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Abstract

Background: Large-scale pairwise drug combination analysis has lately gained momentum in drug discovery and
development projects, mainly due to the employment of advanced experimental-computational pipelines. This is
fortunate as drug combinations are often required for successful treatment of complex diseases. Furthermore, most
new drugs cannot totally replace the current standard-of-care medication, but rather have to enter clinical use as
add-on treatment. However, there is a clear deficiency of computational tools for label-free and temporal image-based
drug combination analysis that go beyond the conventional but relatively uninformative end point measurements.

Results: COMBImage is a fast, modular and instrument independent computational framework for in vitro pairwise
drug combination analysis that quantifies temporal changes in label-free video microscopy movies. Jointly with
automated analyses of temporal changes in cell morphology and confluence, it performs and displays conventional
cell viability and synergy end point analyses. The image processing algorithms are parallelized using Google’s
MapReduce programming model and optimized with respect to method-specific tuning parameters. COMBImage is
shown to process time-lapse microscopy movies from 384-well plates within minutes on a single quad core personal
computer.

This framework was employed in the context of an ongoing drug discovery and development project focused on
glioblastoma multiforme; the most deadly form of brain cancer. Interesting add-on effects of two investigational
cytotoxic compounds when combined with vorinostat were revealed on recently established clonal cultures of
glioma-initiating cells from patient tumor samples. Therapeutic synergies, when normal astrocytes were used as a
toxicity cell model, reinforced the pharmacological interest regarding their potential clinical use.

Conclusions: COMBImage enables, for the first time, fast and optimized pairwise drug combination analyses of
temporal changes in label-free video microscopy movies. Providing this jointly with conventional cell viability based
end point analyses, it could help accelerating and guiding any drug discovery and development project, without use
of cell labeling and the need to employ a particular live cell imaging instrument.
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Background

Large-scale drug combination analysis (CA) using quan-
titative label-free time-lapse video microscopy (TLVM)
imaging constitutes a yet unconventional method that
could offer increased in vitro drug testing sensitivity and
efficacy, compared to conventional end point methods
[1]. Although well established, such assays may be unin-
formative; either because of misalignment with respect
to the cell cycle duration time or due to chemically
induced changes not being associated with altered end
point readouts. Moreover, they provide neither tempo-
ral information about when the chemical perturbations
are taking effect, nor dynamical information about how
the effects evolve as a function of time. Fluorescent label-
ing, although undoubtedly emerging and powerful [2],
especially when combined with advanced and robust data
analytics [3, 4], requires an extra step of adding reagents.
This may result in undesirable interferences either with
the drugs or natural cellular functions, as well as cellu-
lar perturbations due to repeated UV light exposure [5].
Thus, despite lacking specific molecular changes, label-
free measurements are overall very attractive, since they
are less costly, labor intensive and error prone [5].

The strong potential of label-free quantitative TLVM
imaging in the form of automated quantification of dif-
ferences in time evolving morphologies (AQDTEM) using
the pixel histogram and hierarchy comparison (PHHC)
algorithm has already been demonstrated in the con-
text of in vitro cancer pharmacology studies. It was used
to identify morphology modulating drugs as a comple-
ment/alternative to cell viability assays [6, 7], establish cell
line identity control procedures [7, 8], as well as to detect
differential drug activity in iso-genic cell line pairs [7, 8].
However, this suite of computational tools for extracting
general morphological differences in in vitro growing cell
cultures as a function of time, has neither been applied to
nor generalized for drug CA. Moreover, method-specific
optimized parameter tuning has not been an option due
to long running times, and has therefore resulted in the
employment of ad hoc parameter settings. Furthermore,
these label-free algorithmic methods have not been robus-
tified against outliers, which often cause great variability
in the image quality between different time points and/or
experimental wells and thereby, falsify the interpretation
of the obtained results. Thus, there is an apparent need for
improving, refining, speeding up and incorporating these
algorithms into a generic and modular computational
infrastructure that can be easily employed to a wide vari-
ety of similar applications, including more sophisticated
phenotypic drug discovery and development (DDD) [3, 9].

Unlike the limited use of label-free temporal imag-
ing, drug CA based on single end point readouts, such
as cell viability, is a commonly used practice supported
by commercial tools [10-12] and large industrial efforts
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[13]. Lately, open source packages that enable large-
scale pairwise drug CA have been developed, includ-
ing Combenefit [14], COMBIA [15] and SynergyFinder
[16, 17] (see Table 1). At the same time, it has been shown
that this type of conventional synergy analysis, focused
merely on target cells and defined as any positive devi-
ation from trivial cases, may be completely misleading
when it comes to the detection of large in vitro therapeu-
tic windows, which is of pre-clinical and pharmacological
interest [18—20]. The strength of therapeutic synergy (TS)
analysis [18, 19], and its rare use compared to target cell
focused (conventional) synergy analysis, are motivations
for performing automated quantification of TS in drug CA
studies.

High throughput screening (HTS) employing TLVM
generates large datasets since the recording time may
range from days to weeks resulting in hundreds of giga-
bytes (GB) or even terabytes (TB) of data. The produced
data volume might either not fit into memory or require
long running times by using conventional data analyt-
ics. Therefore, storage and processing time are two main
challenges for building corresponding computationally
efficient tools [4]. State-of-the-art distributed comput-
ing technologies, like Hadoop MapReduce [21-23], have
already shown strong potential in predicting effective drug
combinations from integrating the gene expression data of
the combined drugs [24], as well as accelerating the detec-
tion of adverse drug effects for pharmacovigilance [25].
However, the use of the MapReduce paradigm in biomed-
ical applications is still quite limited and its employment
to AQDTEM using TLVM imaging could pave the way
for more sophisticated, scalable and fault tolerant DDD
platforms.

In this study, we designed and developed COMBImage
(see Table 1); a fast, modular and instrument indepen-
dent computational framework for large-scale pairwise
drug CA and visualization, incorporating MapReduce-
based and optimized AQDTEM. It consists of three
toolboxes compatible with custom experimental layouts
in a checkerboard format (i.e., all combinations of two
drugs at #n doses each): (a) COMBO-V offers conven-
tional cell viability and subsequently Bliss [26] and TS
analyses. Both these types of synergy analysis are refined
by means of a weighting step with the aim to provide
a practically more useful ranking of the combination
effects observed; (b) COMBO-M offers robustified, par-
allelized and method-specific optimized analyses of the
changes in morphology over time; (c) COMBO-C offers
robustified, parallelized and automated quantification of
changes in confluence (AQC). The user gets access to
high quality global checkerboard style screens and cus-
tom text files with all results. Although MapReduce is
well suited for processing of vast datasets across hun-
dreds or thousands of servers in a Hadoop cluster, our
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Table 1 Comparison of the four latest and free softwares for in vitro pairwise drug combination analysis developed during the period

2016 — 2018
Features COMBImage COMBIA SynergyFinder Combenefit
Cell viability Synergy/antagonism models B,RB, T, RT B, LT B, L, HSA, ZIP B, L, HSA, SANE
Non-parametric statistics + + — —
Graphics + + + +
Result tables + + + +
TLVM Morphological changes + -
Confluence changes + — _ _
MapReduce + — — _
Parameter optimization + — — _
Non-parametric statistics + — — _
Graphics + — — —
Result tables + — — _
Other oS Windows all all all
Available as Standalone R-package Web application Standalone, M-package

They are listed in descending chronological order from the newest (left) to the oldest (right). The compared features (rows) are organized in two main algorithmic categories
based on the employed readouts: (1) Cell Viability ; (2) Time-lapse video microscopy (TLVM) and a third one: (3) Other, which provides functional and technical details.
Explanation of the abbreviations used follows. B: Bliss, RB: Refined Bliss, T: Therapeutic, RT: Refined Therapeutic, L: Loewe, HSA: Highest Single Agent, ZIP: Zero Interaction
Potency, SANE: Synergy Antagonism or Neutrality Estimation, M-package: MATLAB package

results suggest that already employing this technique
on multi core computers, for smaller datasets, offers
unprecedented performance. In particular, TLVM movies
from 384-well plates were processed within a few min-
utes in a single quad core personal computer. The cur-
rently described version of COMBImage is distributed
as a package of three standalone applications for Win-
dows with appropriate documentation via the figshare
repository [27-29].

Case study

The prospect of COMBImage was demonstrated in the
context of an ongoing DDD project, focused on the devel-
opment of new multicompound therapies for glioblas-
toma multiforme (GBM); a highly aggressive and the
most common primary brain tumor in adults. It exhibits
extremely poor prognosis that has been attributed to not
only genetic, but also intratumoral heterogeneity that is
thought to be linked to therapy resistance and disease
relapse [30, 31]. A promising approach towards combating
GBM, as well as any other complex disease, is the discov-
ery of drug coktails, which in contrast to monotherapy,
could overcome resistance, achieve better efficacy and
reduce the risk of adverse reactions [18]. However, such an
early DDD phase requires in vitro drug testing and evalua-
tion. COMBImage was employed in this context as a novel
image-based drug CA tool that goes beyond the single
end point cell viability measurements. In particular, it was
used to evaluate the add-on effects of two investigational
cytotoxic drug candidates along with the standard-of-care
temozolomide (TMZ), and vorinostat (SAHA) that has

shown effect and high tolerance in patients with recurrent
GBM [32].

Notably, the drug combination effects were evaluated
on two recently established clonal cultures of glioma-
initiating cells (GICs) from patient tumor samples [31];
one drug sensitive and one multidrug resistant. This is
attractive in a pharmacological context, as the GIC clones
have stem cell properties, reflect intratumoral hetero-
geneity and are close to the original patient cells due
to their low passage number. TSs were identified for
both investigational cytotoxic compounds, when com-
bined with SAHA. The TSs were apparent as the viability
of the reference (toxicity) cell model in the form of nor-
mal astrocytes (ACS) was mainly unaffected, compared
to the GBM clones where cell death was induced. How-
ever, these combinations started to substantially mod-
ulate the morphologies of the GBM cells and ACS in
different directions. Finally, quantification of changes in
cell confluence confirmed the aforementioned therapeu-
tic synergies, while revealing delayed but equal effects on
the resistant compared to the sensitive GIC clone. These
results are summarized in Fig. 1.

Results

Results from COMBImage are provided in the context
of the current case study. Since all the four different
drug pairs were duplicated in each 384-well plate
(see “Methods” section), only the merged values are
shown. This is a user-defined option during the initi-
ation of all three toolboxes, when there are intra-plate
replicates. However, global visualization is also supported,
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reens produced by COMBO-V, COMBO-M and COMBO-C, for normal

astrocytes (first row), sensitive GIC clone (second row) and resistant GIC clone (third row), when SAHA was combined with CPD-1, an investigational
cytotoxic compound. The information shown for a particular combination concentration patch is as follows. COMBO-V: cell viability, from purple
showing full cell survival (100%) to yellow showing zero cell survival (0%). COMBO-M: relative difference from the top 5% of corresponding
natural/untreated morphological effects, from purple being —100% to yellow being 100%. COMBO-C: growth curves of treated (red) and untreated
(black) GIC clones. All growth curves are expressed with respect to the first time point

meaning that all drug pairs on a single plate are visualized
separately. In both cases, all generated graphics are based
on a checkerboard format as heatmaps and growth curves.

COMBO-V

COMBO-V (Fig. 2), as part of COMBImage, offers con-
ventional cell viability and subsequently Bliss and TS
analyses (see “Methods” section and Table 1). The latter
two are further refined by means of a weighting step for
ranking of the observed combination effects. The run-
ning time for analyzing, generating and storing the results
for all three 384-well plates of the current case study was
approximately 1 min. Notably, non-parametric statistics
are also provided in the presence of inter-plate replicates,
as extensively described and shown by us in a previous
work [33].

In case of intra-plate replicate wells, only survival index
values with standard deviation smaller than 30% were
kept and merged. Notably, the aforementioned cut-off
threshold for the standard deviation is a user-defined

parameter during the initiation of COMBO-V. White
patches annotated with “X” in the generated graphics
indicate excluded values from the analyses due to this
criterion.

Cell viability analysis and visualization

All results from cell viability analyses and associated
comments are provided as additional files (“Cell cul-
tures” section and Additional file 8: Figures S1-S3). Only
partial results are shown in the first column of Fig. 1.

Bliss synergy analysis and visualization

All results from conventional and scaled/refined Bliss
synergy analyses and associated comments are provided
as additional files (“Chemical compounds” section and
Additional file 8: Figures S4-S6).

TS analysis and visualization

All results from conventional TS analysis and asso-
ciated comments are provided as additional files
(“Experimental format” section and Additional file 8:
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Fig. 2 COMBO-V Flowchart. (1) Microplate reader and specification files are selected by the user; (2) Deployment of the custom experimental format;
(3) FMCA-based cell viability analysis; (4) Conventional and scaled Bliss synergy analysis; (5) Conventional and refined therapeutic synergy analysis,

s as heatmaps in EPS file format; (7) Extraction of results in CSV file format

Figure S7). The main focus is given to the refined TS
analysis, which offered less misleading results due to
ranking/sorting (see “Methods” section).

Overall, therapeutic windows were observed between
astrocytes and the sensitive GIC clone U3065 — 271
(Fig. 3a), for all four different drug pairs, especially when
either CPD-1 or CPD-2 was combined with TMZ. Regard-
ing astrocytes and the resistant GIC clone /3065 — c475
(Fig. 3b), therapeutic windows were mainly observed,
when CPD-2 and especially CPD-1, both at the highest
concentration (2uM), were combined with SAHA.

The strength of employing TS analysis over target
cell focused Bliss synergy analysis was clearly shown
when comparing the Bliss index values Bs (Additional
file 8: Figure S5b) with the therapeutic index values

Trw (Fig. 3a) for the combination concentrations (CPD-
2, SAHA) = (0.254M, 3.5uM) and (CPD-2, SAHA) =
(0.5uM, 3.5uM). Although the corresponding Bg values
were —1%, in both cases, indicating Bliss antagonism,
the Try values were 74% and 72% respectively, showing
substantial TS.

COMBO-M

COMBO-M (Fig. 4), as part of COMBImage, offers
robustified, MapReduce-based and method-specific
optimized AQDTEM via the PHHC algorithm (see
“Methods” section and Table 1). The running time for this
algorithm on the time-lapse microscopy movies per 384-
well plate of the current case study was approximately
5 min, including parameter optimization.
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Image quality control temporal behavior of the detected morphological changes
The first part of the AQDTEM module of COMBO-M  as well as the contribution of different time points are also
is image quality control. Outliers are detected and sub-  monitored.

sequently excluded from all subsequent image processing In terms of the current case study, the PHHC algo-
steps (see “Methods” section). Figure 5 shows the distribu-  rithm for each parameter pair (see “Methods” section and
tion of all experimental wells per plate of the current case ~ Table 2), was employed 13 times in total; firstly, using all
study as occurring from the image quality control step (see  available 13 time points, secondly, excluding the first and
Additional file 7 for an example), where treatment effects  including all the remaining 12 time points and so on, until
are not taken into account. only the last time point was used (see Fig. 6, Additional

file 8: Figure S8).
Systematic PHHC parameter optimization

Benefiting from the very fast running times, the changes  Optimized PHHC results

in morphology via the PHHC algorithm are quantified for =~ Given that early time points seemed to be less informa-
the whole parameter grid, using a sequence of decreas- tive for all three cell model systems (Fig. 6), checkerboard
ing time intervals. This is in order to investigate how  style screens were generated only for later time points
different parameter settings affect the analyses and opti-  using the corresponding suggested optimum parameter
mize the subsequent results. Furthermore, in this way, the  settings (see “Methods” section). The illustrated values in




Chantzi et al. BMC Bioinformatics (2018) 19:453 Page 8 of 19

(a) (b) (c)
U3065-c271

ACS U3065-c475

3500

3000 2500

2500 2000

N
S
3
3

1500

@
3
S

1000

=]
3
3

@

3

3
o
3
3

deviations (L'I norms)
deviations (L'I norms)

0 50 100 150 200 250
wells

wells

Fig. 5 Image Quality Control. Detected and subsequently excluded outliers from all image processing steps: a astrocytes (ACS); b sensitive GIC
clone (U3065 — ¢c271); e resistant GIC clone (U3065 — ¢475). Each data point representing a particular experimental well, was detected as an outlier,
if its corresponding L'-norm was equal to or greater than the detection threshold shown by the red dotted line

Fig. 6 show the distance in % from the “null” threshold
(see “Methods” section), which in this case corresponds to
the top 5% of untreated morphological effects. Thus, all
positive values are statistically significant.

Starting with the normal astrocytes (Fig. 7a), interest-
ing morphological cellular changes were detected when
either CPD-1 or CPD-2 was combined with SAHA across
almost the whole concentration grid (also with TMZ but
only when the highest concentration of CPD-1/CPD-2
was used). The results suggest that interesting morpholog-
ical changes were induced by the single drugs, which were
clearly reinforced by their combination, showing increas-
ing tendency with larger changes at higher doses. Based
on visual inspection, the morphological changes originat-
ing from SAHA and CPD-1/CPD-2 alone, include mainly
what could be described as long cellular protrusions (see
Additional file 1) and increased formation of dense intra-
cellular particles (see Additional file 2), respectively. An
example showing the combination of these morpholog-
ical effects after 72 h of treatment is shown in the left

part of Fig. 8 (see also Additional file 3 for the whole
movie).

The morphology of the resistant GIC clone 13065 —
c475 (Fig. 7b) was substantially affected when either
CPD-1 or CPD-2 was combined with SAHA (also with
TMZ but only when the highest concentrations of CPD-
1/CPD-2 were used). The results suggest that interesting
morphological changes were induced by CPD-1/CPD-2
alone in the highest dose, which were clearly reinforced
by the combination with SAHA, showing an increas-
ing gradient towards higher concentrations. Based on
visual inspection, the morphological changes originating
from CPD-1/CPD-2 alone, include mainly what could be
described (similarly to before) as increased formation of
dense intracellular particles (see Additional file 4), fol-
lowed by cell death at late time points after the combina-
tion with SAHA (right part of Fig. 8, Additional file 5 for
the whole movie).

The changes in morphology of the sensitive GIC clone
U3065 — 271 (Additional file 8: Figure S9) resemble those
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Fig. 6 Optimized PHHC Analyses. Number of detections (interesting morphological changes compared to untreated controls) using 13 decreasing
time intervals for the 4 runs of the currently employed parameter grid: a astrocytes (ACS); b sensitive GIC clone (U3065 — ¢c271); ¢ resistant GIC clone
(3065 — ¢475). The values on the x-axis correspond to the first time point for a particular time interval (e.g., Oh indicates the time interval [ 0h, 72h],
6h indicates the time interval [6h, 72h], etc.)
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treated

untreated

Fig. 8 Interesting Morphological Detections by COMBO-M. (first column) Astrocytes (ACS) treated with (CPD-1, SAHA) = 2uM, 7uM) for 72h vs.
untreated; (second column) resistant GIC clone (U3065 — ¢475) treated with (CPD-1, SAHA) = 2uM, 7uM) for 72h vs. untreated. Red arrows show
examples of increased dense formation of intracellular particles, while green arrows illustrate examples of long cellular protrusions

U3065-c475

of the resistant GIC clone 13065 — c475 mentioned above,
but with the difference that increased cell death seems to
be induced much earlier.

COMBO-C

COMBO-C (Fig. 9), as part of COMBImage offers robus-
tified and MapReduce-based quantification of changes in
confluence (see “Methods” section and Table 1), which
are visualized as checkerboard style screens. The y-axis of
the resulting growth curves corresponds to the change in
confluence with respect to the first time point, displayed
in the range [ —50%, 120%]. Thus, the lowest displayed
value corresponds to 50% decrease in confluence, while
the highest value corresponds to 120% increase in con-
fluence, compared to the first time point. The running
time for performing AQC of the time-lapse microscopy
movies per 384-well plate of the current case study was
approximately 2 min.

Growth curves

Treated astrocytes showed overall increases in confluence
over time compared to untreated astrocytes (Fig. 10a).
However, when SAHA was used in the highest concen-
tration (7uM), decreasing trends were observed at late
time points. This was in alignment with the corresponding
results from the cell viability analysis (Additional file 8:
Figure S1).

As for the resistant GIC clone 13065 — c475 (Fig. 10b),
the confluence dropped as much as for the sensitive
GIC clone 13065 — ¢271 (Additional file 8: Figure S10),
but at later time points and to a much more limited

extent across the whole concentration grid. In particu-
lar, the results suggest decreases in cell growth when
either SAHA or CPD-1 are used alone in the highest
concentrations (not for CPD-2 though). However, a sub-
stantial downward trend was observed, when SAHA was
combined with either CPD-1 or CPD-2 at the high-
est concentrations, indicating synergistic combination
effects.

Notably, the confluence curve of (CPD-2, SAHA) =
(0.25uM, 0.44M) (Fig. 10a) was the only curve with a sub-
stantially upward trend, starting from tg = 30k, which
based on visual inspection, is consistent with a bacte-
rial infection (see Additional file 6). Similarly, COMBO-M
quantified the aforementioned combination concentra-
tion to have the highest value of 523% (Fig. 7a). Although
of limited biological interest in the context of the cur-
rent case study, this well could be perceived as a posi-
tive control example, showing the proper functionality of
COMBO-M and COMBO-C.

Discussion

The present study introduces COMBImage; a fast,
modular and instrument independent computational
framework for pairwise image-based drug CA and
visualization. It currently consists of three different tool-
boxes; COMBO-V, COMBO-M and COMBO-C that all
together could guide and accelerate any DDD project,
especially in early phases. The potential of COMBIm-
age was particularly demonstrated in the context of an
ongoing DDD project, where two investigational cyto-
toxic compounds were evaluated for potential add-on
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treatment of GBM. Different aspects related to the impor-
tance of COMBImage as a DDD tool, are discussed in
smaller distinct sections below.

Pharmacological aspects

Drug combinations with great potency as GBM treat-
ment were discovered, after evaluating their effects in
vitro on a sensitive and a multidrug resistant patient
derived GIC clones, as well as on a reference (toxicity) cell
model in the form of normal astrocytes. Given the avail-
able cell viability data, we conclude that the two inves-
tigational cytotoxic drug candidates CPD-1 and CPD-2
in combination with SAHA at the highest concentra-
tions induced cell death on the GBM cells (Additional
file 8: Figures S2-S3). Notably, promising therapeutic syn-
ergies were found as they seemed to affect relatively
little the cell viability of astrocytes. This result was fur-
ther supported by cell confluence analysis (Fig. 10b and
Additional file 8: Figure S10), which additionally revealed
a delay of approximately 12 — 18 h for the conflu-
ence of the resistant GIC clone to drop as much as
for the sensitive GIC clone. Moreover, these drug pairs
seemed to induce interesting morphological changes both

on normal astrocytes and the GBM cells where cell
death was induced as well (Fig. 8). Regarding the bio-
logical effect of the investigational compounds alone,
given the cell viability data, one can only conclude that
CPD-1 induced cell death on the sensitive GBM cells
(Additional file 8: Figures S2-S3). Further studies to elu-
cidate the exact mechanism of cell death are performed
independently as part of another project and thus, are not
shown here.

Computational aspects

State-of-the-art distributed computing techniques, like
MapReduce, facilitate fast and reliable algorithmic imple-
mentations even on multi core computers that can be used
in most labs nowadays, without necessitating cloud infras-
tructures that may require additional expertise related,
for example, to maintenance and security configurations.
Although vast datasets (multiterabytes) necessitate the
deployment of large clusters of commodity hardware for
scalable and fault tolerant processing, as well as for stor-
age, there are datasets that may fit in memory and still
benefit from very short running times provided by parallel
processing.
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Speed increases capacity, quality and sophistication.
Here, systematic parameter optimization was enabled,
showing the importance of generic, powerful and sensi-
tive tools that are not restricted to arbitrary parameter
settings. Different parameters were associated with the
optimal results for the three cell models studied. Decreas-
ing gradually the time interval of the compared video
microscopy movies revealed that excluding earlier time
points with limited information, increased the sensitiv-
ity of the analyses by generating much more consistent
results.

In our previous work related to AQDTEM via the PHHC
algorithm, the pixel histograms were extracted based on
all pixels in the images [6, 8]. As a consequence, those his-
togram features were not only dependent on the actual
changes in cell morphology but partially also on the con-
fluence, which may be regarded as another type of global
morphological feature. There are several advantages asso-
ciated with extracting the morphological features exclu-
sively based on the foreground pixels as by COMBO-M.
Firstly, the features are dependent exclusively on changes
in morphology and not confluence of the cells, which is
in turn separately extracted and visualized by COMBO-
C. Secondly, we achieve robustness against variability in
the cell seeding, temporal fluctuations in the confluence
present in the particular subpart of the well where the
microscopy images are collected, as well as artifacts such
as wave patterns, dust particles, and scratches that quite
often are visible in the cell free background.

Statistical aspects

Our results suggest that the sensitivity of the AQDTEM
is greatly influenced by the resolution of the microscope
objective. A 20x objective, like the one used here, often
results in very few cells per image and thus, unreliable
detections. Another related statistical problem with such
cases, is that the background experimental noise also con-
tribute to unreliable detections. Although using a 10x
objective will decrease the resolution of individual cells,
it will provide images with a much larger part of the
cell population studied, which is crucial for tools that
rely on comparison of general statistical properties over
time.

Image quality control and visualization

Image quality control steps are necessary for the devel-
opment of robustified computational methods against
outliers, which often cause great variability in the image
quality and therefore, may falsify the interpretation of the
obtained results. Such outliers should always be removed,
especially from growth control wells that are examples
of expected/natural morphological effects under no treat-
ment. Finally, global checkerboard style screens illustrat-
ing the whole experimental plate are very convenient and
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helpful for getting a general grasp of the results, especially
in large-scale experiments.

Limitations

Although this work demonstrates that DDD can be guided
and substantially accelerated by tools that offer label-free
image-based drug CA, there is still great potential to
extend and refine the current functionality. Scaling up the
framework by using larger datasets, which are more well
suited for the MapReduce programming model, could be
a first step forward. An obvious limitation is the employ-
ment of AQDTEM using only the PHHC algorithm. Thus,
the development of alternative feature extraction meth-
ods are required, in order to determine which approaches
offer the best balance between sensitivity and robust-
ness. Furthermore, the currently detected morphological
changes over time do not have any particular direction,
as they can deviate from natural morphological effects
in many different ways. Therefore, a preprocessing step
for enhancing and quantifying specific morphological fea-
tures of interest would be attractive. Finally, given the
relatively unexplored potential of high-order drug combi-
nations [34] as well as the necessity of multidrug therapies
for combating complex disorders [18], the pairwise drug
CA offered currently by COMBImage should definitely be
expanded.

Conclusions
In brief, the main contributions of this study are:

e A demonstration of how the challenges associated
with long running times may be successfully
addressed by employing modern parallel data analysis
methods, such as Google’s MapReduce programming
model. Although the current implementation can be
scaled up to run on large computer clusters, our
results suggest unprecedented performance already
when employing it for smaller datasets on multi core
computers. This opens for fast image processing and
thus, systematic parameter optimization on local
machines, providing convenience and possibilities to
keep precious data locally, especially for early phases
in DDD.

e COMBImage; an instrument independent, integrated
and modular computational framework for pairwise
drug CA, which performs and displays cell viability
and synergy analyses jointly with parallelized and
optimized quantification of changes in morphology
and confluence in label- free video microscopy
movies.

e A small illustrative case study not only showing how
COMBImage can be used to accelerate pairwise drug
CA, but also revealing combination effects of
outstanding pharmacological interest in patient
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derived tumor initiating clones from GBM; the most
deadly form of brain cancer [30, 31].

e New examples of drug CA results where conventional
Bliss synergy analyses of tumor initiating cell clones
are misleading compared to a TS analysis, which
compares the effects on the clonal cells with
reference cells; normal astrocytes in this case.

Methods

Cell cultures

The GBM clonal cell cultures, /3065 — ¢271 and U3065 —
¢475 [31], were cultured in neural stem cell media (1:1
mix of DMEM-F12 GlutaMAX medium and Neurobasal
medium (Life Technologies/GIBCO-Invitrogen) contain-
ing 1% penicillin G/streptomycin sulfate (Sigma-Aldrich,
St. Louis, MO), supplemented with B-27 without vitamin
A (1:50; Invitrogen), N2 supplement (1:100; Invitrogen),
10 ng/mL EGF and 10 ng/mL FGEF-2 (PeproTech, Rocky
Hill, NJ). Human cerebral cortex astrocytes (#1800, Sci-
enCell, Carlsbad, CA) were cultured in astrocyte medium
(containing basal medium, 2% fetal bovine serum, 1%
penicillin G/streptomycin sulfate and astrocyte growth
supplement (#1801, ScienCell)). Cells were seeded in poly-
L-ornithine (P4957, Sigma-Aldrich) and laminin (L2020,
Sigma-Aldrich) coated 384-well plates (164688, Thermo
Fisher Scientific) at a density of 1000 cells/well using a
BioMek 4000 (Beckman Coulter). All cells were seeded
24 h prior to treatment with compounds.

Chemical compounds

Four different chemical compounds were used in this
study; two investigational cytotoxic compounds, denoted
as CPD-1 and CPD-2, the HDAC inhibitor vorinostat
(SAHA) and the alkylating agent temozolomide (TMZ).
CPD-1 and CPD-2 were combined with SAHA and TMZ,
resulting in four different drug pairs, as duplicates per
384-well plate (see Table 3 for doses).

Experimental format

All currently compatible experimental layouts, developed
in-house for different DDD projects, are included in
Table 4. Here, the first one was used. Larger experimental
formats (e.g., 1536-well plates) can be also integrated to
the current modular computational framework.

Table 2 Parameter grid

(r,b) Run
(2.3) #
(2.3) #2
(5.3) 3
(5.3) #4

Currently employed parameter grid for MapReduce PHHC algorithm, where r and b
are the scale reductions factors of resolution and number of bins respectively, at
each hierarchical level
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Assay for determination of survival index

Cell survival was calculated by means of the Fluoromet-
ric Cytotoxicity Assay [35, 36] (FMCA). Cell survival for
a combination concentration (cj,c2) of drugs 1 and 2
respectively, known as the survival index and denoted
here as S, is calculated by means of Eq. (1):

S(e1,c2) :JM o

fcontrol _f blank

Here, f(c1,c2) corresponds to the fluorescence signal
from the experimental well of the combination concen-
tration (cy, ¢p), while fhhmk and f,o,01 denote the median
fluorescence signals from the blank and growth control
wells, respectively. For drugs causing growth inhibition
and/or cell killing, the range of S(c1, ¢2) spans from 0 to 1
indicating minimal and maximal cell survival, respectively,
compared to untreated controls.

Synergy analysis

Pairwise combination effects are assessed using conven-
tional target cell focused Bliss [26] synergy, as well as
reference cell focused TS analyses. Both types of synergy
analysis are further refined by an extra weighting step with
the aim to sort/rank the observed combination effects.
B and T denote the conventional Bliss and therapeutic
indices respectively, while Bs and Try denote the corre-
sponding indices after sorting/ranking (Additional file 8:
“Conventional and Scaled Bliss Synergy Analysis” and
“Conventional and Refined Therapeutic Synergy Analysis”
sections).

Label-free video microscopy screening

Phase-contrast time-lapse microscopy images were
acquired using the IncuCyte FLR (Essen BioScience Inc.)
located inside the incubator. The microscope had a 20x
objective with the ability to capture high quality phase-
contrast microscopy images, 1024 x 1280 pixels each. 15
frames/images per experimental well were acquired, one
every 64 (the first two without treatment). The total size
of image data per 384-well plate was 6.14 GB.

Table 3 Concentrations of chemical compounds

Drug Concentration ¢ (uM)

Q (&) G Cq Cs
CPD-1 0.125 0.25 0.5 1 2
CPD-2 0.125 0.25 0.5 1 2
SAHA 04 09 1.75 35 7
T™Z 7.8 156 31.25 62.5 125

Non-zero concentration range of the four chemical compounds used in the case
study, which were combined in a checkerboard format; all four drugs in all possible
concentrations. The concentrations were selected based on an initial dose-response
analysis
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Time evolving morphologies (TEM)

Time evolving morphologies (TEM) are extracted as pixel
histograms at multiple consecutively decreasing resolu-
tion levels from all experimental wells. For simplicity, the
extraction procedure is described for a particular exper-
imental well w and hence, one time-lapse movie with n
time points/frames in total. Starting with the first time
frame ¢1, a pixel histogram is extracted in the original,
as well as in consecutively decreasing resolutions as long
as the number of bins is greater or at least equal to 2
(Additional file 8: Table ST1), resulting in m different res-
olutions. Since each pixel histogram is one-dimensional
(1-D), it is translated into a feature column vector h,, ,, (£1)
with length equal to the number of bins, for the original
resolution ry and first time point ¢;. By merging together
sequentially the obtained feature vectors hw,,j (t1) withj =
{1,2,---,mj}, a larger feature column vector hy,(¢1), with
length equal to the cumulative number of bins from all
hierarchical levels, is generated. By repeating this extrac-
tion procedure for all the # time frames for well w, the
following feature matrix H,,, which contains the TEM for
well w, is obtained:

H, = [hy, (t1) hy, (t4)]
hw,r1 (tl) e hw,r1 (tn)
hw,r2 (tl) e hw,r2 (tn)
- : . : 2)
hw,rm (tl) te hw,rm (tn)

MapReduce TEM extraction

The MapReduce programming model, as provided by
MATLAB R2017b [37], is used for the TEM extraction in
the form of hierarchical pixel histograms. The Map func-
tion extracts the hierarchical pixel histograms of single
frames, while the Reduce function merges the hierarchical
pixel histograms of all frames per experimental well. By
default, the MapReduce TEM extraction is executed on a
local parallel pool by deploying all available cores of the
computer used. Here, 4 cores were deployed.

Image quality control

The image quality control step requires the number of
untreated frames as a user input during the initiation of
the framework. The main idea is that all experimental
wells (should) look similar, as long as there are no ongo-
ing treatment effects. This quality control step is based
on MapReduce TEM extraction as described by Eq. (2),
where all pixel values are used for each hierarchical level.
For each row in the matrix Hy, an average feature value
over the whole untreated time interval is calculated result-
ing in hy, which is an individual average feature column
vector under no treatment. Then, a global average fea-
ture vector, denoted here as h, is obtained by averaging all
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h,,. Finally, the deviations between individual and global
averages are calculated as:

ey =hy, —h ®3)

The L!-norms of all individual difference vectors e,, are
obtained as follows and create a statistical pool P:

w:l<w<mn
(4)

Here, n denotes the total number of wells per exper-
imental plate. As outliers are characterized and subse-
quently excluded, all the wells w, whose L!-norm is greater
than or equal to 1.5 times the 957 percentile of the
statistical pool P, as expressed by (4).

The parameter settings used for the MapReduce TEM
extraction on this step are 128 bins for the original res-

1

olution, a scale reduction factor r = 7 in resolution

and subsequently, a scale reduction factor b = % in the
number of bins.

Pe={lleilly, - o llenlia}s

Foreground segmentation

Global threshold based segmentation is used in order to
divide the images into foreground and background pix-
els. This step aims at extracting only the foreground pixels
for the main analyses. Given that f (x, y) and g(x, y) denote
the original and new pixel values at position (x, y), respec-
tively, the employed thresholding operation to define the
foreground as pixel values being equal to one, can be
defined as:

1 if fx,9)¢rt

0 otherwise

gxy) = (5)

Here, 7 is a pre-defined intensity interval. It is adaptively
selected based on the first time point(s) of all experimen-
tal wells, where the background is assumed to dominate.
More precisely, the median pixel value pu, of the first
frame(s) for each well w is calculated. Then, all these
values u, are merged to create a statistical pool P;, of
background intensities across the whole image library.
Finally, the interval t is selected based on the median
value of the samples in the pool Py, reflecting a global
background intensity, expressed as:

{w:1<w<n} (6)

Pb - {/‘Ll! """ ’ /‘Ln}y

where 7 denotes the total number of experimental wells.
Then, the associated global background intensity estimate
is:

wp = median {Pp} (7)

In the current analysis, u, was multiplied by 0.95
and 1.05, in order to allow for +5% deviations, respec-
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tively, resulting in the following background intensity
interval 7.

where {t;, 7, : 1,=0.95- up, 7,=1.05- up}
8)

T€ 1, 4],

Notably, the aforementioned absolute deviation is a
user-defined parameter in the general framework.

Extraction of differences in TEM (DTEM extraction)

The MapReduce TEM extraction for the main analyses
is based exclusively on the pixels that belong to the fore-
ground and thus, satisfy (5) and (8). Each hierarchical pixel
histogram extracted on the foreground is also normalized
(area underneath equal to 1), so as the corresponding fea-
tures are not dependent on cell confluence but merely on
cell morphology. The number of bins for the first hier-
archical level (original resolution of images) is set to 16.
Differences in TEM (DTEM) are calculated, in order to
assess the deviation of the chemically induced morpholog-
ical changes from natural morphological effects observed
without treatment. The DTEM of the control wells are
evaluated by employing the following leave-one-out pro-
cedure to the N, control wells, where each control well
¢, on a plate p, is considered as a treated well without
effect:

N,

1 c

— E H(k, p), ¢, k € Leontrol
k=1

k;zﬁc

AH(c,p) = H(c,p)—

Nc
)

Here, Io,tr01 denotes the set of well indices correspond-
ing to the N, growth control wells only. This procedure
is employed iteratively for all growth control wells that
belong to a particular plate p. Regarding treated wells, the
corresponding DTEM are calculated as the difference of
the individual TEM from the average control TEM. In par-
ticular, for a treated well d on plate p, this is achieved by
means of the following equation:

N
1
AH(d,p) = H(d,p)— 1 D Hep),  d € lyearea (10)
¢ =1

Here, Ijyeqz04 denotes the set of well indices correspond-
ing to treated wells only.

DTEM comparison

The DTEM of all control and treated wells are compressed
into a scalar by calculating the corresponding L!-norms
as follows, assuming that the DTEM matrices AH have
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dimensions K x T, where K and T are the total number of
features and time points, respectively:

T K
|aHEp) |, =D |AHk(cp)

t=1 k=1

’ ¢ € Leontrol (11)

T K
|[AH@P|, =) ") |AHKk@.p)|,  d € lieatea (12)
t=1 k=1
Lontror and Ipq:04 denote the sets of well indices corre-
sponding to control and treated wells, respectively. All val-
ues calculated by (11) are pooled together forming a sta-
tistical pool, A, of magnitudes under the null hypothesis,
where all the acquired differences are naturally observed
without treatment and thus, they are not considered inter-
esting. The “null” distribution A, is expressed as:

Ac ={|AH(c1,p)| |AH(e, p) |, }

1’ ’

" (13)
¢i € leontrol

The 95t percentile 195 of this distribution was used
here, as a threshold above which, the null hypothe-
sis was rejected, meaning that the observed differences
were detected as interesting. Notably, this threshold, also
referred to as the “null” threshold, is a user-defined
parameter in the general framework. Finally, the relative
difference between the calculated magnitudes and o5 is
calculated, denoted as d for a particular well w and defined
as:

[aHw P, — s _ |AHD)],

d(w) = 1
T95 T95

we {Icontrol! Itreated}

(14)

This gives the value zero at 795 and subsequently, nega-
tive and positive values below and above 795, respectively.
In our framework, morphological changes for a partic-
ular well w are detected as interesting and thus, called
detections D, when d(w) > 0, simply meaning that the
null hypothesis is rejected. Accordingly, morphological
changes are considered uninteresting when d(w) < 0,
simply meaning that the null hypothesis is not rejected.
Thus, summing the number of experimental wells for
which the null hypothesis is rejected, yields the total
number of detections Np:

Np= Y. d(w)

(w: d(w)>0}

(15)

Notably, as a consequence of using g5, the probability
of false alarm equals 5% because this is the fraction of
untreated wells being detected as interesting.

Parameter optimization

Two tuning parameters are optimized for the PHHC algo-
rithm. These are the scale reduction factor r in the res-
olution at each hierarchical level and the corresponding
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scale reduction factor b in the number of bins. The num-
ber of bins is reduced when reducing the resolution of
an image, since the intensity information is decreased as
well (Additional file 8: Table ST1). Currently, the pipeline
runs through a 2 x 2 parameter grid, as shown in Table 2.
The parameter pair (v*,5*) that maximizes the number
of detections Np is suggested as the optimal and the cor-
responding optimization problem can be expressed as:

max Np(r, b
s D( ) (16)
PHHC algorithm

Using the title names of the aforementioned sections,
algorithm 1 describes the functionality of the PHHC:

Algorithm 1 PHHC Algorithm

1: for each time interval ¢ of interest do
2 for each parameter pair (r, ) do
3 MapReduce TEM Extraction
4 DTEM Extraction

5 DTEM Comparison
6

7

8:

end for
Parameter Optimization
end for

Confluence

For each frame/time point ¢ per experimental well, the cell
confluence ¢ is calculated as the fraction of foreground
pixels, as given by summing all pixels satisfying (5) and
then dividing by the total number of pixels N:

1
{(x):g(xy,H)=1}

Here N = 1310720, since there were 1024 x 1280 pixels
per frame.

g(x, 9, 1) (17)

Relative confluence

In order to quantify and express changes in confluence
between consecutive time points, we introduce an alter-
native measure of confluence, which is expressed relative
to the first time point £1, when the treatment is just added.

Table 4 Experimental Layouts

Well plate # Drug pairs Concentration grid (n x n)
384 8 6x6

15 4 x4

20/21

Currently compatible 384-well experimental layouts, where the drugs are combined
in a checkerboard format; all combinations of two drugs at n doses each. The values
ninclude the zero concentration of the single drugs
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For a particular experimental well w and time point ¢;, the
relative confluence ¢, (%) is defined as:

Tot) = cw(ti) — cw(ty) N cw(t) _
v cw(ty) B cw(t1)

(18)

This gives the value zero at the first time point, ¢, (¢;) =
0, and subsequently negative or positive values at later
time points corresponding to decreases or increases in
confluence with respect to t;, respectively. The main
advantages of this relative measure is that it establishes
a reference value Ty (f;) = 0 and compensates for dif-
ferences in cell seeding that make the results between
different experimental wells hard to compare using the
conventional confluence measure.

MapReduce confluence quantification

The MapReduce programming model, as provided by
MATLAB R2017b [37], is used for confluence quantifica-
tion. The Map function performs foreground segmenta-
tion as defined by (5) and (8), while the Reduce function
calculates the fraction of foreground pixels as expressed
by (17), per frame. By default, the MapReduce conflu-
ence quantification is executed on a local parallel pool by
deploying all available cores of the computer used. Here, 4
cores were deployed.

Programming environment and operating system
COMBImage was developed in MATLAB R2017b [37]
under Windows 10. The data analyses were performed on
a single personal computer with an Intel Core i7-6700HQ
CPU, quad-core 2.6GHz, 32GB RAM, 128GB M.2 SSD
and 1TB 7200rpm HDD. For scaling up the MapReduce
implementation in a Hadoop cluster, the MATLAB Dis-
tributed Computing Server [38] is required.

Additional files

Additional file 1: Video microscopy movie 1. 13 frames of the time-lapse
microscopy movie (tif format) corresponding to normal astrocytes when
treated with 3.5uM of SAHA alone. (ZIP 18,177 kb)

Additional file 2: Video microscopy movie 2. 13 frames of the time-lapse
microscopy movie (tif format) corresponding to normal astrocytes when
treated with 2uM of CPD-1 alone. (ZIP 20,242 kb)

Additional file 3: Video microscopy movie 3. 13 frames of the time-lapse
microscopy movie (tif format) corresponding to normal astrocytes when
treated with the combination concentration (CPD-1, SAHA) = 2uM, 7uM).
(ZIP 18,617 kb)

Additional file 4: Video microscopy movie 4. 13 frames of the time-lapse
microscopy movie (tif format) corresponding to the resistant GIC clone
U3065 — c475 when treated with 2uM of CPD-2 alone. (ZIP 20,155 kb)

Additional file 5: Video microscopy movie 5. 13 frames of the time-lapse
microscopy movie (tif format) corresponding to the resistant GIC clone
U3065 — c475 when treated with the combination concentration (CPD-1,

SAHA) = 2uM, 7uM). (ZIP 17,362 kb)
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Additional file 6: Video microscopy movie 6. Time-lapse microscopy
movie (tif format) showing effects consistent with a bacterial
contamination from time point 6 onwards. (ZIP 23,423 kb)

Additional file 7: Video microscopy movie 7. Time-lapse microscopy
movie (tif format) detected as an outlier and subsequently removed from
all processing steps, during image quality control. (ZIP 18,130 kb)

Additional file 8: Supplementary Information. Single document (.pdf
format) with extensive text, additional figures and tables. (ZIP 1466 kb)
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