obtain the Monte Carlo p-value for
determining the significance of the observed PHI statis-
tic. However, their method is designed only to detect
whether recombination occurs anywhere in the genome.
We extend the estimation from global to local scope to
explore the recombination in local regions of the genome.
That is, our method not only globally detects the presence
of recombination events in an alignment, but locally iden-
tifies candidate breakpoints to obtain regions with distinct
phylogenetic trees.
The ability to efficiently determine recombination

breakpoints in bacterial genomes is especially important
for analyses such as GWAS (genome-wide association
studies) that attempt to statistically associate SNPs or
loci with drug resistance or other phenotypes in a way
informed by phylogenetic structure [39]. Uninformed of
potential recombination, such studies run the risk draw-
ing conclusions from the appearance of homoplasic sites
in recombined regions (with respect to a single global phy-
logeny), which could be misinterpreted as evidence for
positive selection at those sites.
We used ptACR to identify multiple genomic regions in

a collection of S. aureus clinical isolates. Recombination
has been previously reported for this species, but ptACR
offers an efficient method to identify breakpoints where

Fig. 11 Homoplasy ratio based on global and regional trees for each region of S. aureus
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Fig. 12 Phylogenetic trees in the 37th-39th regions (a-c) of S. aureus
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Table 1 Information for regions of S. aureus

Region Size (kb)a SNPsb Genesc Compatd ECglobale EClocal f Ratiog

37th 228.41 5526 USA300_1420-1668 94.59% 1993 1808 9.28%

38th 97.74 4777 USA300_1669-1747 93.63% 1512 1400 7.41%

39th 36.17 1745 USA300_1747-1778 89.93% 914 577 36.87%

aregion size
bnumber of informative sites
cgenes in the region
dregional compatibility ratio
ethe excess changes based on the global tree
fthe excess changes based on the local tree
gthe reduction ratio of excess changes, 1- EClocal

ECglobal

the recombination events are likely to have occurred.
There were 65 such breakpoints in the set of 30 isolates we
analyzed. The fact that phylogenetic trees generated from
SNPs in adjacent regions are distinct, coupled with the
mosaic pattern of similarities to reference strains among
these regions, demonstrates the validity of the ptACR
method. S. aureus is a human pathogen that causes lung
and skin infections. Studies have revealed that S. aureus
contains many types of mobile genetic elements that
drive recombination hotspots, including plasmids, bacte-
riophages, pathogenicity genomic islands and islets, trans-
posons, insertion sequences and staphylococcal cassette
chromosomes (SCC) [12, 13]. In the collection we stud-
ied, the 28th region contains mecA (USA300HOU_0956)
gene that is located on SCC andmost commonly known as
encoding methicillin resistance in S. aureus [40, 41]. Also,
the scpA gene, which is on a plasmid-associated island and
contributes to staphylococcal virulence [42], is in the 37th
region.

The ptACR method has several limitations. One lim-
itation is that, though the ability of ptACR is extended
to handle an alignment consisting of multi-state charac-
ters, the pairwise compatibility for multi-state characters
cannot guarantee setwise compatibility. Determining the
compatibility of a pair of multi-state characters is solvable
in polynomial time, however, determining the compatibil-
ity of a set of multi-state characters is NP-complete [24].
However, if two characters are incompatible, then there is
no tree that can accommodate both sites at the same time.
In practice, local decreases in average pairwise incompat-
ibility is an approximate way to detect the boundaries in
polynomial time.
Another limitation is that, because of the use of a slid-

ing window, there is a practical limit on how small of a
recombined region can be detected. The region has to
be large enough, and the sequences diverse enough, so
that region contains at least as many informative sites as
the chosen window size. Finally, ptACR might be unable

Fig. 13Mosaic patterns plotted from the most closely related reference strains across 66 regions for 30 S. aureus strains
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to give a proper interpretation in the case of overlapping
recombination regions. The phylogenetic relationships in
a region overlapped by two recombination events could
look different from those in the non-intersecting parts of
the regions. While ptACR would likely be able to detect
the boundaries of the recombined regions, it would not
necessarily be able to reconstruct the exact history of the
events.

Conclusions
The ptACR method is able to practically determine the
compatibility of sites of binary- and multi-state charac-
ters and detect the recombination boundaries of lower
average compatibility ratio with the assessment of statis-
tical significance as candidate breakpoints. The method
is sensitive, yet has a low false positive rate, supporting
its ability to characterize mosaic genomes and identify
the regions of distinct phylogenetic histories. With the
detection of recombination events in clinical isolates of
S. aureus, it could provide the better understanding of
evolutionary relationships among bacterial isolates that
is not clonal, driven by selection pressure or antibiotic
resistance.
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