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Abstract

Background: Diverse interactions occur between biomolecules, such as activation, inhibition, expression, or repression.
However, previous network-based studies of drug repositioning have employed interaction on the binary
protein-protein interaction (PPI) network without considering the characteristics of the interactions. Recently,
some studies of drug repositioning using gene expression data found that associations between drug and
disease genes are useful information for identifying novel drugs to treat diseases. However, the gene expression
profiles for drugs and diseases are not always available. Although gene expression profiles of drugs and diseases are
available, existing methods cannot use the drugs or diseases, when differentially expressed genes in the profiles are
not included in their network.

Results: We developed a novel method for identifying candidate indications of existing drugs considering types of
interactions between biomolecules based on known drug-disease associations. To obtain associations between drug
and disease genes, we constructed a directed network using protein interaction and gene regulation data obtained
from various public databases providing diverse biological pathways. The network includes three types of
edges depending on relationships between biomolecules. To quantify the association between a target gene
and a disease gene, we explored the shortest paths from the target gene to the disease gene and calculated
the types and weights of the shortest paths. For each drug-disease pair, we built a vector consisting of values for each
disease gene influenced by the drug. Using the vectors and known drug-disease associations, we constructed classifiers
to identify novel drugs for each disease.

Conclusion: We propose a method for exploring candidate drugs of diseases using associations between drugs and

disease genes derived from a directed gene network instead of gene regulation data obtained from gene expression
profiles. Compared to existing methods that require information on gene relationships and gene expression data, our
method can be applied to a greater number of drugs and diseases. Furthermore, to validate our predictions,

we compared the predictions with drug-disease pairs in clinical trials using the hypergeometric test, which
showed significant results. Our method also showed better performance compared to existing methods for
the area under the receiver operating characteristic curve (AUCQ).
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Background

The development of new drugs is a very lengthy and
costly process and the average number of new drugs ap-
proved by the US Food and Drug Administration (FDA)
per year has declined since the 1990s [1]. Computational
biology studies have been progressed to reduce the cost
and time of traditional drug development.
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Drug repositioning, defined as identifying novel indica-
tions for existing drugs, is a good alternative for over-
coming the limitations of traditional methods. A variety
of approaches are used in computational drug reposi-
tioning studies. Network-based analysis is the most
widely applied strategy [2]. Diverse properties of drugs
and diseases have been used to construct networks for
drug repositioning. Several previous studies employed
drug network and/or disease network based on side ef-
fects, phenotypes or pathways, [3—6]. Their networks are
not able to include drugs of which those properties are
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not known such as clinical compound and failed drugs
in clinical trials. There are also other network-based
studies using biomolecular networks [7-9]. These stud-
ies utilized relationships between drugs and diseases on
the biomolecule networks. However, most existing ap-
proaches using the biomolecular network did not con-
sider the characteristics of interactions between genes,
such as activation, inhibition, or binding. They calcu-
lated similarities between drugs (or diseases) using the
distance of shortest path from a drug to a disease on a
network and then identify candidate drugs for diseases
using the guilt-by-association method based on the simi-
larities. These studies have proposed effective methods
that can be applied to various drugs and diseases. How-
ever, considering interaction types between genes is im-
portant for discovering therapeutic associations of
drug-disease pairs. Several studies used gene regulation
information derived from gene expression profiles and
obtained promising results for drug repositioning. Shige-
mizu et al. and Sirota et al. hypothesized that a drug is a
potential treatment option for a disease if common
genes are regulated oppositely by the drug and disease
[10, 11]. They obtained gene expression data for drugs
and diseases, and split the genes into up- and
down-regulated classes based on expression differentials
between normal and control tissue for each drug and
disease. They next identified candidate drugs for various
diseases. Under the same assumptions, Yu et al. deter-
mined the effects of drugs on each disease gene by ex-
ploring their networks rather than using gene expression
data for the drugs [12]. Unlike previous network-based
studies which did not consider the types of interaction
between genes, they constructed a directed network with
“activation” and “inhibition” edges for gene relationships.
They considered not only the distances between the
drug and disease by finding the shortest paths from the
drug to each disease gene in the network, but also the
types of shortest paths based on the relationships be-
tween genes. Their method showed good performance,
but still required gene expression profiles for diseases.
Additionally, although gene expression profiles for dis-
eases are available, if their network does not contain dif-
ferentially expressed genes, the diseases are not included
in the method.

We proposed a novel method for identifying candidate
drugs for diseases based on known disease-drug associa-
tions. Many biological network-based approaches have used
diverse networks including PPI network, KEGG, gene
co-expression network and integrated network [13, 14]. In
this study, we used an integrated network consisting of pro-
tein interactions and gene regulations. The gene regulation
and protein interaction data were collected from public da-
tabases providing diverse biological pathways. We con-
verted heterogeneous IDs of genes and proteins in various
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databases to Entrez Gene ID and constructed a directed
network with three types of edges defined as “positive”,
“negative”, and “neutral” based on the relationships be-
tween molecules [15]. For drugs having a therapeutic asso-
ciation with a disease, we found the shortest paths from the
drug to the disease genes in the network and calculated the
weight and type of each shortest path. We constructed vec-
tors representing how each disease gene was influenced by
the drug for all drug-disease pairs. Next, we prepared a
training set using the vectors to generate classifiers for
identifying substitute drugs for known drugs. Our method
conducted drug repositioning considering the relationship
types between genes based on known drug-disease associa-
tions regardless of whether there are gene expression pro-
files for the drugs and disease. Thus, our method could be
applied to a greater number of drugs and diseases com-
pared to existing methods. Additionally, our predictions
showed significant results in clinical trials enrichment tests
[16]. Our model showed better areas under the receiver op-
erating characteristic curve (AUCs) than existing studies for
most diseases compared.

Results

A directed gene network

We constructed a directed network using interactions
obtained from BioCarta [17], Reactome [18], the Path-
way Interaction Database (PID) [19], and KEGG [13].
The genes and interactions used for constructing the
network were summarized in Fig. 1. Existing studies
considered “positive” and “negative” relationships be-
tween genes. However, the number of genes with “posi-
tive” or “negative” relationships was much smaller than
the total number of genes and they did not sufficiently
cover the full gene network. We defined binding interac-
tions as “neutral” relationship, where binding interaction
is not classified into control or conversion process by
the databases. We integrated “neutral” interactions from
four different databases (Fig. 1.a). The number of genes
in the databases was 9350. Among them, only 3094
genes had interactions corresponding to “positive” or
“negative” relationships. In contrast, our network cov-
ered 7097 genes by considering the three types of inter-
actions (Fig. 1.b). The number of interactions
corresponding to “neutral” was 186,976 (Fig. 1.c).

Performance evaluation

We constructed classifiers for 298 diseases using the
random forest, and for 296 diseases using the neural net-
work. To evaluate performance of our model, we re-
peated 10-fold cross-validations 100 times for each
disease and calculated the mean AUC of a disease.
Table 1 represents the number of diseases that satisfies
the given AUC range.
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Fig. 1 Summary of data used for our network (a) summary of data used for constructing a network. b Venn diagram representing the number of
genes for each of three interaction types. ¢ Venn diagram representing the number of “neutral” interactions

The number of diseases showing AUC values above
0.6 was 266 of 298 diseases (89.3%) and 208 of 296 dis-
eases (70.2%) for the random forest and neural net-
work, respectively. Our method could be applied to any
disease if the disease has known drugs. Particularly, we
obtained AUC values greater than 0.9 for B-cell chronic
lymphocytic leukemia, dysmenorrhea, urticarial, and
psoriasis by random forest model. The mean AUC and
standard deviation for each disease are shown in the
Additional file 1.

Prediction of candidate drugs for diseases and validation
In our method, random forest showed better perform-
ance than neural network. Thus, we used the classifiers
learned by random forest algorithm to identify novel
drugs for diseases.

For each disease, 100 classifiers were learned by ran-
dom forest model using 100 different training sets, and

Table 1 The number of diseases that satisfies the given AUC

range

Mean AUC Random forest Neural network
209 5 0

208 49 12

207 160 77

206 266 208

205 292 289

Total No. of diseases 298 296

AUCs of the classifiers were calculated using 10-fold
cross-validation. We selected a classifier showing the
best AUC and identified candidate drug-disease pairs
using the classifier. If multiple classifiers showed same
top AUC, we included all drug-disease pairs predicted
by each of the best classifiers.

We sorted drug-disease pairs in descending order
based on the probability that the pair was predicted to
be “TRUE” by the classifier. If a drug-disease pair was
predicted from multiple classifiers, we assigned the
mean probability to the pair. Table 2 shows predicted
drugs having high probabilities for five diseases of which
mean AUC > 0.9. The list of all of our candidate
drug-disease pairs is provided by Additional file 2.

To verify that our predictions are in accordance with
current experimental knowledge, we enriched our candi-
date drug-disease pairs to drug-disease pairs in clinical
trials using the hypergeometric test. Clinical trials data
were obtained from the clinical trials web site (https://
clinicaltrials.gov/) in XML format [16]. Our predictions
significantly overlapped with those of clinical trials
(p-val: 1.14E-08). In addition to clinical trials, we
counted co-occurrence of our candidate drug-disease
pairs from PubMed, an online database of citations for
biomedical literature, using the easyPubMed package in
R [20]. As a result, 23,249 out of 52,926 pairs overlapped
with PubMed. For all candidate drug-disease pairs,
PubMed counts and inclusion status were provided in
clinical trials in Additional file 2.
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Table 2 Candidate drugs with high probabilities for diseases for which the mean AUC = 0.9

Disease (MeSH)

Drug

Osteoarthritis (D010003)

Chronic lymphocytic
leukemia (D015451)

Dysmenorrhea (D004412)

Psoriasis (DO11565)

Urticaria (D014581)

Meclofenamic acid, Dihomo-gamma-linolenic acid, Diethylcarbamazine, Hyperforin, Niflumic Acid, Morphine,
Codeine, Hydromorphone, Oxycodone, Fentanyl, Levorphanol, Remifentanil, 3-Methylthiofentanyl, Heroin,
Carfentanil, 3-Methylfentanyl, Rizatriptan, Pramlintide, Sulfasalazine, Bimatoprost

Bleomycin, Olaparib, Nelarabine, Palbociclib, Zidovudine, Vorinostat, Azacitidine, Decitabine, Romidepsin,
Lucanthone, SU9516, Panobinostat, Alclometasone, Fluorometholone, Rimexolone

Amantadine, Memantine, Menadione, Mesalazine, Levallorphan, Butorphanol, Dextropropoxyphene,
Sulfasalazine, Alfentanil, Progabide, Anileridine, Meclofenamic acid, Acetylsalicylic acid, Balsalazide, Vigabatrin,
Levomethadyl acetate, Methadyl acetate, Ethylmorphine, Tapentadol, Asfotase Alfa

Dexamethasone, Fludrocortisone, Diethylstilbestrol, Danazol, Megestrol acetate, Prasterone, Fluticasone
propionate, Raloxifene, Estradiol, Estriol, Estrone sulfate, Etonogestrel, Desogestrel, Medroxyprogesterone acetate,
Ethynodiol diacetate, Norgestimate, Allylestrenol, Progesterone, Romidepsin, Vorinostat

Acetazolamide, Esmolol, Atenolol, Methylergometrine, Practolol, Tetracosactide, Aprepitant, Enprofylline,
Netupitant, Cetrorelix, Abarelix, Degarelix, Ganirelix, Dofetilide, Icatibant, Pimagedine, Belimumab, Zidovudine

Several studies tried to establish mechanisms of drugs
for diseases using pathways between the drugs and
diseases [21-23]. We showed that our candidate drugs
were more functionally similar to known drugs for
diseases than non-candidate drugs, using functional
modules obtained from pathways between drugs and
diseases. We obtained shortest pathways between drugs
and diseases by exploring a gene network. For each
drug-disease pair, we extracted significantly enriched
modules from KEGG Module using gene lists of the
pathway. For each disease, we compared candidate drugs
and non-candidate drugs for functional similarity to
known drugs using the Wilcoxon rank-sum test. As a re-
sult, our set of candidate drugs showed significantly
higher similarity than the set of non-candidate drugs in

285 of 298 diseases (p-val<0.05). Furthermore, the
enriched modules of known and candidate drugs for a
disease could be used for basis to support our candidate
drug-disease pairs. As an example, we presented SU9516
(DB03428) for B-cell chronic lymphocytic leukemia
(B-CLL, D015451). We used 10 known drugs for B-CLL
and 19 modules was enriched more than once between
the known drugs and the disease. We display the drugs
and the modules as a network in Fig. 2. We considered
the commonly enriched modules to play important roles
in treating B-CLL. The average of modules degree was
4.63 and the Table 3 shows the name of 8 modules hav-
ing a degree greater than the average, and their degree.
In our predictions, SU9516 (DB03428) for B-CLL had
a high probability for treating B-CLL, but the pair was

00290
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Fig. 2 A network consisting of known drugs for B-CLL and enriched modul
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Table 3 Commonly enriched modules of known drugs for B-CLL
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Module ID Module name Number of Degree
M00296 BER complex 9
MO00180 RNA polymerase I, eukaryotes 9
M00182 RNA polymerase |, eukaryotes 9
M00295 BRCAT1-associated genome surveillance complex (BASC) 9
MO00686 Toll-like receptor signaling 8
M00676 PI3K-Akt signaling 7
M00692 Cell cycle - G1/S transition 6
MO0684 JAK-STAT signaling 6

not found in clinical trials and PubMed. SU9516 is a
specific inhibitor of cyclin-dependent kinases (CDK) in-
cluding CDK1, CDK2, and CDK5. There were 9
enriched modules of SU9516 for B-CLL, and 7 out of
the 9 modules overlapped with the 8 modules in Table 3.
In other words, SU9516 is functionally similar to known
drugs. Additionally, we found a case from literature that
another CDK inhibitor, flavopiridol, had clinical activity
for chronic lymphocytic leukemia, although the drug de-
velopment was consequently discontinued in 2012 [24,
25]. Significantly enriched modules of known and candi-
date drugs with KEGG Module for 298 disease are avail-
able from (http://databio.gachon.ac.kr/tools/Datasets/).
A list of enriched modules is available for each disease.

Comparison with existing methods

We compared our method with existing methods that
considered gene regulation. Yu et al. [12] described the
AUCs of diseases using their method and AUCs of the
diseases using Sirota’s method [11]. Their method relied
on gene expression data. Additionally, although gene ex-
pression profiles of diseases are available, the method
could not use the diseases when differentially expressed
genes in the profiles are not included in their network.
Whereas, since we used 10-fold cross-validation, our

method required that a disease should have at least 10
known drug-disease associations. Figure 3 represents
AUCs of five common diseases used in their method
and ours. For five common diseases, the number of dis-
ease genes and known drugs for each disease are pro-
vided in Table 4.

In the comparison, we used mean AUC of 10-fold
cross-validations repeated 100 times for each disease.
Our method showed better performance for four dis-
eases except for glioblastoma.

Additionally, we compared our method with the
drug repositioning model based on side effects. Yang
and Agarwal [3] hypothesized that if the side effects
associated with a drug D were also induced by a
large number of drugs treating disease X, then drug
D should be evaluated as a candidate for treating
disease X. They demonstrated their method on drugs
acquainted with side effects and then attempted to
find indications of clinical candidates whose side ef-
fect information was unknown. They predicted side
effects of the candidates based on compound struc-
ture and applied their method using the predicted
side effects. Figure 4 represents AUCs of 76 com-
mon diseases of their method using predicted side
effects and our method. Our method showed better

Comparison of AUC values with existing methods
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Table 4 The number of known drugs and disease gene for five common diseases

Disease MeSH ID The number of known drugs The number of disease genes
Acute Myeloid Leukemia D015470 28 76

Asthma D001249 46 71

Glioblastoma D005909 15 49

Parkinson Disease D010300 35 62

Schizophrenia D012559 57 138

performance for 63 out of 76 diseases (random for-
est) and 41 out of 76 diseases (neural network).

Discussion

We required known drugs for diseases for learning of
classifiers. We could not predict candidate drugs for dis-
eases if they did not have known drugs enough to learn
rules by machine learning methods. Even with this limi-
tation, however, our method could be applied to a
greater number of diseases than previous models consid-
ering drug-disease association using gene expression
data since we did not use gene expression data. In
addition to comparison with previous studies based on
drug-disease genes relationships, we showed comparison
with Yang and Agarwal based on side effects [3].
Although they partially overcame their limitation on
drugs with no known side effects by using predicted side
effects, our method showed better performance for
many diseases.

Our method built classifiers to find candidate drugs
for diseases using machine learning techniques. We used
two machine learning algorithms, the random forest and
the feed forward neural network. The predicting process
of the classifiers was a ‘black box’. Therefore, it was hard
to understand why the prediction was made by the clas-
sifiers [26]. However, explaining predictions is an im-
portant to trust and use the model [27]. Alternatively,
we attempted to explain the rationale of predicted
drug-disease pairs using functional modules from KEGG
Module. We showed that our candidate drugs were
more similar to known drugs compared with non-candi-
date drugs. As an example, we described that a predicted
drug for B-CLL, SU9516, had most of commonly
enriched modules of the known drugs for the disease.

Additionally, we found literature-based evidences for
several predicted drug-disease pairs showing high prob-
abilities among our predictions. We confirmed that the
pairs were also promising candidates in studies without
using computational methods.

Olaparib (DB05940) for B-CLL was found by our
model. Olaparib which has been approved for treating
ovarian cancer by the FDA, inhibits poly (ADP-ribose)
polymerase (PARP). PARP is involved in DNA repair,
cell death, chromatin functions and genomic stability
[28]. PARP1 inhibitors selectivity kill cancer cells with

defects in the homologous recombination repair path-
way [29]. Weston et al. suggested that olaparib, a PARP
inhibitor, is an appropriate agent for treating chronic
lymphocytic leukemia [30].

Montelukast (DB00471) is used to treat seasonal aller-
gic rhinitis (D006255). Allergic rhinitis is characterized
by symptoms such as sneezing, itchy eyes, and watery
rhinorrhea [31]. These symptoms negatively impact a
person’s quality of life, although allergic rhinitis is not
life-threatening. Cysteinyl-leukotrienes play an import-
ant role in allergic airway disease and montelukast is
cysteinyl leukotriene type 1 receptor antagonist [32].

Initially developed as a treatment for asthma, montelu-
kast has recently been used to treat allergic rhinitis [33].
Known drug-disease pairs used for seasonal allergic
rhinitis did not include anti-leukotriene. However, anti-
leukotriene was predicted to affect disease genes in a
similar manner as anti-histamines in seasonal allergic
rhinitis based on our method.

Meclofenamic acid (DB00939) for osteoarthritis
(D010003) showed a high probability in our prediction.
Osteoarthritis is the most common form of arthritis [34].
Meclofenamic acid is the most potent anti-inflammatory
drug among the fenamic acids and belongs to a family of
non-steroidal anti-inflammatory drugs. These drugs are
recommended if symptoms are moderate to severe [35].

In future works, we plan to apply our method to pre-
dict unknown ADR (adverse drug reaction) of drugs.
Predicting ADRs is considered as an important subject,
because the unexpected effects of drugs can cause a se-
vere problem to patients. In addition, ADRs of drugs are
major causes of failure in drug development. ADRs are
phenotypic responses of the human organism to drug
treatment, in common with drug therapeutic indications.
We can collect ADR-related genes, and known ADR-
drug associations from public databases. Those data can
be replaced with disease genes and known drug-disease
associations used for drug repositioning.

Conclusions

In this paper, we have presented a method using an
integrated network for predicting novel indications
of drugs. Our method contributes to drug reposi-
tioning for drugs which cannot be used in previous
methods which required diverse properties of drugs,
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such as gene expression, indication, and side effects. We
also considered the degree of genes and interaction types
between genes unlike most existing methods using biomo-
lecular networks which used only the distance between
target genes and disease genes. Our method is able to dif-
ferentiate between drugs having same targets but have
different interaction types with the targets.

Methods

Datasets

Drug-target interactions were obtained from DrugBank
[36] and the targets were mapped by their Entrez gene
ID numbers [15]. Interactions between drugs and targets
were assigned to the “positive” or “negative” as described
by Torres et al. [37]. Additionally, we assigned “neutral”
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to interactions corresponding to binding. Unassigned in-
teractions were not used in our method. Thus, 4248 in-
teractions including 1163 drugs and 584 targets were
used from among all drug-target interactions obtained
from DrugBank.

Disease genes were obtained from curated gene-dis-
ease associations of DisGeNet [38]. Diseases were
mapped by MeSH terms. We collected known drug-dis-
ease associations from chemical-disease associations of
CTD [39]. Chemical were mapped by DrugBank ID. In
this study, we used diseases with more than 10 known
drugs only for 10-fold cross-validation. Briefly, we used
7083 associations between 1163 drugs and 298 diseases
in our method.

Constructing a directed network considering interaction
type

We constructed a directed gene network by integrat-
ing genes and interactions between genes from Bio-
Carta [17], Reactome [18], PID [19], and KEGG [13]
using the Graphite tool [40], which was used for
converting pathway topology to the gene network in
R. The Graphite provided direction of interactions
between genes, which were classified as one of two
types: “directed” or “undirected”. In the case of “un-
directed”, if there was a relationship between gene A
and gene B, we added both relationships from gene
A to gene B and from gene B to gene A in our net-
work. Each node represented a gene, and interac-
tions between genes were expressed as edges. Edges
consisted of three types, depending on relationships
from a gene to another gene. As described by Yu et
al., we considered a relationship as “positive” when
activation or expression was recorded and as “nega-
tive” when inhibition or repression was recorded
[12]. Additionally, we also considered relationships
as “neutral” when they corresponded to binding. The
binding interaction represented a binding between
multiple elements, and was not classified into con-
trol or conversion process by the databases, unlike
other interactions. There were differences in inter-
action terms between KGML and BioPax which are
languages for representing biological pathways. We
collected “positive” and “negative” edges from KEGG
only and “neutral” edges from four databases men-
tioned above. Table 5 shows the interaction names
from KEGG, and the conversion types
network.

in our

Finding shortest paths from a target gene to a disease
gene

To calculate the associations between a drug and a
disease, we found the shortest paths from target genes to
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Table 5 Interaction names from KEGG and conversion types in
our network

Interaction name Interaction type in our network

Activation Positive
Expression Positive
Repression Negative
Inhibition Negative
Binding Neutral
Phosphorylation -

Indirect effect -
Dissociation -
Dephosphorylation -
Ubiquitination -
Missing interaction -
Methylation -
Glycosylation -

State change -

disease genes in the directed network. We presumed that
neutral relationships maintain general actions in the body
and that drugs affect diseases by regulating disease-related
genes through activation or inhibition. Thus, we con-
strained the shortest paths between the drug and disease
genes from connecting without at least one “positive” or
“negative” edge.

We found the shortest paths in different manners ac-
cording to the following two cases:

1) When a drug-target interaction was neutral, we
added a constraint in which at least one positive
or negative edge between the target gene and
disease gene was required to prevent a path from
the target to the disease gene to be neutral.

2) When the drug-target interaction was not neutral,
we removed the constraint so that paths consisting
of only neutral edges are allowed.

Figure 5 represents the processes of finding short-
est path in two cases of drug-target interactions. To
quantify the associations between a target gene and
a disease gene, we calculated the types and weights
of the shortest paths, respectively. The type of a
path was calculated by only “positive” and “negative”
relationships between genes comprising the path.
Thus, we assigned 1 to each positive edge and -1 to
each negative edge in the path. We defined the path
type by multiplying the values corresponding to
edges on the path. Namely, T denoted a type of path
and E was a set of non-neutral edges in the path. T
was determined using the following eq. (1).
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' Target gene

W Disease gene

N 4

Gene on the network

—

— Positive
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Fig. 5 Finding shortest path from a target gene to a disease gene Edges of the shortest path are shown in bold. Out-degree of a node on the
shortest path is denoted. a is a case in which the drug-target interaction is neutral. In this case, we required a path to have at least one positive
or negative edge. b shows other cases in which a drug-target interaction is not neutral. In this case, the shortest path consisting of only neutral

edges was allowed

J

n
T =[] ei(VecE, Ex0) (1)

We used the product of the reciprocals of out-degree
of the corresponding node on a path as the path weight.
The out-degree of a node is the number of interaction
from the node to adjacent nodes. W denoted the path
weight and d; was the out-degree of the iy, node in the
path composed of n nodes. W was calculated using eq.
(2) as follows:

w-II. 2 @

To consider the effects of all shortest paths from a tar-
get gene to a disease gene, we summarized the weights
of each path considering the type of the path when there
were multiple paths between the target gene and disease
gene. V indicated the extent to which a disease gene was
affected by a target gene, while m denoted the number

of paths from the target gene to the disease gene. V was
calculated using eq. (3) as follows:

V=" (Tix W) (3)

Building a vector for each drug-disease pair
To express the effects of a drug on a disease, we built a
vector for each drug-disease pair (Fig. 6). The vector was
composed of values in which disease genes were influ-
enced by the drug. The values of the vector were calcu-
lated using V obtained from previous step. We
multiplied the V by 1 for positive and - 1 for negative
drug-target interactions. If a drug-target interaction was
neutral, we did not perform the operation. When a drug
had more than one target gene, we added the values by
all target genes.

Namely, DV denoted a value reflecting the extent to
which a disease gene was influenced by a drug, n de-
noted the number of target genes, and sign(7;) was value
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Fig. 6 Outline flow chart for building a vector of a drug-disease pair.a represents interactions between drugs and a disease. We determined the
type and weight for each target gene-disease gene pair by finding the shortest path from a target gene to a disease gene. b shows the process
of building regulation vector using regulation values and interaction types for target gene-disease gene pairs. The value for each target gene-disease
gene pair was multiplied by —1 when the type of interaction between a drug and the target gene was inhibition. ¢ shows a matrix
consisting of drug-disease vectors for a disease. The size of each vector for a disease was determined by the number of its disease

corresponding to the drug-i,, target interaction. DV was
calculated as follows:

DV = Z:;l sign(T;)-V; (4)

Predicting candidate drugs and validation

To construct classifiers to identify novel drugs for dis-
eases using machine learning, we prepared training sets
for each disease based on drug vectors. We assigned
“TRUE” to a class for vectors corresponding to drugs in
known drug-disease associations as positive set. We ex-
tracted drugs not included in the positive set. The num-
ber of drugs in this set was 3-fold larger than that in the
positive set. We assigned “FALSE” to the class for the
extracted drugs as the negative set. Next, we made a
training set using positive set and negative set for

constructing a classifier. To preprocess the training set,
if a specific disease gene was not associated with any
drug in the training set, we excluded the column corre-
sponding to the disease gene. We applied the random
forest [41] and neural network models [42] to the train-
ing set using the caret package [43] in R. The Caret
package itself tunes parameters of diverse models for op-
timal results. The random forest is a supervised learning
algorithm and can be used for both classification and re-
gression. For random forest, we used mtry tuned by
Caret. mtry is the number of variables randomly sam-
pled as candidates at each split, and it is different in
value depending on a disease and training sets for
10-fold cross-validation. We used feed-forward neural
networks with a single hidden layer and the number of
hidden unit and weight decay tuned by Caret. We per-
formed 10-fold cross-validation for each model, and
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Fig. 7 Data preprocessing for Wilcoxon rank-sum test. a) Extraction of significant modules for drug-disease pairs b) Assigning the highest from
similarity scores with known drugs to each drug

classifiers showing a higher AUC were selected for iden-
tification of novel drugs for each disease. To obtain ro-
bust results compared to existing models, this process
was repeated 100 times. We used the mean AUC of re-
peated processes for comparison with existing disease.
To demonstrate that our predicted drug-disease pairs
were significant, we compared our prediction with
drug-disease pairs in clinical trials using the hypergeo-
metric test. Among our predicted pairs, we only used
drugs and diseases included in clinical trials.

Additionally, in order to show the significance of our
prediction, we compared functional similarities of
candidate drugs and known drugs with functional similar-
ities of non-candidates and known drugs for all 298 dis-
eases, respectively. We extracted statistically significant
modules based on the enrichment test of genes in the
shortest paths between a drug and a disease to KEGG
Module, which is a collection of manually defined func-
tional units. Hong et al. showed that analyzing up- and
down-regulated genes separately was more powerful for
detecting significant pathways than analyzing all genes
[44]. We also performed separately enrichment test of up-
and down-regulated genes to KEGG Module (Fig. 7.a)
[13]. We calculated Jaccard similarities between candidate
drugs and each known drug based on the obtained mod-
ules. Next, the candidate drugs were assigned the highest
value among similarities with known drugs (Fig. 7.b). The
same process shown in Fig. 7 was applied for non-candi-
date drugs. To show that candidate drugs are more func-
tionally similar to known drugs than non-candidate drugs,
we used the Wilcoxon rank-sum test, which is widely used
to compare two groups (one-tailed, p-value < 0.05).
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