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Abstract

Background: Systems approaches in studying disease relationship have wide applications in biomedical discovery,
such as disease mechanism understanding and drug discovery. The FDA Adverse Event Reporting System (FAERS)
contains rich information about patient diseases, medications, drug adverse events and demographics of 17 million
case reports. Here, we explored this data resource to mine disease comorbidity relationships using association rule
mining algorithm and constructed a disease comorbidity network.

Results: We constructed a disease comorbidity network with 1059 disease nodes and 12,608 edges using association
rule mining of FAERS (14,157 rules). We evaluated the performance of comorbidity mining from FAERS using known
disease comorbidities of multiple sclerosis (MS), psoriasis and obesity that represent rare, moderate and common
disease respectively. Comorbidities of MS, obesity and psoriasis obtained from our network achieved precisions of
58.6%, 73.7%, 56.2% and recalls 87.5%, 69.2% and 72.7% separately. We performed comparative analysis of the disease
comorbidity network with disease semantic network, disease genetic network and disease treatment network. We
showed that (1) disease comorbidity clusters exhibit significantly higher semantic similarity than random network
(0.18 vs 0.10); (2) disease comorbidity clusters share significantly more genes (0.46 vs 0.06); and (3) disease comorbidity
clusters share significantly more drugs (0.64 vs 0.17). Finally, we demonstrated that the disease comorbidity network
has potential in uncovering novel disease relationships using asthma as a case study.

Conclusions: Our study presented the first comprehensive attempt to build a disease comorbidity network from
FDA Adverse Event Reporting System. This network shows well correlated with disease semantic similarity, disease
genetics and disease treatment, which has great potential in disease genetics prediction and drug discovery.
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Background
Analysis of disease relationship plays an important role
in understanding disease biology and discovering new
drug treatments [1]. Disease similarity often indicates
underling genetic connections. For example, genetic loci
for complex diseases have been identified by examining
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the association between Mendelian diseases and com-
plex diseases [2]. Studying disease relationship is an
important strategy for disease gene discovery [3, 4]. Dis-
ease relationship is also widely used in drug discov-
ery. For example, discovery of shared genetics of pso-
riasis and multiple sclerosis led to dimethyl fumarate,
an anti-psoriasis drug, to be used in treatment of
relapsing-remitting multiple sclerosis [5]. In addition,
many drug repurposing strategies are based on disease
relationship [6].
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Several disease relationship networks have been
reported. Some of them are based on phenotypic sim-
ilarity, such as disease manifestation network (DMN)
[7], clinical trial [8], and some are genetics based,
such as human disease network (HDN) derived from
Online Mendelian Inheritance in Man (OMIM) [9] and
complex disease network (CDN) derived from genome-
wide association studies (GWAS) [10]. In addition,
comorbidity-based disease networks have also been
constructed. Rhetsky et al. developed a statistical model
to estimate the co-occurrence relationship for each pair
of 160 diseases and demonstrated that comorbidities
are genetically linked [11]. Park et al. and Hidalgo et al.
detected the comorbidity pairs from the Medicare claims
with statistical measures [12, 13]. Roque et al. mined
pairwise disease correlations using similar measures from
medical records of a psychiatric hospital [14]. All these
networks provided valuable information about disease
relationship. However, these studies have limitations. For
example, Park’s study focused on elder patients aged 65
years or older and patients in Roque’s study were only
from a single health center.
FDAAdverse Event Reporting System (FAERS) contains

adverse event reports from manufacturers, consumers
and healthcare professionals for all marketed drug and
therapeutic biologic products [15]. FAERS is a large-scale
database that contains patient diseases, medications, drug
adverse events, demographics of around 17 million case
reports, which has been extensively explored for detect-
ing drug safety issues. But the rich information of FAERS
is still not systematically mined for disease comorbidity.
Recently, we used association rule mining algorithm to
reveal the link of colorectal cancer with obesity, which
demonstrated the feasibility of this method in disease
comorbidity study [16, 17]. Multiple disease comorbidi-
ties are common in clinic setting [18] and the advantage
of association rule mining is that it can flexibly detect
multiple disease comorbidity [17]. In this study, we use
association rule mining of FAERS to obtain the disease
co-occurrence patterns and then constructed a disease
comorbidity network (DCN) based on mined association
rules.
To our best knowledge, this is the first comprehensive

effort in constructing a large-scale disease comorbidity
network from 17 million case reports available in FAERS.
Through comparative analysis, we demonstrated that dis-
ease comorbidity network accurately captures disease-
disease relationships published in the literature and has
great potential in both disease genetics prediction and
drug discovery.

Methods
The overall approach in this study includes three steps
(Fig. 1). We firstly used association rule mining of FAERS

indication data to obtain disease comorbidity patterns.
Secondly, we constructed a disease comorbidity network
(DCN) based on mined rules. Thirdly, we detected the
inherent clusters of DCN and examined its correlation
withdisease genetics, semantic similarity and drug treatment.

Datasets
FAERS data was downloaded from US Food and Drug
Administration (FDA) [15], which contains 17,305,542
case reports for indications from 2004 to 2017. Disease
genetic data were extracted from US National Human
Genome Research Institute (NHGRI) [19]. The GWAS
catalog contains 34,790 disease-gene associations for
14,062 genes and 1665 common complex diseases/traits.
Drug-disease associations were extracted from biomedi-
cal literature [20–22], which contains 9216 drug-disease
pairs for 1483 drugs and 1381 diseases. Disease ontol-
ogy was downloaded from The OBO Foundry [23], which
contains 10,903 disease terms.

Construction of a disease comorbidity network (DCN) by
association rule mining of FAERS
FAERS from 2014 to 2017 was used in this study to explore
disease comorbidity patterns. After removing reports with
unknown indications, the data contained 6,480,372 case
reports and represented 15, 721 indications of drugs. In
order to facilitate downstream analysis, we mapped indi-
cations (represented as MedDRA terms) into 12 semantic
types that are classified into disorders in UMLS using
MetaMap (2016 V2 release) [24]. 12 semantic types
of disorders include Acquired Abnormality, Anatomical
Abnormality, Cell or Molecular Dysfunction, Congenital
Abnormality, Disease or Syndrome, Experimental Model
of Disease, Finding, Injury or Poisoning, Mental or Behav-
ioral Dysfunction, Neoplastic Process, Pathologic Func-
tion and Sign or Symptom. 12,225 of 15,721 (77.76%)
indications were mapped. The clean data contained 6211
diseases and 5,784,501 case reports.
We then applied Frequent Pattern (FP)-growth algo-

rithm (implemented in Weka) [25, 26] into this data to
obtain the disease co-occurrance patterns, which is a list
of rules between two sets of diseases, represented in the
form {X->Y}, for example, {anxiety, diabetes mellitus ->
multiple sclerosis}. FP-growth is a widely used association
rule mining algorithm based on FP-tree data structure.
Choosing proper support and confidence is a trade-off
between precision and recall of disease comorbidities.
Here, support > 12 and confidence > 0.5 were used accord-
ing to performance of validation diseases. Total 14,157
rules were obtained. We constructed an undirected and
unweighted disease comorbidity network based on these
rules, in which nodes are all diseases at both sides and
edges are established between each pair of diseases in both
sides.



Zheng and Xu BMC Bioinformatics 2018, 19(Suppl 17):500 Page 87 of 107

Fig. 1 Diagram for our overall methods. ARM: association rule mining; DCN: disease comorbidity network; DO: disease oncology; HDN: human
disease network (GWAS); DDN: disease drug network

Clustering of DCN
We used Girvan-Newman algorithm [27, 28] to detect
communities in this disease comorbidity network.
Girvan-Newman algorithm is based on edge betweenness
and edge with biggest betweenness is removed in each
iteration. Number of communities of a network depends
on how many edges are removed. Modularity metric
is computed in each iteration and optimized commu-
nities are obtained by maximizing the modularity of
network [27].

Correlation analysis of disease comorbidity network with
disease genetic network
We constructed a weighted human genetic network
(HDN) based on genome wide association data, in which

diseases are represented as nodes and edge is added if
two diseases share common genes. Edge weight repre-
sents number of share genes between them. Based on
genetic information in HDN, we firstly calculated pair-
wise shared genes in each cluster of DCN obtained from
community detection (see above section). Shared genes
of a cluster C(G) is defined as average of pairwise shared
genes in Eq. 1:

C(G) = 1
m

∑

d1�=d2,d1,d2∈D
g(d1, d2) (1)

where d1, d2 are pairwise diseases in cluster, g(d1, d2) is
shared genes between d1 and d2, D is disease node set in
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each cluster and m is number of total pairwise diseases in
each cluster.

Correlation analysis of disease comorbidity network with
disease treatment network
For computation of shared drugs in each cluster of DCN,
we firstly constructed of a disease drug network (DDN)
based on FDA drug label data and biomedical literature.
Then pairwise shared drugs in a cluster were calculated
based on this DDN and share drugs of a cluster C(D) is
defined as the average of pairwise shared drugs in Eq. 2:

C(D) = 1
m

∑

d1�=d2,d1,d2∈D
d(d1, d2) (2)

where d1, d2 are pairwise diseases in a cluster, d(d1, d2) is
shared drugs between d1 and d2, D is disease node set in
each cluster and m is number of total pairwise diseases in
each cluster.

Correlation analysis of disease comorbidity network with
disease semantic network
Disease ontology was used for computing semantic simi-
larity of pairwise disease in each cluster of DCN, which is
defined as:

sim(d1, d2) = max
a∈A(d1,d2)

− log p(a)

where A(d1, d2)is the set of common ancestors for d1
and d2. Semantic similarity of a cluster C(SIM) is com-
puted as average of pairwise disease semantic similarity in
Eq. 3:

C(SIM) = 1
m

∑

d1�=d2,d1,d2∈D
sim(d1, d2) (3)

where d1, d2 are pairwise diseases in a cluster, sim(d1, d2)
is semantic similarity between d1 and d2, D is disease
node set in each cluster and m is number of total pairwise
diseases in each cluster.
Random network was built as a network with the same

network structure but nodes are randomly shuffled. We
generated 100 random networks and computed the shared
genes, shared drugs and semantic similarity in each cluster
for each network. T-test was used to compute the sig-
nificance of each cluster compared with corresponding
random networks.

Prioritization of diseases associated with Asthma
In our case study, we used asthma as the seed and random
walk with restart (RWR) to rank the diseases that associ-
ated with Asthma in DCN. RWR is a ranking algorithm

that has been used to prioritize disease genes [29]. Rank-
ing result is expressed as a probability vector at steady
state, representing the probability of each node can be
reached from the seed. Assuming p0 is the seed vector,
pk+1, the probability vector at k + 1 step, is defined in
Eq. 4:

pk+1 = (1 − γ )Mpk + γ p0 (4)

where γ is the restart probability rate and M is adja-
cency matrix of DCN. γ is set to 0.15. Loop stopped
when |pk+1 − pk| < 10−6, indicating probability vector is
stable.

Results
Properties of Disease Comorbidity Network
Based on association rules from large-scale mining of
FAERS, we constructed a disease comorbidity network
(DCN), which contains 1059 nodes and 12,608 edges
(Fig. 2a). This network is relatively sparse with density
of 0.023 (Fig. 2b). Node degrees, i.e., comorbidities for
each disease, range from 1 to 685, with median of 7
(Fig. 2c). The nodes with large degrees represent common
comorbidities that co-occur with many diseases, such as
hypertension, diabetes, depression, anxiety, etc.
Using Girvan-Newman community detection algo-

rithm, DCN can be grouped into 6 clusters with more
than 10 nodes (Fig. 2a). We further classified each dis-
ease into one of 27 system organ classes (SOC) based
on Medical Dictionary for Regulatory Activities (Med-
DRA), represented as different node colors in the graph.
To verity if these clusters reflect inherent disease asso-
ciations, we computed the top enriched diseases in
each cluster (Table 1). We can see that each clus-
ter represents the specific types of diseases. We also
noticed that the different types of diseases are grouped
together, which reflects the additional level of disease
associations.

Evaluate disease comorbidity mining using three diseases:
multiple sclerosis, psoriasis and obesity
Disease comorbidity is a complicated and dynamic con-
cept and no systematic database is available, which makes
evaluation of our disease comorbidity network difficult.
Here, we evaluated DCN by comparison with literature
reports, especially using information from correspond-
ing national health organizations. Three diseases, includ-
ing multiple sclerosis (MS), psoriasis and obesity were
chosen for this purpose, which represent rare, moder-
ate and common disease separately. Multiple sclerosis
(MS) is a demyelinating disease in which the insulating
covers of nerve cells in the brain and spinal cord are
damaged. It is estimated that 2.3 million people have
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Fig. 2 Characteristics of disease comorbidity network. a Visualization of DCN. Diseases are represented as nodes and the size of each node is
proportional to the degree of that node. Node color represents disorder class (SOC in MedDRA) to which it belongs. Edges between nodes are
represented as the co-occurrence of diseases. b Basic network property of DCN. c Distribution of disease comorbidity in DCN

MS worldwide. Psoriasis is a chronic inflammatory dis-
order associated with significant morbidity and mortality.
The prevalence of psoriasis among US adults ages 20
years and older is 3.2% [30]. Obesity is a medical con-
dition in which excess body fat has accumulated to the
extent that it may have a negative effect on health. More
than one-third (36.5%) of U.S. adults have obesity [31].

Table 2 lists comorbidities of MS, psoriasis and obesity.
Comorbidities of MS were extracted from National Mul-
tiple Sclerosis Society [32] and a literature report [33];
Comorbidities of psoriasis were obtained from National
Psoriasis Foundation [34]; Comorbidities of obesity
were obtained from Centers for Disease Control and
Prevention [35].



Zheng and Xu BMC Bioinformatics 2018, 19(Suppl 17):500 Page 90 of 107

Table 1 Top enriched diseases in each cluster

Cluster Enriched diseases Folds P value

1 Cardiac disorders 3.72 3.08e-07

Vascular disorders 2.28 1.46e-04

2 Metabolism and nutrition disorders 3.17 3.11e-05

3 Psychiatric disorders 8.71 3.33e-33

4 Renal and urinary disorders 2.63 2.06e-02

Musculoskeletal and connective
tissue disorders

2.54 1.48e-02

5 Eye disorders 10.38 3.56e-03

6 Infections and infestations 5.19 2.57e-03

In DCN network, we considered all its neighbor nodes
as comorbidities of given disease. To test the perfor-
mance of our network, we extracted the comorbidities
of these three diseases from DCN and compared with
literature report as mentioned above. DCN achieved pre-
cision of 58.6%, 73.7% and 56.2%, and recall of 87.5%,
69.2% and 72.7% for MS, obesity and psoriasis separetely
(Fig. 3).

Disease comorbidity network significantly correlates with
disease semantic similarity
Semantic similarity is a measurement that calculates
the disease distance based on disease ontology. High
semantic similarity between two diseases indicates that

Table 2 Comorbidities for obesity, psoriasis andmultiple sclerosis

Disease Comorbidities

Obesity Hypertension, Coronary heart disease, Stroke,
Dyslipidemia, Type 2 diabetes,

Gallbladder disease, Osteoarthritis, Sleep apnea
and breathing problems,

Some cancers (endometrial, breast, colon, kidney,
gallbladder and liver),

Mental illness (depression, anxiety)

Psoriasis Cardiac event, Stroke, Crohn’s Disease, Diabetes,
Metabolic syndrome, Obesity,

Osteoporosis, Uveitis and Liver Disease, Cancer,
Depression

Multiple Sclerosis Spasticity, Bladder disorder, Bowel problem,
Vision problem, Fatigue, Weakness,

Chronic lung disease, Hypertension, Diabetes,
Numbness, Sexual problem, Pain,

Headache, Epilepsy, Cognitive problem, Seizure,
Tremor,

Psychiatric problems (depression, bipolar
disorder, anxiety and schizophrenia)

they share more pathological processes. Pairwise dis-
ease semantic similarity in each cluster was computed
as mentioned in method and cluster semantic similar-
ity is the average of all pairwise disease similarities in
that cluster. Compared with random networks, semantic
similarity in each cluster of DCN is significantly higher
(Table 3).

Disease comorbidity network significantly correlates with
disease genetics
Disease comorbidities often have common genetic causes
and common phenotypic features. To test if our network
essentially captures this observation, we computed the
shared genes in each cluster and compared with ran-
dom networks. Shared genes in pairwise diseases were
obtained from disease-gene network constructed using
GWAS resources. Overall shared genes in each cluster
is the average of shared genes in all disease pairs in
that cluster. The result showed that each cluster of DCN
shares significantly more genes than that in random net-
works, indicating that DCN captures genetic relationship
between diseases (Table 4).

Disease comorbidity network significantly correlates with
disease drug treatment
Furthermore, we investigated if DCN captures disease
drug treatment information. Similar method was used
to compute shared drugs in each disease comorbidity
cluster, we used disease-drug network to obtain shared
drugs between two diseases. Compared with random net-
works, shared drugs in each cluster are also significantly
higher (Table 5). Taken together, these correlation anal-
yses demonstrate that our disease comorbidity network
essentially captures disease-disease relationship.

Disease comorbidity network reveals interesting disease
associations/comorbidities - a case study
To demonstrate that DCN can be used for discover-
ing novel disease relationship, we use asthma as an
example. Asthma is a common long-term inflamma-
tory disease of the airways of the lungs. Asthma is still
an incurable disease. Main purpose of current medi-
cal treatments is to control symptoms. Many comor-
bidities of asthma have been observed, such as hay
fever, allergy, obesity, sleep apnea, anxiety, depression,
chest pain and cough, which makes asthma more dif-
ficult to control. Nevertheless, some diseases, such as
hypertension and cardiovascular disease, shows asso-
ciation with asthma, but is still in controversial [36–
38]. Therefore, understanding comorbidities of asthma
is important for disease management and underlying
biology.
We used random walk with restart to find diseases

that are associated with asthma. Asthma was used as
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Fig. 3 Precision and recall of DCN for MS, obesity and psoriasis

the seed and we ranked the other diseases in DCN,
which represents the probabilities of each disease can
be reached. We expected that comorbidities of asthma
should rank high since they generally share common
genetics. We can see that all of them rank in top 7%
except obesity (Table 6), which further demonstrated
the robust and usefulness of our network. Interestingly,
hypertension and cardiovascular diseases, including atrial
fibrillation, cardiac failure and stroke, also ranked very
high (Table 6), suggesting that they might be also closely
related to asthma. Indeed, two recent studies supports our
observation. One is a large sleep cohort study that demon-
strated that late-onset asthma significantly increases car-
diovascular diseases [39]. Another is a case-control study
from Kaiser Permanente database that established hyper-
tension is a comorbidity of asthma [40]. These evi-
dences strongly demonstrate that our disease comorbidity

Table 3 Statistics for semantic similarity of disease comorbidity
network

Cluster Size Semantic
similarity (DCN)

Mean semantic
similarity
(Random)

p-value

1 297 0.183 0.109 4.686E-31

2 73 0.120 0.095 1.860E-08

3 241 0.144 0.109 1.710E-15

4 335 0.131 0.110 2.048E-10

5 63 0.322 0.085 9.080E-92

6 50 0.200 0.097 5.273E-65

network is able to reliably capture disease-disease rela-
tionship and have great potential to reveal novel disease
relationships.

Discussion
We constructed a disease comorbidity network by associ-
ation rule mining of large-scale post market surveillance
database. This network is able to accurately capture dis-
ease comorbidities of literature reported and well corre-
lated with disease semantic similarity, disease genetics and
drug treatments. More interestingly, it can also discover
associated diseases in debate due to inconsistent reports
in literature, which can be explained by large-scale of
FAERS dataset. All these properties of DCN indicate that
it has a great potential to be used in disease genetics pre-
diction and drug discovery. We note that the way FAERS
data is collected may bias the network as compared to the
general population. Further evaluation of these biases will
be required in subsequent work.

Table 4 Statistics for shared genes of disease comorbidity
network

Cluster Size Shared gene (DCN) Mean shared
gene (Random)

p-value

1 297 0.418 0.061 2.123E-42

2 73 0.561 0.012 1.167E-17

3 241 0.399 0.015 7.004E-46

4 335 0.433 0.053 5.733E-34

5 63 0.534 0.009 3.520E-18

6 50 0.413 0.029 1.836E-18
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Table 5 Statistics for shared drugs of disease comorbidity
network

Cluster Size Shared drug (DCN) Mean shared
drug (Random)

p-value

1 297 0.592 0.136 2.415E-29

2 73 0.779 0.178 4.401E-7

3 241 0.635 0.062 3.313E-42

4 335 0.542 0.070 1.999E-36

5 63 0.610 0.180 4.149E-6

6 50 0.678 0.110 2.394E-5

Previously, we also constructed a disease manifestation
network (DMN) based on UMLS [7], which has been suc-
cessfully used for disease gene prediction and drug discov-
ery [17]. In addition, other disease-disease network based
on electronic health record [14] and Medicare [12] are
also available. Different data sources contain redundant
and complementary information about disease relation-
ship. We prospect that integration of these data sources
may provide more power in disease gene discovery and
drug repurposing.

Conclusions
We built a comprehensive disease comorbidity network
from FAERS using association rule mining. This net-
work not only effectively retrieves known comorbidities of
given disease, but is capable to reveal new disease-disease
associations. Additionally, correlation analysis also shows
that it reflects inherent disease relationships. This work
provides a new source for study of disease genetics and
drug discovery.

Table 6 Ranks of asthma associated diseases from disease
comorbidity network

Disease Rank (%) Comorbidity

Hay fever (Allergic rhinitis) 2.55 Yes

Allergy 4.25 Yes

Obesity 22.10 Yes

Obstructive sleep apnea 6.61 Yes

Anxiety 0.66 Yes

depression 0.57 Yes

chest pain 1.79 Yes

cough 3.68 Yes

hypertension 0.00 No

atrial fibrillation 0.09 No

cardiac failure 1.51 No

stroke 2.17 No
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