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Abstract

Background: In precision medicine, scarcity of suitable biological data often hinders the design of an appropriate
predictive model. In this regard, large scale pharmacogenomics studies, like CCLE and GDSC hold the promise to
mitigate the issue. However, one cannot directly employ data from multiple sources together due to the existing
distribution shift in data. One way to solve this problem is to utilize the transfer learning methodologies tailored to fit
in this specific context.

Results: In this paper, we present two novel approaches for incorporating information from a secondary database for
improving the prediction in a target database. The first approach is based on latent variable cost optimization and the
second approach considers polynomial mapping between the two databases. Utilizing CCLE and GDSC databases, we
illustrate that the proposed approaches accomplish a better prediction of drug sensitivities for different scenarios as
compared to the existing approaches.

Conclusion: We have compared the performance of the proposed predictive models with database-specific
individual models as well as existing transfer learning approaches. We note that our proposed approaches exhibit
superior performance compared to the abovementioned alternative techniques for predicting sensitivity for different
anti-cancer compounds, particularly the nonlinear mapping model shows the best overall performance.

Keywords: Drug sensitivity prediction, Pharmacogenomic studies, CCLE, GDSC, Transfer learning, Nonlinear
mapping, Latent variable, Cost optimization

Background
A consistent challenge in precision medicine is to design
appropriate models for predicting the sensitivity of a
tumor to an anti-cancer compound with high accuracy.
In this aspect, large-scale pharmacogenomic studies of
cancer genomes have provided unprecedented insights
for studying anti-cancer therapeutics to determine puta-
tive prediction of drug sensitivity. The Genomics of Drug
Sensitivity in Cancer (GDSC) [1] of the Cancer Genome
Project and the Cancer Cell Line Encyclopedia (CCLE)
[2] from the Broad Institute are two such studies where
drug sensitivity profiles and genomic information across
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hundreds of compounds and cancer cell lines have been
systematically gathered. There exists significant overlaps
between the two databases which can further be utilized
in designing more accurate sensitivity predictive models.
Biological data for designing suitable predictive models
are frequently scarce and therefore the availability of a sec-
ondary dataset often holds the promise for a better model
development. However, majority of the machine learn-
ing approaches used in drug sensitivity prediction follow
the inherent assumption that both training data and test
data are in the same feature space with the same distri-
bution. But, when training and test data, despite being
in the same feature space, exhibit different distributions,
one need to take the distribution shift into account. This
is where transfer learning (TL) methodologies come into
play [3].
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Often in TL environment, the source and target
domains can be considered as linked subspaces as part
of a high-level common domain space [4]. We, there-
fore need to assume that there exists some consistency
between the different datasets to be utilized in TL. Haibe-
Kains et al. [5] at first pointed out that, although the gene
expression from CCLE and GDSC databases are well cor-
related between themselves, unexpectedly the measured
pharmacological drug responses using common estima-
tors such as IC50 and the area under the curve (AUC)
measures are highly discordant. In response, the CCLE
and GDSC investigators performed their own analysis
[6] and presented results opposing the conclusions in
[5]. They pointed out that in majority of the drugs, the
exhibited AUC and IC50 distributions are dominated by
drug insensitive lines with a much smaller number of
outliers, and postulated that the differences in cell line
biology between studies have resulted in the poor corre-
lation. Considering these facts, they have demonstrated
significant improvement in correlation between most of
the drugs. In any event, the fact that both the databases
are providing information about the same biological pro-
cess, make them suitable candidates for applying transfer
learning methodologies.
In case of inconsistent data with different distributions

for training and test sets, various TL approaches [3] have
been attempted for dataset shift. Unsupervised methods
such as INSPIRE (INferring Shared modules from multi-
Ple gene expREssion datasets) [7] is primarily focused on
the expression datasets to extract a low-dimensional rep-
resentation and predicts tumor phenotypes using regu-
larized regression approaches. Inductive transfer learning
(ITL) approaches, as in [8], tackle the issue of predic-
tion for scarce primary data using a secondary dataset
through importance sampling i.e., reweighting the sec-
ondary distribution to the primary. While the primary
data size is assumed to be significantly smaller than sec-
ondary data, for large number of unlabeled data, one has
to adapt to covariate shift along with ITL. Boosting based
approaches such as Dynamic-TrAdaBoost [9] applies
ensemble methods to both source and target instances
and then employs an update mechanism incorporating
only the source instances useful for target task, with an
additional dynamic correction factor. Kernel based ITL
methods [10, 11] focus on finding an appropriate kernel
for the newly available data, modeling the difference with
existing data as a problem of finding the suitable bias.
The previous approaches for transfer learning work well

under the assumption that the datasets are closely related
(such as 9 ovarian cancer datasets in INSPIRE) and the
number of samples are significantly larger than the num-
ber of features (n > p). However, the scenario is frequently
reversed in the case of genomic (or proteomic) data i.e.,
we usually have tens of thousands of genes and a small

number of cell lines. Additionally, the previous methods
for TL often involve removing the distribution shift via
weighting without any explicit domain transfer. In our
work, we have proposed two different TL approaches that
consider mapping the data from two different databases to
either a common space or to each other’s domain, inher-
ently taking care of the n << p problem. The inherent
assumptions here for each pair of similar datasets from
CCLE and GDSC are – (i) The datasets are monotoni-
cally changing in the same direction, and (ii) There exists a
functional relationship between them. To build an appro-
priate prediction model, we utilize the gene expression as
the predictors and the drug sensitivity (specifically AUC)
as the output. Considering the application of TL on these
datasets, the proposed approaches in this paper can be
classified into two categories, as illustrated in Fig. 1.

� Cost optimization based approach where we employ
latent variable models to extract the underlying
variables between different datasets. In this case, TL
can be applied to only the output (Fig. 1(a)), as in
parameter transfer approach [12, 13] or to both
model input and output (Fig. 1(b)), as in [14, 15].

� Domain transfer approach where we design maps
between databases to transfer data from primary
domain to secondary and utilize the secondary data
to improve the prediction model. Here, TL is applied
to both input and output (Fig. 1(c)), as in instance
transfer approach [14, 15].

To summarize, the key contributions of the paper is –
we have implemented two TL based approach, where the
target (primary) data is either transferred to a common
latent variable space along with the source (secondary)
data, or to the source domain through nonlinear map-
ping to improve the prediction of limited primary data
employing the available secondary data.

Results
To evaluate the performance of our transfer learning algo-
rithms, we have initially retrieved the data common to
both CCLE and GDSC. From GDSC (v6.0) and CCLE,
there are 15,664 common genes available in 623 common
cell lines along with 15 common drugs. We have per-
formed a drug-wise analysis and found that the number
of cell lines decreases from 623 after incorporating the
available drug sensitivity values, resulting in datasets with
cell lines between 91 − 310 along with 15,664 genes and
corresponding sensitivity measures. For analysis involving
gene expression, we have used ReliefF [16] to select the
top 200 genes from each dataset and taken the intersec-
tion as the final feature set. For drug sensitivity measure,
we have used the AUC values as they have more con-
cordance between databases (median ρs = 0.34) than
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(a)

(b)

(c)
Fig. 1 Illustration of the proposed transfer learning approaches: (a) Optimization based TL, applied on output only, (b) Optimization based TL,
applied on both input and output, and (c) Domain transfer TL, applied on both input and output

IC50 (median ρs = 0.28) [5]. Note that in spite of
our discussion on inconsistencies between databases, the
main goal here is to consider the scenario where a small
portion of database 1 (i.e., GDSC) is available while data
for the entire database 2 (i.e., CCLE) is available and

we would like to use database 2 to improve the predic-
tion performance for the rest of database 1. Thus, for
evaluation, we will use the GDSC experimental AUCs
as the gold standard and compare with the predicted
AUCs.
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Latent variable cost optimization approach
We have performed drug sensitivity prediction using the
three latent variable cost optimization based approaches –
Latent Regression Prediction (LRP), Latent-Latent Predic-
tion (LLP), Combined Latent Prediction (CLP) (described
in the “Methods” section) for 7 common drugs with suf-
ficient cell lines (n > 200). For each method, subsets of
50 randomly chosen GDSC cell lines (X11 & y11 in Figs. 2
& 3) are used for the cost optimization in training and the
rest (y12) are predicted along with the known CCLE data
(X2 & y2 in Figs. 2 & 3). Table 1 illustrates the compari-
son of prediction performance for all three methods with
Direct prediction (DP) for K-fold cross-validation, where
DP is defined as training on the 50 available cell lines and
predicting for the rest. Here, the number of folds is found
as K = n

50
, where 1 fold (containing ∼50 samples) is used

for training and the remaining (K − 1) folds are used for
testing.

Domain transfer approach
We have performed the Mapped Prediction (MP)
approach (described in the “Methods” section) for pre-
dicting GDSC sensitivities for 7 common drugs with suf-
ficient cell lines (n > 200) and different levels of database
consistency. Figure 4 demonstrates the effect of first-order
polynomial mapping for a representative gene expres-
sion set, while Fig. 5 illustrates the effect of second-order
polynomial mapping for a representative drug sensitiv-
ity vector. Again, we used random subsets of 50 cell lines
(G11, d11 &G21, d21 in Fig. 6) to retrieve themapping func-
tions and sensitivities for the rest (d12) are predicted using
the known CCLE data (G22, d22). Table 2 shows the com-
parison of prediction performance for MP approach for
all 7 drugs with two other methods – Direct Prediction

(DP) and CCLE model prediction (CP) for K-fold cross-
validation, as defined above (i.e.,K = n

50
and 1 fold is used

for training and (K−1) folds for testing). For CP approach,
the model is built using the available CCLE data directly
and prediction is performed using the GDSC expression
data. For prediction of AUC values using gene expres-
sion data, we have used a Bias-corrected Random Forest
(BC-RF) [17–19] model.

Discussion
From Table 1, it is evident that the CLP method yields
the best performance. Additionally, even though the LLP
method often yield better results than DP, it frequently
underperforms than LRP. Overall, 6 drugs out of 7 yield
the best performance for CLP method while only Nilo-
tinib performs the best with LRP. The prediction perfor-
mance is similar in the reverse direction (i.e., CCLE as the
primary set and GDSC as secondary) where 5 out of 7
drugs show best performance for CLP.
For the Domain Transfer approach, it is evident from

Table 2 that theMP approach performs significantly better
than the both CP and DP. Furthermore, the performance
of the CP approach is much worse compared to either MP
or DP, which can be attributed to the existing distribution
shift between CCLE and GDSC data in general. Note that
among the 7 drugs, 17-AAG and PD-0325901 has moder-
ate concordance (0.5 ≤ ρs < 0.6) while AZD6244, Nutlin-
3 and PD-0332991 have poor concordance (ρs < 0.4)
between databases. For PLX4720 andNilotinib, there exist
moderate to high consistency in terms of Pearson corre-
lation (ρ = 0.57 and ρ = 0.88 respectively), although
the rank correlation is low (ρs = 0.29 and ρs ≈ 0.1
respectively).We have also implemented amodel that uses
the ensemble of available CCLE and GDSC data directly

Fig. 2 Illustration of Latent Regression Prediction. Here, unknown set of GDSC AUC values, y12, is predicted using the underlying latent vector, w2,
calculated from corresponding CCLE AUC set, y22
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Fig. 3 Illustration of Latent-Latent Prediction. Here, unknown set of GDSC AUC values y12 is predicted using the underlying latent variables V and
w1, calculated from X1, X2 and y11, y21. V1 & w1 are used for training while V2 is used to predict w2 and then y12

for training and predicts for the unlabeled GDSC expres-
sion data, referred as the Combined Model Prediction.
An additional section provides a detailed description and
comparative analysis of this model with the MP approach
[see Additional file 1].

Comparisonwith inductive transfer learning
We have compared the results from the Mapped Predic-
tion approach with an existing transfer learning approach,
namely the Importance-weighted Direct Inductive Transfer
Learning (DITL) proposed by Garcke et al. [8]. In DITL,
the primary and secondary datasets are assumed to be
related in a way so that in some parts of the domain, the
two distributions can be similar, and therefore, one can

employ the secondary dataset with primary via impor-
tance sampling (i.e., reweighting the secondary distribu-
tion to the primary so that the secondary data points with
positive effect on primary data will have greater weights).
For prediction, DITL uses weighted Kernel Ridge regres-
sion (KRR) with Gaussian kernels, dubbing the whole
approach as DITL-KRR [8]. Table 3 shows the comparison
of prediction performance for DITL-KRR approach with
MP and DP approaches for 4 representative drugs. Unlike
the MP approach, DITL follows the n > p assumption of
machine learning and therefore, we used the intersection
of top 50 genes from both datasets as the feature set while
50 cell lines were used for training. From Table 3, we can
conclude that MP has a superior performance compared

Table 1 Comparison of K-fold cross-validation performance for 4 GDSC drug sensitivity prediction approaches – Latent Regression
Prediction (LRP), Latent-Latent Prediction (LLP), Combined Latent Prediction (CLP) and Direct Prediction (DP), using data from CCLE

Drug Pearson Correlation NRMSE

LRP LLP CLP DP LRP LLP CLP DP

17-AAG 0.5441 0.4691 0.6382 0.4591 0.2117 0.2147 0.1930 0.2164

AZD6244 0.3988 0.4155 0.4524 0.4008 0.1833 0.1718 0.1684 0.1703

Nilotinib 0.9053 0.3886 0.8768 0.4524 0.0728 0.1295 0.0888 0.1242

Nutlin-3 0.4093 0.5473 0.5646 0.5108 0.1965 0.1756 0.1745 0.1799

PD-0325901 0.6448 0.4502 0.6606 0.4465 0.1614 0.1870 0.1585 0.1878

PD-0332991 0.2497 0.0912 0.2540 0.0884 0.1695 0.1729 0.1672 0.1733

PLX4720 0.5682 0.5040 0.6384 0.5001 0.1237 0.1290 0.1173 0.1291

Bold values indicate the best performance
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Fig. 4 Scatter plot of gene expression association between GDSC and CCLE spaces before and after applying the polynomial mapping for the gene
“DBNDD1”

Fig. 5 Scatter plot of AUC association between GDSC and CCLE spaces before and after applying polynomial mapping for the drug “AZD6244”
(ρs = 0.26)
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Fig. 6 Illustration of drug sensitivity prediction for GDSC using the nonlinear mapping between CCLE and GDSC

to the other approaches even when the number of features
(therefore, information) is reduced to <50.

Conclusions
In precision medicine, data from multiple large pharma-
cological studies can be utilized to design better predictive
models. In this regard, transfer learning is employed to
eliminate the distribution shift between the primary and
secondary datasets. In this paper, we have proposed two

different TL approaches to incorporate data from two
large studies i.e., CCLE and GDSC for designing a better
predictive model. In the first approach, we have used a
latent variable approach and then optimized the appropri-
ate cost functions to get a pertinent predictionmodel. The
second method uses a nonlinear mapping between both
genomic and sensitivity data to transfer the primary data
to secondary domain space and perform prediction utiliz-
ing the secondary datasets. Both methods show marked

Table 2 Comparison of K-fold cross-validation performance for three GDSC drug sensitivity prediction approaches – Mapped
Prediction (MP), CCLE model Prediction (CP) and Direct Prediction (DP) using data from CCLE

Drug Pearson Correlation NRMSE

MP CP DP MP CP DP

17-AAG 0.6062 0.4354 0.4591 0.2112 0.3073 0.2164

AZD6244 0.4692 0.3580 0.3579 0.1683 0.2173 0.1743

Nilotinib 0.8698 0.7957 0.4524 0.1093 0.1323 0.1242

Nutlin-3 0.5606 0.3102 0.5114 0.1852 0.2180 0.1808

PD-0325901 0.6132 0.5731 0.4224 0.1689 0.1875 0.1865

PD-0332991 0.0923 0.0305 0.0802 0.1748 0.1764 0.1755

PLX4720 0.6335 0.6135 0.5001 0.1242 0.159 0.1291

Bold values indicate the best performance
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Table 3 Comparison of prediction performance for DITL-KRR approach with Mapped Prediction (MP) and Direct Prediction (DP)
approaches for 4 common drugs

Drug Number of features Pearson Correlation NRMSE

MP DP DITL-KRR MP DP DITL-KRR

17-AAG 47 0.6319 0.4749 -0.2885 0.1942 0.2167 0.4056

AZD6244 49 0.4407 0.4016 -0.1468 0.1554 0.1570 0.2042

Nilotinib 35 0.9338 0.4674 -0.1701 0.1003 0.1257 0.1410

Nutlin-3 48 0.5921 0.5207 -0.1500 0.1881 0.1903 0.2697

Here, intersection of top 50 genes is taken as the feature set. Bold values indicate the best performance

improvement in drug sensitivity prediction compared to
direct prediction and existing TL approaches, while the
mapping approach shows the best overall performance.
We have faced a couple of issues during implemen-

tation. The LRP approach utilizes the underlying latent
variable between the sensitivity datasets and generate
the latent variable corresponding to unknown primary
sensitivity data. However, to do so, it uses the available
secondary data inferring that the prediction can be only
performed for matched pair of datasets. Although the
LLP approach overcomes this limitation, it often under-
performs than LRP. In Table 4, we have presented the
applicability of the sensitivity prediction approaches dis-
cussed in this paper for matched vs. unmatched pairs
of datasets.
Furthermore, in Mapped Prediction, drug sensitivity

mapping between databases using polynomials is drug-
dependent and thus vulnerable to a user-fault. One poten-
tial new step can be modeling the map to be robust
against the outliers. Another development can be inves-
tigating the effect of model stacking using the proposed
approaches.

Methods
Latent variable cost optimization approach
In this section, our goal is to analyze the transfer learning
approach from the viewpoint of a cost function optimiza-
tion. Here, the assumption is that– if there exists such
a way to transfer data from both CCLE and GDSC to

Table 4 Applicability of Drug Sensitivity Prediction approaches
for Matched and Unmatched Pairs of sets between Databases

Prediction Approach Applicability

Matched Unmatched

Direct Prediction Yes Yes

Latent Regression Prediction Yes No

Latent-Latent Prediction Yes Yes

Combined Latent Prediction Yes No

Mapped Prediction (Domain Transfer) Yes Yes

Direct Inductive Transfer Learning Yes Yes

a common space, then the information available in both
databases can be incorporated together to result in a bet-
ter overall performance [3]. Therefore, it can be inferred
that in a suitable common space, the individual concor-
dance between the common set (i.e., underlying latent
variable) and each dataset will be maximized and the
reconstruction errors from the common set will be min-
imized. This is the rationale behind the cost function
optimization approach.

Drug sensitivity prediction via cost optimization of sensitivity
data
In this section, we have deployed cost function optimiza-
tion of CCLE and GDSC sensitivity data to utilize the
underlying latent vector for improving the sensitivity pre-
diction to an anti-cancer drug. The hypothesis is that if
both CCLE and GDSC sensitivity vectors can be repre-
sented as functions of a common latent variable, then
this variable can be utilized along with a known set of
CCLE sensitivity values to predict the unknown GDSC
sensitivity or vice versa. This approach is regarded as
the Latent Regression Prediction (LRP), as the final pre-
diction is performed using a regression model on the
latent vector. For this method, only the drug sensitivity
values (namely AUC) from the two databases are
employed without any use of genomic characteristics data.
Figure 2 illustrates the use of LRP method for drug sen-
sitivity prediction. Assume that only a small portion,
(y11)n1×1 of GDSC AUC set, (y1)n×1, is known, where
n1 < n. Then, the corresponding AUC set, (y21)n1×1,
in CCLE can be used with y11 to perform a cost opti-
mization to retrieve the optimum weight vector c for the
latent variable, (w1)n1×1, as follows (An additional section
provides the detailed development of the cost function
[see Additional file 1])

min
c

∥
∥y11 − W1a1

∥
∥2
2 + ∥

∥y21 − W1a2
∥
∥2
2

ρ(y11,w1) + ρ(y21,w1)
(1)

subject to
−1 ≤ c0 ≤ 1,
0 ≤ c1, c2 ≤ 1,
c1 + c2 = 1
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where W1 = [ �1 w1
]

, c = [

c0 c1 c2
]T and �1 denotes a

vector-of-one. Here, w1 is the latent vector correspond-
ing to y11 & y21 and assuming linear relationships, c1 & c2
are the weights of y11 & y21 in w1 (while c0 is the offset),
defined as

w1 = c0 + c1y11 + c2y21 + ε = [ �1 y11 y21
]

c + ε (2)

Now, a1 & a2 are the regression coefficients for recon-
struction of y11 & y21 from w1 and can be obtained from
the Least Squares (LS) minimizations of the reconstruc-
tion errors (ε).

y11 = f1(w1) = W1a1 + ε1
y21 = f2(w1) = W1a2 + ε2

(3)

where a1 =
[

a10
a11

]

, a2 =
[

a20
a21

]

Solving (1), the weight vector, c, and, in turn, a1, a2 are
found. From (3), it can be inferred thatw1 is also expressed
as a linear function of y11 or y21 alone, i.e.

w1 =
{

g1(y11) = [ �1 y11
]

b1 + ε′
1 = Y11b1 + ε′

1
g2(y21) = [ �1 y21

]

b2 + ε′
2 = Y21b2 + ε′

2
(4)

where b1 =
[

b10
b11

]

, b2 =
[

b20
b21

]

We assume that both CCLE and GDSC sensitivity vec-
tors maintain individual functional relationships with the
latent variable, and therefore, the coefficients a1, a2, b1, b2
will remain the same for the whole response sets (y1 &
y2 in Fig. 2). Using w1 and the known CCLE AUC set,
y21, the coefficient b2 in (4) can be retrieved using LS
minimization.

min
b2

‖w1 − Y21b2‖22 which results in b̂2 = Y+
21w1

(5)

where (·)+ denotes the Moore-Penrose pseudoinverse.
Using the rest of known CCLE AUC set, (y22)n2×1, the
underlying latent vector, (w2)n2×1, can be retrieved fol-
lowing (4)

ŵ2 = g2(y22) = [ �1 y22
]

b̂2 = Y22b̂2 (6)

Finally, utilizing the coefficient a1 found initially from
solving (1), the unknown GDSC AUC values can be pre-
dicted following (3), as

ŷ12 = f1(ŵ2) = [ �1 ŵ2
]

a1 = Ŵ2a1 (7)

If only a part of CCLE drug sensitivity response is known
along with a bigger portion of GDSC sensitivity set, then
this whole process can be utilized for the prediction of
CCLE responses by interchanging the GDSC and CCLE
values.
We have also implemented a kNN regression based

transfer learning approach for sensitivity prediction [see
Additional file 1], which is computationally inexpensive

to implement but often underperforms the LRP approach.
We then applied an iterative update scheme to improve
the performance of kNN approach and combined the
updated kNN model with the LRP model [see Additional
file 1]. The combined model shows similar performance
to LRP model.

Drug sensitivity prediction via cost optimization of genomic
and sensitivity data
In this section, we have utilized both gene expression
and AUC data in cost optimization to improve the
drug sensitivity prediction. Here, the goal is to estab-
lish a relationship between the two underlying latent
variables corresponding to gene expression and AUC
datasets respectively, and then exploiting this relation-
ship for the prediction of unknown AUC values. This
method is regarded as the Latent-Latent Prediction (LLP)
since it involves the prediction of one latent variable from
another. Figure 3 illustrates the use of LLP method for
drug sensitivity prediction. Again, we assume that only
a small portion, y11, of GDSC AUC set, y1, is known.
Then, the corresponding CCLE AUC set, y21, in CCLE
is used with y11 to perform the cost optimization in
(1) to generate the latent vector w1 and the regression
coefficients a1, a2.
Similar to the AUC optimization, the latent vec-

tor, (vk)n×1, corresponding to the expression vectors,
(x1k)n1×1 & (x2k)n1×1 of gene k in GDSC & CCLE (where
k = 1, 2, · · · , p) can be found as follows (An additional
section provides the detailed development of the cost
function [see Additional file 1])

min
λk

‖x1k − Vkα1k‖22 + ‖x2k − Vkα2k‖22
ρ(x1k , vk) + ρ(x2k , vk)

(8)

subject to
−1 ≤ λk0 ≤ 1,
0 ≤ λk1, λk2 ≤ 1,
λk1 + λk2 = 1

where Vk = [ �1 vk
]

and vk = [ �1 x1k x2k
]

λk .
Again, assuming linear relationships, λk =

[

λk0 λk1 λk2
]T is the weight vector of latent vk

corresponding to the expression vectors x1k & x2k , k-th
columns of the matrices (X1)n×p & (X2)n×p, respectively
and α’s are the corresponding regression coefficients.
The complete latent matrix, Vn×p is found performing
this optimization for all p genes and concatenating the
individual latent vectors, i.e.

V = [

v1 v2 · · · vp
]

(9)

For training, the latent matrix (V1)n1×p corresponding
to X11 and X21 is used as model input and w1 as the
corresponding output. The remaining latent, (V2)n2×p, is
utilized for prediction of the latent vector, (w2)n2×1. The
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unknown AUC values (y12)n2×1 are predicted using (7)
again.

ŵ2 = M(V2) (10)
ŷ12 = f1(w2) = [ �1 ŵ2

]

a1 = Ŵ2a1 (11)

We have used Random Forest (RF) [18, 20] as our predic-
tion model here. If only a part of CCLE drug sensitivity
response is known along with a bigger portion of GDSC
sensitivity set, then this whole process can be utilized for
the prediction of CCLE responses by interchanging the
GDSC and CCLE values.

Combined latent drug sensitivity prediction
To improve the predictive performance of the LLP model
and utilize the available CCLE data more effectively, we
have incorporated the two latent variable based models
together. Here, we combine the predicted latent variables
from the two models i.e., wLRP

2 from (6) and wLLP
2 from

(10) via simple averaging and generate the final prediction
as before.

ŵ2 = ŵLRP
2 + ŵLLP

2
2

(12)

ŷ12 = [ �1 ŵ2
]

a1 = Ŵ2a1 (13)

The whole process is depicted as the Combined Latent
Prediction (CLP). Comparisons among the three opti-
mization based approaches yield that the combined
method performs the best while the LLP approach often
underperforms than LRP.

Domain transfer approach
In this section, our goal is to analyze whether the depen-
dency structure between CCLE and GDSC can be mod-
eled using a common mapping across different cell lines.
The hypothesis is that– if there exists such a common
mapping so that the data from one domain can be shifted
to the other, then the additional information available
in the second database can easily be transferred to the
first to produce an overall better performance [3]. For
analysis, we have considered a polynomial regressionmap-
ping [21] and selected the polynomial order by utilizing
the Spearman rank correlation (ρs) between each pair of
datasets from the two databases. This infers a high con-
cordance for gene expression data between databases but
poor consistency for drug sensitivity measures such as
AUC or IC50 [5].

Gene expressionmapping
Between GDSC and CCLE, there exist 15,664 common
genes in 623 cell lines. Since the rank correlation between
CCLE and GDSC gene expression is high (median
ρs = 0.86), we have applied a gene-wise first-order poly-
nomial regression mapping. Assume that (g1i)n×1 and
(g2i)n×1 denote the expressions of the i-th gene in GDSC
and CCLE, respectively (where i = 1, 2, · · · , p). Then, for
each individual gene, the expression mapping from GDSC
space to CCLE space

ĝ2i = α
(i)
0 + α

(i)
1 g1i + ε(i) (14)

where ĝ2i denotes the mapped gene expression for i-th
gene and α’s are the regression coefficients quantifying
the strength of the association. For the total n × p gene
expression matrices, the equation becomes
[

ĝ21 ĝ22 · · · ĝ2p
]

=
[

α
(1)
0 + α

(1)
1 g11 α

(2)
0 + α

(2)
1 g12 · · · α

(p)
0 + α

(p)
1 g1p

]

+
[

ε(1) ε(2) · · · ε(p)
]

or, Ĝ2 =↔
1 A0 + G1A1 + E

(15)

where (A0)p×p and (A1)p×p are two diagonal matrices
containing the regression coefficients and En1×p is the
mapping error. Here,

↔
1 denotes a matrix-of-one.

A0 = diag
(

α
(1)
0 ,α(2)

0 , · · · ,α(p)
0

)

A1 = diag
(

α
(1)
1 ,α(2)

1 , · · · ,α(p)
1

)

(16)

We have performed a drug-wise analysis so that only
data corresponding to a single drug is available at a time.
Therefore, only a subset of the common 623 × 15664
gene expression matrix is used for each drug, corre-
sponding to the available cell line responses. We used
ReliefF [16] to select top 200 genes from both CCLE and
GDSC datasets for each drug and took the intersection
as the final feature set. Figure 4 illustrates the effect of
the mapping for a single gene "DBNDD1". For analysis,
we have randomly selected a small subset (i.e., 50 cell
lines) of available GDSC samples to get the mapping from
the corresponding CCLE data and evaluated the perfor-
mance on the remaining cell lines. Table 5 shows the
correlation between the mapped GDSC expression set
with corresponding CCLE set compared to the correlation

Table 5 Comparison of performance of gene expression mapping for two common drugs

Drug Number of genes Number of Test cell lines Pearson Correlation with CCLE Reconstruction MSE

Original GDSC Mapped GDSC

17-AAG 371 259 0.8729 0.9406 0.8256

AZD6244 383 245 0.8486 0.9405 0.6297

Each result is a mean result for n = 3 independent trials



Dhruba et al. BMC Bioinformatics 2018, 19(Suppl 17):497 Page 61 of 107

between the actual GDSC and CCLE sets for two com-
mon drugs and the mean square errors (MSE) for recon-
struction. From the correlation and MSE values, it can
be inferred that the mapping function successfully cap-
tures the interrelationship between CCLE andGDSC gene
expression sets.

Drug sensitivitymapping
For drug sensitivity measure, we used the AUC val-
ues again. The overall concordance for AUC between
databases is poor (median ρs = 0.34), and therefore,
we have considered a drug-wise second-order polynomial
regression mapping. Assume that (d1j)n×1 and (d2j)n×1
denote the AUC vectors for the j-th drug in GDSC and
CCLE, respectively. Then, for each drug, the drug sensi-
tivity mapping from CCLE space to GDSC space

d̂1j = β0 + β1d2j + β2d22j + ε = D2jβ + ε, β =
⎡

⎣

β0
β1
β2

⎤

⎦

(17)

where d̂1j denotes the mapped drug sensitivity dataset for
j-th drug, D2j =

[ �1 d2j d22j
]

is the design matrix, β con-
tains the regression coefficients quantifying the strength
of the association and εn×1 is the mapping error.
Note that, out of the 15 common drugs, 3 of the drugs

have moderate consistency (0.5 ≤ ρs < 0.6) between
databases, 3 have fair consistency (0.4 ≤ ρs < 0.5) and the
rest have poor consistency (ρs < 0.4). Figure 5 illustrates
the effect of the mapping of AUC values from CCLE to
GDSC space for the drug AZD6244 with poor consistency
between databases (ρs = 0.26).
For analysis, again we have randomly selected 50 cell

lines to get the mapping and evaluated the performance
on the rest. Table 6 shows the correlation between the
mapped GDSC AUC set with corresponding CCLE set
compared to the correlation between the actual GDSC
and CCLE sets for two common drugs andMSE for recon-
struction. From the correlation and MSE values, it can be
inferred that the mapping function captures the interre-
lationship between CCLE and GDSC drug sensitivity sets
satisfactorily.

Drug sensitivity prediction using nonlinearmapping
In this section, we have exploited the interrelationships
between CCLE and GDSC through themapping functions

discussed in the previous sections. By using the map-
ping, we have integrated data from both databases to
improve drug sensitivity prediction. Figure 6 illustrates
the drug sensitivity prediction procedure using nonlinear
mapping. We have performed a drug-wise analysis so that
data is available for a single drug at a time. Assume that
the GDSC and CCLE gene expression data are expressed
as two n × p matrices, G1 and G2, respectively. Fur-
thermore, only a small portion of G1 i.e., (G11)n1×p, is
available with the corresponding AUC values, (d11)n1×1
where n1 < n, while the whole G2 matrix is available
with the AUC response, (d2)n×1. The goal is to predict
the unknown AUC values, (d12)n2×1, for the larger GDSC
subset, (G12)n2×p. The CCLE datasets, G21 & d21, corre-
sponding to G11 & d11, can be utilized in this regard to
acquire the individual mapping functions h & f, generated
from the polynomial mapping in (15) & (17), respectively.

G21 = h(G11) =↔
1A0 + G11A1 (18)

d11 = f (d21) = [ �1 d21 d221
]

β = D21β (19)

where A0,A1 are defined from (16).
To predict the AUC for G12, we map it to CCLE space

using the mapping h as (Ĝ22)n2×p, as in Fig. 6. One can
now utilize the additional information in the CCLE space
by employing the complete CCLE data G2 & d2 for train-
ing the prediction modelM while the mapped GDSC set,
Ĝ22, is used to predict the sensitivity, (d̂22)n2×1, in CCLE
space. The desired prediction is then obtained bymapping
it back to the GDSC space using f.

Ĝ22 = h(G12) =↔
1A0 + G12A1 (20)

d̂22 = M
(

Ĝ22
)

(21)

d̂12 = f
(

d̂22
)

=
[

�1 d̂22 d̂222
]

β = D̂22β (22)

The whole process is referred as the Mapped Prediction
(MP) of GDSC data. Furthermore, if only a part of CCLE
gene expression data is available with corresponding drug
sensitivity values along with a bigger portion of labeled
GDSC data, then this whole process can be utilized for the
prediction of CCLE sensitivity by interchanging the GDSC
and CCLE values. For prediction using gene expression,
we have used a Bias Corrected Random Forest (BC-RF)
[19, 22] model where the effect of bias correction is
measured using the residual angle [23].

Table 6 Comparison of performance of drug sensitivity (AUC) mapping for two common drugs

Drug Number of Test cell lines Pearson Correlation with GDSC Reconstruction MSE

Original CCLE Mapped CCLE

17-AAG 259 0.5176 0.5232 0.0330

AZD6244 245 0.4022 0.3267 0.0177

Each result is a mean result for n = 3 independent trials
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correlation and NRMSE among kNN Image Regression Prediction, Latent
Regression Prediction and Direct Prediction of GDSC sensitivity using CCLE
data. Table S3. Comparison of Pearson correlation and NRMSE among kNN
Image Regression Prediction, Latent Regression Prediction and Direct
Prediction of CCLE sensitivity using GDSC data. Table S4. Comparison of
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