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Abstract

Background: Random-effects (RE) models are commonly applied to account for heterogeneity in effect sizes in
gene expression meta-analysis. The degree of heterogeneity may differ due to inconsistencies in sample quality.
High heterogeneity can arise in meta-analyses containing poor quality samples. We applied sample-quality weights
to adjust the study heterogeneity in the DerSimonian and Laird (DSL) and two-step DSL (DSLR2) RE models and the
Bayesian random-effects (BRE) models with unweighted and weighted data, Gibbs and Metropolis-Hasting (MH)
sampling algorithms, weighted common effect, and weighted between-study variance. We evaluated the
performance of the models through simulations and illustrated application of the methods using Alzheimer’s gene
expression datasets.

Results: Sample quality adjusting within study variance (wP6) models provided an appropriate reduction of
differentially expressed (DE) genes compared to other weighted functions in classical RE models. The BRE model
with a uniform(0,1) prior was appropriate for detecting DE genes as compared to the models with other prior
distributions. The precision of DE gene detection in the heterogeneous data was increased with the DSLR2wP6

weighted model compared to the DSLwP6 weighted model. Among the BRE weighted models, the wP6weighted-
and unweighted-data models and both Gibbs- and MH-based models performed similarly. The wP6 weighted
common-effect model performed similarly to the unweighted model in the homogeneous data, but performed
worse in the heterogeneous data. The wP6weighted data were appropriate for detecting DE genes with high
precision, while the wP6weighted between-study variance models were appropriate for detecting DE genes with
high overall accuracy. Without the weight, when the number of genes in microarray increased, the DSLR2
performed stably, while the overall accuracy of the BRE model was reduced. When applying the weighted models
in the Alzheimer’s gene expression data, the number of DE genes decreased in all metadata sets with the
DSLR2wP6weighted and the wP6weighted between study variance models. Four hundred and forty-six DE genes
identified by the wP6weighted between study variance model could be potentially down-regulated genes that may
contribute to good classification of Alzheimer’s samples.

Conclusions: The application of sample quality weights can increase precision and accuracy of the classical RE and
BRE models; however, the performance of the models varied depending on data features, levels of sample quality,
and adjustment of parameter estimates.

Keywords: Random-effects model, Bayesian random-effects model, Meta-analysis, Study heterogeneity, Gene
expression, Sample quality weights, Alzheimer’s disease
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Background
Although modern sequencing technologies such as ribo-
nucleic acid sequencing and next-generation sequencing
have been developed, microarrays have been a widely
used high-throughput technology in gathering large
amounts of genomic data [1, 2]. Due to small sample
sizes in single microarray studies, microarray studies are
combined with meta-analytic techniques to increase stat-
istical power and generalizability of the results [1, 3].
Common meta-analysis techniques applied in gene ex-

pression studies included combining of p-values, rank
values, and effect sizes. Examples of the p-value based
methods include Fisher’s method, Stouffer’s method,
minimum p-value method, maximum p-value method,
and adaptively weighted Fisher’s method. The
rank-based methods include rth ordered p-value
method, naïve sum of ranks, naïve product of ranks,
rank product, and rank sum methods. The effect-size
based methods include fixed-effects (FE) and
random-effects (RE) models.
Appropriateness of the meta-analysis techniques in

gene expression data depends on types of hypothesis
testing: HSA, HSB, or HSC as described in [4–6]. Max-
imum p-value and naïve sum of rank methods were ap-
propriate for HSA hypothesis that detected DE genes
across all studies. The rth ordered p-value method and
two-step DerSimonian and Laird estimated RE models
were appropriate for HSB hypothesis that detected DE
genes in one or more studies. DerSimonian and Laird
(DSL) and empirical Bayes estimated RE models, includ-
ing our two-step estimated RE model using DSL and
random coefficient of determination (R2) method were
appropriate for HSC hypothesis that detected DE genes
in a majority of combined studies [4–6].
Some of these methods may be limited in their appli-

cation. The p-value based methods are limited in report-
ing summary effects and addressing study heterogeneity
[3, 7–9]. The rank-based methods are robust towards
outliers and applied without assuming a known distribu-
tion [8, 10]; however, their results are dependent on the
influence of other genes included in microarrays [1].
The FE model assumes that total variation is derived
from a true effect size and a measurement error [3];
however, the effect may vary across studies in real-world
applications. Concurrently, although the RE model can
address study-specific effects and accounts for both
within and between study variation, the between study
variation or the heterogeneity in effect sizes is unknown.
Many frequentist-based methods have been developed to
estimate the between study variation. More details can
be found in [6, 9, 11, 12].
The RE models are commonly applied in gene expres-

sion meta-analysis. Classical RE models assume studies
are independently and identically sampled from a

population of studies. However, an infinite population of
studies may not exist and studies may be designed based
on results of previous studies, thus potentially violating an
independence assumption. Bayesian random-effects (BRE)
models have been used to allow for uncertainty of param-
eters. The uncertainty is expressed through a prior distri-
bution and a summary of evidence provided by the data is
expressed by the likelihood of the models. Multiplying the
prior distribution and the likelihood function results in a
posterior distribution of the parameters [13, 14].
Sample quality has substantial influence on results of

gene expression studies [15, 16]. The degree of heterogen-
eity may differ due to inconsistencies in sample quality.
Low heterogeneity can be found in meta-analyses contain-
ing good quality samples, while high heterogeneity arises
in meta-analyses containing poor quality samples. In our
recent study, we evaluated the relationships between DE
and heterogeneous genes in meta-analyses of Alzheimer’s
gene expression data. We detected some overlapped DE
and heterogeneous genes in meta-analyses containing bor-
derline quality samples, while no heterogeneous genes
were detected in meta-analyses containing good quality
samples [6]. Obviously, data obtained from borderline
(poor) quality samples can increase study heterogeneity
and reduce the efficiency of meta-analyses in detecting DE
genes [17, 18].
In this study, we implemented a meta-analytic ap-

proach that includes sample-quality weights to take
study heterogeneity into account in RE and BRE models.
The gene expression data therefore would consist of
up-weighted good quality samples and down-weighted
borderline quality samples. Therefore in the Methods
section we first review quality assessments of microarray
samples, sample-quality weights, RE models, BRE
models, weighted RE models, and weighted BRE models.
We then describe our simulation studies and application
data. Our results are then presented followed by discus-
sion and conclusions.

Methods
This section describes quality assessments of microarray
samples, sample-quality weights, RE models, BRE
models, weighted RE models, and weighted BRE models.

Microarray quality assessments
Affymetrix GeneChips and Illumina BeadArrays have been
widely used single channel microarrays. Quality assessments
in Affymetrix arrays include the 3′:5′ ratios of two-control
genes: beta-actin, and glyceraldehyde-3-phosphate dehydro-
genase (GAPDH); the percent of number of genes called
present; the array-specific scale factor; and the average back-
ground [15, 19]. A 3′:5′ ratio close to 1 indicates a good
quality sample while a ratio > 3 suggests a poor quality sam-
ple, resulting from problems of RNA extraction, cDNA
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synthesis reaction, or conversion to cRNA [15, 20]. Add-
itionally, the percent present calls should be consistent
among all arrays hybridized and generally should range from
30 to 60% [21]. The scale factor is used to assess overall ex-
pression levels with an acceptable value within 3-fold of one
another. The proportion of up- and down-regulated genes
should be consistent at the average signal intensity so that
the expression among arrays can be comparable. The aver-
age background should also be consistent across all arrays
[15]. For Illumina BeadArrays, quality assessments include
the average and standard deviation of intensities, the detec-
tion rate, and the distance of specific probe intensities to the
overall mean intensities of all samples [22–24].

Random-effects models
In this section, we provided a brief summary of the
random-effects models implemented in this study. The
hypothesis settings for detecting DE genes in
meta-analysis of gene expression data are described in
the supplemental material.

DerSimonian-Laird model (DSL)
An unbiased standardized mean difference in expression
between groups (yig) can be obtained for each gene g
as described in Hedges et.al. (1985) and Choi et.al.
(2003) as:

yig ¼ y0ig−
3y0ig

4 nig−2
� �

−1
; y0ig ¼

xig að Þ−xig cð Þ
sig

; ð1Þ

s2ig ¼
nig að Þ−1
� �

s2ig að Þ þ nig cð Þ−1
� �

s2ig cð Þ
nig að Þ þ nig cð Þ−2

; ð2Þ

where xigðaÞ and xigðcÞ represent the mean expression of
case (a) and control (c) groups in ith study, i = 1,…,k;
sigand nigare an estimate of the pooled standard devi-
ation across groups and the total sample size in the ith
study; andyigis obtained as the correction for sample size

bias. The estimated variance of yig is σ2ig ¼ ðn−1igðaÞ þ n−1igðcÞÞ
þy2igð2ðnigðaÞ þ nigðcÞÞÞ−1. The model of effect-size combin-

ation is based on a two-level hierarchical model:

yig ¼ θig þ εig ; εig∼N 0; σ2ig
� �

θig ¼ βg þ δig ; δig∼N 0; τ2g
� �

;
ð3Þ

where yig is the effect for gene g in ith study, i = 1,…,k;
θig is the true difference in mean expression; σ2ig is the

within-study variability representing sampling errors con-
ditional on the ith study; βg is the common effects or aver-
age measure of differential expression across datasets for
each gene or the parameter of interest; δigis the random
effect; and τ2g is the between-study variability. The RE

model is defined when there is between-study variation
[11, 25]. The estimator for τ2g is typically obtained using

DerSimonian-Laird (DSL) estimator [26, 27] as

τ̂2DSL gð Þ ¼ max 0;
Qg− kg−1

� �
S1g− S2g=S1g

� �
( )

; ð4Þ

where Qg ¼
Pk

i¼1wigðyig−β̂gÞ
2
; wig ¼ σ−2ig ; β̂g ¼

Pk

i¼1
wigyigPk

i¼1
wig

;

Srg ¼
Pk

i¼1w
r
ig, and r = {1, 2}. For each gene, we estimated

β̂gðτ̂2DSLðgÞÞ with wig ¼ ðσ2
ig þ τ̂2DSLðgÞÞ

−1
using a generalized

least squares method to obtain statistics zDSL(g). More
details can be found in [11, 25].

Two-step estimate model (DSLR2)

The τ̂2DSLR2ðgÞwas estimated by the DSL method in the

first step and iterated with random-effect coefficients of
determination ( R2

DSLðgÞ ) in the second step. In other

words, we assumed δig∼Nð0;R2
DSLðgÞÞ and replaced

τ̂2DSLðgÞ by R2
DSLðgÞ in the second-step estimation. τ̂2DSLðgÞ

and R2
DSLðgÞ are a function of τ2(Yg − βg), so its bias does

not influence the unbiasedness of the treatment and ran-
dom effects [6, 12]. The τ̂2DSLR2ðgÞon the zero-to-one scale

provides a lower minimum sum of squared error (MSSE)
than the τ̂2DSLðgÞ estimate. The R2

DSLðgÞ measuring the

strength of study heterogeneity can also be used to com-
pare variation of genes in different meta-analyses to
decide which studies should be included in the
meta-analysis [28]. The estimates of treatment effects,
its variance, z-statistics, and random effects are obtained
as

β̂g R2
DSL gð Þ

� �
¼

Pk
i¼1 σ2ig þ R2

DSL gð Þ
� �−1

yig
Pk

i¼1 σ2ig þ R2
DSL gð Þ

� �−1 ; ð5Þ

Var β̂g R2
DSL gð Þ

� �h i
¼ 1Pk

i¼1 σ2ig þ R2
DSL gð Þ

� �−1 ; ð6Þ

zg R2
DSL gð Þ

� �
¼

β̂g R2
DSL gð Þ

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var β̂g R2

DSL gð Þ
� �� �r ∼N 0; 1ð Þ; ð7Þ

δ̂ig R2
DSL gð Þ

� �
¼ R2

DSL gð Þ
σ2
ig þ R2

DSL gð Þ
yig−β̂g R2

DSL gð Þ
� �� �

ð8Þ

When compared to the DSL method, the DSLR2
method had a relatively better sensitivity and accuracy in
detecting DE genes under HSC hypothesis testing and a
higher precision when the proportion of truly DE genes
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in the metadata was higher [6]. The DSLR2 method per-
formed well with a low computational cost and almost
all significantly DE genes identified were genes among
the significantly DE genes identified using the DSL
method. However, similar to the DSL method, the per-
formance of the DSLR2 method can be reduced when
sample sizes in single studies are restricted (e.g., < 60 in
both arms) and the normality assumption of the
meta-analysis outcome does not hold [6].
The RE models may be inefficient due to improper

distributional assumptions. A permutation technique
that is not based on a parametric distribution was ap-
plied to assess statistical significance of the common ef-
fect [11]. A modified BH method was used to control
the FDR for multiple testing in the RE models [29]. We
obtained the modified FDR by the order statistics of the
actual and permuted z-statistics z(g) = (z(1) ≤⋯ ≤ z(G))
and zrðgÞ ¼ ðzrð1Þ≤⋯≤zrðGÞÞ as

FDRg ¼
1=Rð ÞPR

r¼1

PG
gð Þ¼1I jzrgð Þj≥zα

� �
PG

gð Þ¼1I jz gð Þj≥zα
� � ; ð9Þ

where α is the significance threshold of the single test, g
is an index of genes 1,…,G, and r is an index of permuta-
tion 1,…,R.

Bayesian random-effects model (BRE)
The BRE models are different from the classical RE
model in that the data and model parameters in the BRE
models are considered to be random quantities [30]. The
BRE models were used to allow for the uncertainty of
the between-study variance in this study. The model for
gene g is given by

yig θig
�� ∼N θig ; σ2

ig

� �
;

θig βg ; τg
��� ∼N βg ; τ

2
g

� �
;

βg ∼N 0; 1000ð Þ;

τg ∼ uni f orm ða; bÞ and gamma ðα; βÞ: ð10Þ

The kernel of the posterior distribution can be written
as

pðβg ; θ1g ;…; θkg ; τ
2
gÞ ∝ pðθg jyg ; σ2gÞ pðβg ; τ2g jθgÞ

∝
Yk

i¼1
pðθig jyig ; σ2igÞ pðθig jβg ; τ2gÞ π ðβgÞ π ðτ2gÞ;

ð11Þ

where yg ¼ ðy1g ;…; ykgÞ; σ2
g ¼ ðσ21g ;…; σ2kgÞ , and θg

= (θ1g,…, θkg) for gene g in the ith study; i = 1,…,k. The

π(βg) and πðτ2gÞ are non-informative priors given as

βg ∼N(0, 1000), andτg∼uniform (a,b) and gamma (α,β).
The choice of prior distributions for scale parameters

can affect analysis results, particularly in small samples.
With scale parameters, the distributional form and the
location of the prior distributions are decided [31]. Uni-
form distributions are appropriate non-informative
priors for τ2g [13]. We conducted simulations to select

appropriate priors for τ2g , allowing the maximum (b) of

the uniform distribution to be b∈{0.005, 0.001, 0.05,
0.01, 0.5, 0.1, 1, 5, 10} and b~Gamma(1,2). The potential
choices of the appropriate priors were selected based on
parameters obtained from an Alzheimer’s gene expres-
sion data [6] in order to further apply the results.

Sample-quality weights
The quality control (QC) criteria indicative of poor quality
samples we used were the 3′:5’ GAPDH ratio > 3 and/or
percent of present calls < 30% for Affymetrix arrays; and
detection rate < 30% for Illumina BeadArrays, in addition
to data visualizations [15, 20]. Poor quality samples were
excluded before data preprocessing. Theoretically, an
optimal weight for meta-analysis is the inverse of the

within-study variance. The variance of weighted mean (β̂g)

is minimized when the individual weights are taken from
the variance of the samples yig. A high variance therefore
gives low weights in meta-analysis [32, 33]. In this study,
the weights corresponding to the QC indicators fall into
two categories: standardized ratio weights and zero-to-one
weights (Table 1).

Standardized ratio weights (wS,ij)

Sij ¼ Rij−1
SD Rið Þ
����

���� ∈ 0;∞ð Þ; ð12Þ

wS;ij ¼ f Sij; σ2i ; τ
2

� �
;

where Rij is a quality indicator, i.e. 3′:5’ GAPDH ratio of
the jth sample in the ith study, SD(Ri)is the standard
deviation of the quality indicator in the ith study,
wS1 − S3 ∈ (0,∞), and wS4 − S8 ∈ (0, 1). f(.) is a function
of sample-quality weights with the within and between
study variances as shown in Table 1. A low value of the
Sij indicates good quality samples, providing high values
of standardized ratio weights (wS,ij) to give more weight
on the expression data.

Zero-to-one weights (wP,ij)

Pij ¼
~Pij 0:01ð Þ
2−Sij

� 	
∈ 0:01;…; 1:0½ �; ð13Þ

wP;ij ¼ f Pij; σ2i ; τ
2

� �
;
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where ~Pij and Sij is the percent of present calls and
the standardized quality indicators of the jth sample
in the ith study, respectively, wP1 − P7 ∈ (0,∞), and
wP8 − P13 ∈ (0, 1). A high value of the Pij weights indi-
cate good quality samples, providing high values of
zero-to-one weights (wP,ij) to give more weight on the
expression data.
The weights are primarily selected based on availability

of quality indicators, such as 3′:5’ GAPDH ratio in Affy-
metrix arrays or detection rate in Affymetrix arrays and
Illumina BeadArrays. Both the 3′:5’ GAPDH ratio and
detection rate can be converted to the zero-to-one
weights via wP1.

Weighted random-effects models
An appropriate weight was chosen based on the preci-
sion and accuracy of the DSL weighted and DSLR2
weighted models in detecting DE genes via simulations
and were used to weight the expression data and to ad-
just the common effect and the between-study variance
in the BRE model.

Weighted DSL and DSLR2 models
The log2 normalized intensity data were weighted with
an appropriate weight obtained from the DSL and
DSLR2 weighted models. The weighted mean ðxigðaÞÞ
and weighted sample variance ðs2igðaÞÞ of the normalized

intensity data in each group were calculated:

xig að Þ ¼
Xnig að Þ

j¼1
wijg að Þxijg að Þ=

Xnig að Þ
j¼1

wijg að Þ; ð14Þ

s2ig að Þ ¼
Pnig að Þ

j¼1 wijg að Þ xijg að Þ−xig að Þ
� �2

S1g að Þ− S2g að Þ=S1g að Þ
� � ;

Srg að Þ ¼
Xnig að Þ

j¼1
wr
ijg að Þ; r ¼ 1; 2f g;

ð15Þ

xijg(a) is the log2 normalized intensity data for gene g of
the jth sample in the case (a) group and in the ith study,
nig(a) is the sample size of case (a) group for gene g in
the ith study, and wijg(a) is the sample-quality weight of
the jth sample in the case (a) group in the ith study for

the gene g. The same calculations were applied for the
weighted mean ðxigðcÞÞ and the weighted sample variance

ðs2igðcÞÞ in the control (c) group. The unbiased standard-

ized mean difference of the expression between groups
were re-calculated and re-combined using the DSL and
DSLR2 models (Eq.1 and Eq.2).

Weighted common effect model
We adjusted the common effect in the BRE model
(Eq.10) by multiplying with an average weight over the

total sample in the ith study for gene gðwig ¼
PnigðaÞþnigðcÞ

j¼1

wijg=ðnigðaÞ þ nigðcÞÞÞ . The BRE weighted common effect
model for gene g is given by

yig j θig ∼Nðθig ; σ2igÞ;

θig j βg �wig ; τg ∼ Nðβg �wig ; τ2gÞ;

βg ∼Nð0; 1000Þ;

τg ∼ uniform a; bð Þ and gamma α; βð Þ ð16Þ

Weighted between-study variance model
We adjusted the between-study variance in the
BRE model (Eq.10) by multiplying with an average
weight over the total sample in the ith study for

gene g ðwig ¼
PnigðaÞþnigðcÞ

j¼1 wijg=ðnigðaÞ þ nigðcÞÞÞ . The BRE

weighted between-study variance model for gene g is given
by

yig j θig ∼Nðθig ; σ2igÞ;

θig j βg ; τg �wig ∼Nðβg ; τ2g �wigÞ;

βg ∼Nð0; 1000Þ;

τg ∼ uniform a; bð Þ and gamma α; βð Þ ð17Þ

Example WinBUGS code appears in the supplemental
material.

Table 1 List of sample quality weights

Standardized ratio weights (wS, ij) Zero-to-one weights (wP, ij)

wS1 ¼ ðσ2g þ sij τ̂
2
gÞ

−1

wS2 ¼ ðsijσ2ig þ τ̂2gÞ
−1

wS3 ¼ ðsijðσ2ig þ τ̂2gÞÞ
−1

wS4 ¼ 2−ðσ
2
igþsij τ̂

2

gÞ

wS5 ¼ 2−ðsijσ
2
igþτ̂

2

gÞ

wS6 ¼ 2−ðsijðσ
2
igþτ̂

2

gÞÞ

wP1 ∈ f2−si j ; 0:01~pi jg
wP2 ¼ ðσ2ig þ ð1−wP1Þτ̂2gÞ

−1

wP3 ¼ ðð1−wP1Þσ2ig þ τ̂2gÞ
−1

wP4 ¼ ðð1−wP1Þðσ2ig þ τ̂2gÞÞ
−1

wP5 ¼ ðσ2ig þ τ̂2ðwP1Þ
g Þ−1

wP6 ¼ ðσ2ðwP1Þ
ig þ τ̂2gÞ

−1

wP7 ¼ ððσ2ig þ τ̂2gÞ
ðwP1ÞÞ

−1

wP8 ¼ 2−ðσ
2
igþð1−wP1 Þ̂τ

2

gÞ

wP9 ¼ 2−ðð1−wP1Þσ2igþτ̂
2

gÞ

wP10 ¼ 2−ðð1−wP1Þðσ2igþτ̂
2

gÞÞ

wP11 ¼ 2−ðσ
2
igþτ̂

2ðwP1 Þ
g Þ

WP12 ¼ 2−ðσ
2ðwP1 Þ
ig þτ̂2gÞ

wP13 ¼ 2−ððσ
2
igþτ̂

2

gÞwP1Þ
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The weighted common effect and the weighted be-
tween study variance in the BRE models with a uni-
form(0,1) prior were implemented in both unweighted
and weighted data using Gibbs and Metropolis-Hasting
(MH) sampling algorithms [14, 34]. Two chains each
with 20,000 iterations, a 15,000 burn-in period, and a
thinning of 3 was performed for all Bayesian models.
The convergence of the models was assessed using the
Gelman and Rubin diagnostic [34]. Since the posterior
distribution was normal and symmetric, the posterior
mean was standardized by posterior standard deviation.
A Benjamini and Hochberg (BH) procedure was applied
to control the false discovery rate (FDR) for multiple
gene testing, so that the BRE and classical RE models
could be compared throughout the study. Seven BRE
models for unweighted and weighted data, Gibbs and
MH sampling algorithms, weighted common effect, and
weighted between-study variance were implemented as
shown in Table 2.
The DE genes were defined as those with FDR less

than 5%. Unsupervised hierarchical clustering using
Ward’s method and one minus Pearson’s correlation co-
efficient for measures of similarities were used to graph-
ically present the DE genes in the individual analysis of
Alzheimer’s gene expression data using a heatmap.

Simulation setting
Simulated datasets were generated using an algorithm
described in previous studies [4–6]. A brief summary of
the algorithm is as follows:

1. Five studies each with 2000 genes were generated
(800 clustering and 1200 non-clustering genes). The
clustering genes with the same correlation pattern
within their clusters were equally allocated into 40
clusters.

2. Gene expression levels among clustering and non-
clustering genes were assumed to follow a multi-
variate normal distribution ðX 0

gc1;…;X
0
gc40Þ

T
∼MV

N ð0;ΣckÞ; 1 ≤ k ≤ 5, 1 ≤ c ≤ 40,
P0

ck ∼W−1 ðψ; 60Þ;
and ψ= 0.5I20 × 20 + 0.5J20 × 20, and a standard normal
distribution, respectively.

3. Truly DE genes were generated with uniform(0.5,3),
accounted for 10% of the total genes, and equally
classified into 5 groups (tg = 1,…, 5). On average
each group included 200 true genes. As the RE
models appropriated under HSC, 120 genes in more
than 50% of the combined studies were defined as
the truly DE genes.

4. Truly heterogeneous genes constituted 15% of the
total genes, implied by the random effects with
uniform(0.5,3), and proportionally allocated into
truly DE and not truly DE gene groups. The
heterogeneous gene was defined by a significant
random effect, where the gene expression was not
identical across studies.

5. Sample-quality weights were assumed to follow beta
distributions(α = 10, β = 1) for the zero-to-one
weights and normal distributions N(0, 0.6) for the
standardized ratio weights.

The N, G, K, and H denote the number of samples,
the number of genes, the number of studies, the number
of studies containing heterogeneous genes, respectively,
all of which varied in different simulations. Because the
simulation results under the same algorithms on 2000
and 10,000 genes were similar [6] and implementing
Bayesian models requires intensive computations, we
conducted the simulations on 2000 genes. Eight simu-
lated metadata sets: two sets for the weighted and un-
weighted methods in the homogeneous data (H0), and
each two of six sets for the weighted and unweighted
methods in the heterogeneous data (H1, H2, and H3)
were generated. A thousand simulations each with 1000
permutations of group labels were implemented for all
DSL and DSLR models, and without permutation for the
BRE models with different uniform(0,b) priors; b∈{0.005,
0.001, 0.05, 0.01, 0.5, 0.1, 1, 5, 10, and 100}, and
b~Gamma(1,2) prior.

Evaluations of methods in simulations
Because RE models were suitable under HSC hypothesis:
detecting DE genes in a majority of combined studies [5,
6], the models were anticipated to detect DE genes in
more than 50% of combined studies, r = 3 for
meta-analysis of five studies. We evaluated the number
of detected DE genes, minimum sum squared error
(MSSE), precision, accuracy, and area under receiver op-
erating characteristic curve (AUC). Precision was

Table 2 Bayesian random-effects (BRE) models by data features,
sampling algorithms, and weighted inference models

BRE Models

1 2 3 4 5 6 7

Data features

Unweighted normalized intensity data ✓ ✓ ✓

Weighted normalized intensity data ✓ ✓ ✓ ✓

Sampling algorithms

Gibbs sampling ✓ ✓ ✓ ✓ ✓ ✓

Metropolis-Hasting sampling ✓

Weighted inference models

Unweighted model ✓ ✓ ✓

Weighted common effect ✓ ✓

Weighted between-study variance ✓ ✓
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calculated as the proportion of truly DE genes correctly
identified as significant over the total number of genes
declared significant. Accuracy was calculated as the pro-
portion of genes correctly identified as being truly DE
genes or not truly DE genes over the total of evaluated
genes. The accuracy of the tests was also determined
using AUC, where AUC ∈ (0.5, 0.7], AUC ∈ (0.7, 0.9]
and AUC ∈ (0.9, 1.0] represent low, moderate, and high
accuracy, respectively [35, 36]. All statistical methods
and simulations were implemented using programs and
modified programs from limma, metafor, GeneMeta,
MAMA, Rjags, R2jags, Coda in the R programming
environment.
Four publicly available Alzheimer’s disease (AD) gene

expression datasets of post-mortem hippocampus brain
samples were applied: GSE1297 [37], GSE5281 [38],
GSE29378 [39], and GSE48350 [40]. After data prepro-
cessing, quantile normalization, and data aggregating
[20, 41–44], our meta-analysis was performed on 12,037
target genes in 131 subjects (68 AD cases and 63 con-
trols). We examined the strength of study heterogeneity
by considering five ways of metadata sets as previously
described in [6] and defined in the caption of Figs. 5 and
6. The metadata A, B, D, E may contain heterogeneous
data due to a relatively high R2, while the metadata C
had a relatively low R2or contained homogenous data.
The 3′:5’ GAPDH ratio was used as a quality indicator
in this analysis. The 3′:5’ GAPDH ratio was converted to
the zero-to-one weight, wP6, via wP1.

Results
Table 3 presents the performance of the DSL and DSLR2
models, and the BRE models with different prior distri-
butions. All of the BRE models converged with the po-
tential scale reduction factor close to 1. The BRE model
with a uniform(0,1) prior detected more DE genes than
the DSL and DSLR2 models. The BRE model with a
uniform(0,b) prior where b = {0.001, 0.01, 0.1, 0.005, 0.05,
0.5} detected too many DE genes, particularly in the
heterogeneous data, while the BRE model with a uni-
form(0,5), uniform(0,10), uniform(0,100), and gamma(1,2)
prior detected too few DE genes. The DSLR2 model had
the lowest MSSE, while the DSL model and the BRE
model with a uniform(0,1) prior had similar MSSEs
(Additional file 1: Figure S1). In addition, the DSL, DSLR2,
BRE with a uniform(0,1) prior detected DE genes with
high precision in the homogeneous data, moderate
precision in the heterogeneous data, and high accuracy in
all datasets. The DSLR2 and BRE with a uniform(0,1)
prior had a higher AUC than the DSL model in the
heterogeneous data (Fig. 1).
Therefore, the DSLR2 and BRE models with a uni-

form(0,1) prior were appropriate for detecting DE genes
in terms of an appropriate number of DE genes, a lower
MSSE, a higher precision, and a higher AUC, particu-
larly in the heterogeneous data. The BRE model with a
uniform(0,1) prior particularly performed better than the
DSLR2 model in the homogeneous data but performed
similarly in the heterogeneous data.

Table 3 Performance of random-effects models applied in simulated data

Model Prior No. DE Genes MSSE Precision Accuracy AUC

H0 H1 H2 H3 H0 H1 H2 H3 H0 H1 H2 H3 H0 H1 H2 H3 H0 H1 H2 H3

DSL – 65 74 92 124 2.9 2.9 2.9 2.9 0.95 0.95 0.91 0.79 0.97 0.97 0.98 0.98 0.76 0.79 0.84 0.90

DSLR2 – 69 104 139 198 1.7 1.7 1.7 1.7 0.95 0.91 0.79 0.59 0.97 0.98 0.98 0.96 0.77 0.89 0.95 0.97

BRE U(0,0.001) 126 157 254 305 18.1 25.8 33.0 39.9 0.82 0.70 0.45 0.39 0.98 0.97 0.93 0.91 0.93 0.94 0.94 0.94

BRE U(0,0.01) 218 324 404 436 10.5 16.0 20.0 22.3 0.55 0.37 0.30 0.28 0.95 0.90 0.86 0.84 0.97 0.95 0.92 0.92

BRE U(0,0.1) 181 269 354 391 9.4 14.3 17.8 19.8 0.66 0.45 0.34 0.31 0.97 0.93 0.88 0.86 0.98 0.96 0.94 0.93

BRE U(0,1) 80 108 141 203 1.7 2.2 2.4 2.6 1.00 0.94 0.80 0.58 0.98 0.99 0.98 0.96 0.84 0.92 0.96 0.97

BRE U(0,10) 11 9 9 12 1.0 1.1 1.1 1.1 1.00 1.00 1.00 0.96 0.95 0.94 0.94 0.95 0.54 0.54 0.54 0.55

BRE U(0,100) 10 8 8 11 1.0 1.0 1.0 1.0 1.00 1.00 1.00 0.96 0.94 0.94 0.94 0.94 0.54 0.53 0.53 0.54

BRE U(0,0.005) 329 447 520 546 10.6 16.1 20.1 22.4 0.37 0.27 0.23 0.22 0.90 0.84 0.80 0.79 0.94 0.91 0.89 0.89

BRE U(0,0.05) 184 275 359 395 10.3 15.7 19.6 21.8 0.65 0.44 0.33 0.30 0.97 0.92 0.88 0.86 0.98 0.96 0.94 0.93

BRE U(0,0.5) 137 167 253 330 3.0 4.4 5.3 5.7 0.86 0.71 0.47 0.36 0.99 0.98 0.93 0.89 0.98 0.98 0.96 0.94

BRE U(0,5) 13 11 12 17 1.1 1.1 1.1 1.1 1.00 1.00 1.00 0.97 0.95 0.95 0.95 0.95 0.55 0.54 0.55 0.57

BRE G(1,2) 41 53 69 94 1.7 2.0 2.1 2.1 1.00 1.00 0.97 0.89 0.96 0.97 0.97 0.98 0.67 0.72 0.78 0.84

DE: differentially expressed, MSSE: minimum sum of squared error, AUC: area-under ROC curve, DSL: Dersimonian-Laird model, DSLR2: two-step estimate of
Dersimonian-Laird model, BRE: Bayesian random-effects model, U: uniform, and G: gamma. H0, H1, H2, and H3 are the number of {0, 1, 2, and 3} studies
containing heterogeneous genes. H0 represents homogenous data. The number of truly DE genes in the simulated data was 120 genes under HSC
hypothesis testing
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Weighted DSL and DSLR2 models
With simulation results, the wP6 function was most ap-
propriate for detecting DE genes in the DSL and DSLR2
models. The QC indicators adjusted the within study
variance in the weighted function as:

wP6 ¼ σ2 wP1ð Þ
ig þ τ̂2g

� �−1
; ð18Þ

where wP1∈f2−Sij ; 0:01~Pijg, ~Pij denoted percent of present
calls, Sij denoted standardized quality indicators of the
jth sample in the ith study. Fig. 2 presents the precision
of the DSLR2 model with and without the wP6 function
under different hypotheses in the homogeneous and het-
erogeneous data. The precision was increased with the
DSLR2 weighted model in the heterogeneous data. The wP6

model provided an appropriate reduction of detected DE

Fig. 1 Sensitivity and area under ROC curve of the random-effects models with Dersimonian-Laird (DSL), two-step (DSLR2), and Bayesian random-
effects models (BRE) with uniform(0,1) and gamma(1,2) priors for between-study variance under the HSC hypothesis testing. H0, H1, H2, and H3
are the number of {0, 1, 2, and 3} studies containing heterogeneous genes. H0 represents homogenous data. The number of truly DE genes in
the simulated data was 120 genes

Fig. 2 Precision of two-step random-effects models (DSLR2) with and without the proper weighted function: wP6 ¼ ðσ2ðwP1Þ
ig þ τ̂2gÞ

−1
), wP1∈f2−Sij ; 0:01~Pijg

, ~Pij denoted percent of present calls, Sij denoted standardized quality indicators of the jth sample in the ith study. H0, H1, H2, and H3 are

the number of {0, 1, 2, and 3} studies containing heterogeneous genes. H0 represents homogenous data. The number of truly DE genes
in the simulated data was 120 genes under HSC hypothesis testing. DE: differentially expressed
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Table 4 Performance of weighted random-effects models applied in simulated data
Model No. DE Genes MSSE Precision Accuracy AUC

H0 H1 H2 H3 H0 H1 H2 H3 H0 H1 H2 H3 H0 H1 H2 H3 H0 H1 H2 H3

DSLwP6 62 62 64 65 2.9 3.0 3.0 3.0 0.95 0.96 0.96 0.96 0.97 0.97 0.97 0.97 0.75 0.75 0.75 0.76

DSLR2wP6 66 72 78 85 1.6 1.6 1.6 1.6 0.96 0.95 0.94 0.92 0.97 0.97 0.97 0.98 0.76 0.78 0.80 0.82

BRE with a uniform(0,1) prior

Model 1: Unweighted data, Gibbs 81 109 140 204 1.7 2.1 2.4 2.6 1.00 0.94 0.81 0.58 0.98 0.99 0.98 0.96 0.84 0.92 0.96 0.97

Model 2: Unweighted data, Gibbs, βwP6 81 66 51 39 6.0 6.2 6.5 6.9 1.00 1.00 0.97 0.93 0.98 0.97 0.96 0.96 0.84 0.77 0.71 0.65

Model 3: Unweighted data, Gibbs, τ2wP6 161 157 151 142 0.8 1.5 2.1 2.7 0.74 0.76 0.77 0.79 0.98 0.98 0.98 0.98 0.99 0.99 0.97 0.96

Model 4: Weighted data, Gibbs 81 87 92 100 1.8 2.2 2.7 3.1 1.00 0.99 0.97 0.93 0.98 0.98 0.98 0.98 0.84 0.86 0.87 0.89

Model 5: Weighted data, Gibbs, βwP6 81 65 51 39 6.3 6.5 6. 9 7.3 1.00 1.00 0.97 0.93 0.98 0.97 0.96 0.96 0.84 0.77 0.70 0.65

Model 6: Weighted data, Gibbs, τ2wP6 162 157 151 142 1.6 2.6 3.6 4.5 0.74 0.76 0.77 0.79 0.98 0.98 0.98 0.98 0.99 0.99 0.97 0.96

Model 7: Weighted data, MH 81 87 93 102 2.2 2.7 3.1 3.5 1.00 0.98 0.97 0.92 0.98 0.98 0.98 0.98 0.84 0.86 0.87 0.89

wP6 is an average of wP6, wP6 ¼ ðσ2ðwP1Þ
ig þ τ̂2gÞ

−1
over the total samples; wP1∈f2−Sij ; 0:01~Pijg, ~Pij denoted percent of present calls, Sij denoted standardized quality

indicators of the jth sample in the ith study. DE: differentially expressed, MSSE: minimum sum of squared error, AUC: area-under ROC curve, DSL: DerSimonian-
Laird model, DSLR2: two-step estimate of DerSimonian-Laird model, BRE: Bayesian random-effects model, U: uniform, G: gamma, MH: Metropolis–Hastings
algorithm. H0, H1, H2, and H3 are the number of {0, 1, 2, and 3} studies containing heterogeneous genes. H0 represents homogenous data. The number of truly
DE genes in the simulated data was 120 genes under HSC hypothesis testing.

Fig. 3 Distribution of unbiased standardized mean difference of gene expression (x-axis) between Alzheimer’s and control groups in GSE1297,
GSE5281, GSE29378, and GSE48350 datasets
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genes and MSSEs and higher precision as compared to the
other weighted functions (Additional file 1: Tables S1
and S2). Similar results were found under different levels
of sample quality (results not shown). The DSLR2 wP6

weighted model had a lower MSSE and detected more DE
genes than the DSL wP6 weighted model in the heteroge-
neous data.

Weighted Bayesian random-effects models
Table 4 presents the performance of the DSLwP6 and
DSLR2wP6 models, and BRE weighted models. A uni-
form(0,1) prior for between study variance was applied in
all BRE models. The BRE weighted Models 1, 3, 4, 6, and 7
in Table 4 detected more DE genes with a higher AUC than
the DSLwP6 and DSLR2wP6 models. The wP6 weighted-data
models performed similarly to the unweighted-data models
(Models 2 vs. 5 and 3 vs. 6). The wP6weighted
common-effect model performed similarly to the un-
weighted model in the homogeneous data, but performed
worse in the heterogeneous data (Models 1 vs. 2). Addition-
ally, the Gibbs- and MH-based models performed similarly
on the wP6weighted-data model. The numbers of detected
DE genes were reduced close to the number of truly DE

genes and the precisions were increased while maintaining
a high accuracy as compared to the performance in the
unweighted-data Gibbs-based model (Models 4 and 7
vs. 1). For homogeneous and heterogeneous data, the
Gibbs- and MH-based models with the wP6weighted-
data performed similarly and were most appropriate
for detecting DE genes with high precision (Models 4
and 7). The wP6weighted between-study variance models
were most appropriate for detecting DE genes with high
overall accuracy (Models 3 and 6).

Additional simulation results
Simulations with varying sample size, number of genes,
and different levels of sample quality were conducted and
some results were presented in the supplemental material.
It is noteworthy that the BRE models identified less genes
for sample sizes < 60. The DE gene detection and the
MSSE were stable for sample sizes > 60. Specifically, the
BRE with a U(0,1) had consistently high precisions and
was able to maintain overall accuracies for all sample sizes
> 60 (Additional file 1: Table S3). As anticipated, these
findings were similar to the findings in the classical RE
models [6]. When the number of genes in the analyses

Fig. 4 Percentage of present calls and 3′:5’ GAPDH ratio of GSE5281 samples
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increased, the classical RE models performed stably, while
the overall accuracy in the BRE model with a uniform(0,1)
prior was reduced (Additional file 1: Table S4). For differ-
ent levels of sample quality, the weights with higher sam-
ple quality detected more DE genes and had higher overall
accuracy than the weights with lower sample quality
(Additional file 1: Table S5).

Application in Alzheimer’s gene expression data
Our meta-analysis in the Alzheimer’s gene expression data-
sets was performed on 12,037 target genes in 131 subjects
(68 AD cases and 63 controls). We primarily examined the
strength of study heterogeneity by considering five ways of
metadata sets as described in [6]. The metadata A, B, D, E
may contain heterogeneous data due to a relatively high R2,
while the metadata C had a relatively low R2or contained
homogenous data. Figure 3 presents distribution of un-
biased standardized mean differences of gene expression in
the GSE5281 dataset, different from the other datasets. Fig-
ure 4 presents the percent of present calls and the 3′:5’
GAPDH ratio of the heterogeneous dataset.
Using the DSLR2wP6weighted model, the number of

DE genes decreased in all metadata sets. Almost all the

DE genes identified by the weighted model were genes
among the significant DE genes identified by the un-
weighted DSL and DSLR2 models. The DE genes identi-
fied using the weighted model in the metadata C
concurrently detected approximately 13% of the un-
weighted DSL and DSLR2 models (266/2116 genes and
213/1696 genes), respectively (Fig. 5). Likewise, the num-
ber of DE genes decreases with the wP6weighted between
study variance (Models 3 and 6). Those DE genes were
genes among the significant DE genes identified by the
unweighted model (Model 1). Sixty and 446 DE genes
were detected across the three weighted BRE models in
the metadata C and D, respectively (Fig. 6). Among the
unweighted or weighted classical RE and BRE models,
446 genes could potentially be down-regulated genes that
may contribute to good classification of Alzheimer’s sam-
ples. Additional file 1: Figure S2 presents potential
down-regulations of those genes in Alzheimer’s samples in
each microarray dataset. Of note, no genes were detected
using the weighted common-effect models (Models 2 and
5) and the weighted-data model (Models 4 and 7).
The lists of 213 and 446 DE genes can be found in

Additional file 1: Tables S6 and S7, respectively, where

Fig. 5 Venn diagrams present number of differentially expressed genes in Alzheimer's disease as compared to controls in white matter region
using classical random-effects models: Dersimonian-Laird (DSL), two-step estimated (DSLR2) random-effects models and with the proper

weighted function: wp6 ¼ ðσ2ðwp1Þ
ig þ τ̂2gÞ

−1
(DSLR2wP6), where wp1∈fs−Sij ; 0:01~Pijg, ~Pij denoted percent of present calls, Sij denoted standardized

quality indicators of the jth sample in the ith study. Metadata A: GSE1297, GSE5281, and GSE29378; B: GSE1297, GSE5281, and GSE48350; C:
GSE1297, GSE29378, and GSE48350; D: GSE1297, GSE5281, GSE29378, and GSE48350; and E: GSE5281, GSE29378, and GSE48350
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98 were the same genes. The identified DE genes partici-
pate in significant pathways such as cytoskeleton
organization, actin filament bundle organization, synap-
tic transmission, regulation of biological quality, neutral
lipid biosynthetic process, acylglycerol biosynthetic
process, intermediate filament-based process, negative
regulation of neuron projection development, cell-cell
signaling, glutamate decarboxylation to succinate, stress
fiber assembly, single-organism behavior, single-organism
behavior, response to ethanol, cellular component assembly,
neuron projection development, learning and long-term
memory.

Discussion
This study presents the performance of the classical RE
and BRE models in meta-analysis of gene expression
studies. We found the BRE model with a uniform(0,1)
prior was appropriate for detecting DE genes as com-
pared to the models with other prior distributions. The
BRE model with a uniform(0,1) prior performed better
than the DSLR2 model in the homogeneous data, but

performed similarly in the heterogeneous data in terms
of an appropriate number of detected DE genes, lower
MSSE, higher precision, and higher AUC.
This is the first study to reveal an application of

sample-quality weights to adjust the study heterogeneity
in the classical RE and BRE models in microarray gene
expression studies. The DSL and DSLR2 weighted
models were implemented for the classical RE models.
The unweighted and weighted data, Gibbs and MH sam-
pling algorithms, weighted common effect, and weighted
between-study variance were applied for the BRE
models. We evaluated the performance of the models
through simulation studies and through application to
Alzheimer’s gene expression datasets.
With simulation results, the sample quality indicators

adjusting the within study variance (wP6) in the classical RE
models provided an appropriate reduction of detected DE
genes and MSSEs, and higher precision as compared to the
other weighted functions. The precision in detecting DE
genes was increased with the DSLR2 wP6 weighted model
in the heterogeneous data. The DSLR2 wP6 weighted model

Fig. 6 Venn diagrams present number of differentially expressed (DE) genes in Alzheimer's disease as compared to controls in white matter
region using weighted Bayesian random-effects models - Model 1: unweighted BRE with uniform (0,1) model (BRE1), Model 3: unweighted data
with Gibb sampling and wP6 weighted between study variance model (BRE3), Model 6: wP6 weighted data with Gibb sampling and wP6 weighted

between study variance model (BRE6). This weighted function was applied: wp6 ¼ ðσ2ðwp1Þ
ig þ τ̂2gÞ

−1
;wp1∈f2−Sij ; 0:01~Pijg, ~Pij denoted percent of

present calls, Sij denoted standardized quality indicators of the jth sample in the ith study. Metadata A: GSE1297, GSE5281, and GSE29378; B:
GSE1297, GSE5281, and GSE48350; C: GSE1297, GSE29378, and GSE48350; D: GSE1297, GSE5281, GSE29378, and GSE48350; and E: GSE5281,
GSE29378, and GSE48350
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had a lower MSSE and detected more DE genes than the
DSL wP6 weighted model in the heterogeneous data.
Among the BRE weighted models, the wP6weighted- and
unweighted-data models and both Gibbs- and MH-based
models performed similarly. The wP6 weighted
common-effect model performed similarly to the un-
weighted model in the homogeneous data, but performed
worse in the heterogeneous data. The wP6weighted-data
were appropriate for detecting DE genes with high preci-
sion, while the wP6weighted between-study variance
models were appropriate for detecting DE genes with high
overall accuracy.
The sample quality has substantial influence on results

of gene expression studies [15]. Because variation of sample
quality limited meta-analysis techniques to properly detect
DE genes [45, 46] and the classical RE and BRE models
allow flexibility in calculating yigand its variance σ2

ig

as well as study-specific adjustments [47], we developed
approaches to up-weight good quality samples and
down-weight borderline quality samples in the models. This
compromised approach utilizes sample-quality information
in the meta-analysis of microarray studies in detecting DE
genes. The results in this study would benefit microarray
gene expression studies because a large amount of micro-
array data are available in public repositories and unfortu-
nately the data quality are often overlooked. However, the
performance of the proposed models depends on not only
degree of sample quality but also the number of studies,
the number of genes, and sample sizes in the individual
studies. The methods for controlling FDR under multiple
testing would be another important aspect influencing
gene expression results. Further intensive investigation of
the topics would be the subject of future research.
The BRE models have the ability to allow for uncertainty

of the parameter estimates in the model. Because the clas-
sical RE models tended to estimate τ2g as being zero, the

variance of β̂gwere underestimated. The BRE models, in

contrast, used the marginal posterior distribution of τ2g for

β̂g estimation, which do not depend on the point estimate

of τ2g . The BRE models can in turn increase the fitness of
the models [48]. To illustrate, the precision was increased
in the BREwP6weighted-data models and the accuracy was
increased in the BREwP6weighted between-study variance
models as compared to the classical RE weighted models.
The BRE weighted models could be strengthened further
in future research with informative priors using prior
knowledge and historical information.
In real-world applications, BRE modeling in gene expres-

sion meta-analysis may be computationally intensive. To
illustrate, a Gibbs-based model requires approximately 6 h
per 10,000 gene set under supercomputers. A MH-based
model requires twice longer than a Gibbs-based model.
The computational time for a BRE model is highly

dependent on not only types of the model, but also com-
puter capacity. Computation time can indeed be another
concern for model selection.

Conclusions
This study applies sample-quality weights to adjust the
study heterogeneity in the random-effects meta-analysis
models. This meta-analytic approach can increase preci-
sion and accuracy of the classical and Bayesian
random-effects models in gene expression meta-analysis.
However, the performance of the weighted models var-
ied depending on data feature, levels of sample quality,
and adjustment of parameter estimates.
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samples. The DE genes were detected across the three Bayesian meta-
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