
Jia et al. BMC Bioinformatics          (2018) 19:512 
https://doi.org/10.1186/s12859-018-2495-5

METHODOLOGY ARTICLE Open Access

Analyzing the similarity of samples and
genes by MG-PCC algorithm, t-SNE-SS and
t-SNE-SG maps
Xingang Jia1*, Qiuhong Han2 and Zuhong Lu3

Abstract

Background: For analyzing these gene expression data sets under different samples, clustering and visualizing
samples and genes are important methods. However, it is difficult to integrate clustering and visualizing techniques
when the similarities of samples and genes are defined by PCC(Person correlation coefficient) measure.

Results: Here, for rare samples of gene expression data sets, we use MG-PCC (mini-groups that are defined by PCC)
algorithm to divide them into mini-groups, and use t-SNE-SSP maps to display these mini-groups, where the idea of
MG-PCC algorithm is that the nearest neighbors should be in the same mini-groups, t-SNE-SSP map is selected from a
series of t-SNE(t-statistic Stochastic Neighbor Embedding) maps of standardized samples, and these t-SNE maps have
different perplexity parameter. Moreover, for PCC clusters of mass genes, they are displayed by t-SNE-SGI map, where
t-SNE-SGI map is selected from a series of t-SNE maps of standardized genes, and these t-SNE maps have different
initialization dimensions. Here, t-SNE-SSP and t-SNE-SGI maps are selected by A-value, where A-value is modeled from
areas of clustering projections, and t-SNE-SSP and t-SNE-SGI maps are such t-SNE map that has the smallest A-value.

Conclusions: From the analysis of cancer gene expression data sets, we demonstrate that MG-PCC algorithm is able
to put tumor and normal samples into their respective mini-groups, and t-SNE-SSP(or t-SNE-SGI) maps are able to
display the relationships between mini-groups(or PCC clusters) clearly. Furthermore, t-SNE-SS(m)(or t-SNE-SG(n)) maps
are able to construct independent tree diagrams of the nearest sample(or gene) neighbors, where each tree diagram
is corresponding to a mini-group of samples(or genes).
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Background
With the rapid development of high-throughput biotech-
nologies, we were easily able to collect a large amount
of gene expression data with many subjects of biology
or medicine [1]. Here, we aimed at these gene expres-
sion data sets that came from tumoral and normal sam-
ples, where these data sets were often characterized by
mass genes but with relatively small amounts of sam-
ples, their rows were corresponding to genes, and columns
were representing samples [2]. For these gene expres-
sion data sets, they usually incorporated several thou-
sands of probes associated with more and less relevance
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for cancers [3]. Thus, the filtering approaches applied
to each probe before data analysis, with the aim to find
differentially expressed genes, such as T-statistics, Sig-
nificance Analysis, Adaptive Ranking, Combined Adap-
tive Ranking and Two-way Clustering [4, 5]. For samples
of gene expression data sets, a major challenge was
how to resolve their subtypes, and compare in differ-
ent diseased states [4, 6]. Much work had been done
on exploratory subtypes of cancers, such as Hierarchi-
cal clustering, K-means, penalised likelihood methods
and the random forest [7, 8]. Moreover, to deter-
mine the intrinsic dimensionality of genes, the cluster-
ing analysis was used to search for patterns and group
genes into expression clusters that provided additional
insight into the biological function and relevance of
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genes that showed different expressions [9–13]. Further-
more, to display classification of genes(or samples) in a
meaningful way for exploration, presentation, and com-
prehension in diseased states and normal differentia-
tion, many dimension reduction techniques were used to
embed high-dimensional data for visualization in 2D(two
dimensional) spaces [14–17], and had been successful in
complementing clusters of Euclidean distance [14], such
as Hierarchical clustering dendrograms, PCA(principal
component analysis), t-SNE, heat maps, and network
graphs [14–18].
For samples of gene expression data sets, their dimen-

sionality often resulted in their different types to be
isometric by Euclidean distance [9]. Thus, in the pro-
cess of samples and genes clustering analysis, PCC com-
monly used also [10, 12, 13]. The simplest way to think
about PCC was to plot curves of two genes, with PCC
telling us how similar the shapes of their two curves
were. But for PCC clusters of gene expression data,
many projection techniques gave them poor visualiza-
tions usually [16]. To efficiently map clusters of PCC,
PCC had been defined by transformed genes, such as
PCCF(PCC of F-points) and PCC-MCP(PCC of multiple-
cumulative probabilities) [19, 20]. Moreover, PCA-F and
t-SNE-MCP-O gave good visualizations for clusters of
PCCF and PCC-MCP, respectively. However, for PCC
clusters of the original gene expression points, PCA-
F and t-SNE-MCP-O gave them poor visualizations
also [19, 20].
Here, for samples of gene expression data sets, we used

MG-PCC algorithm to divide them into different mini-
groups, where the similarities of samples were defined
by PCC measure, and the idea of MG-PCC algorithm is
that the nearest neighbors should be in the same mini-
groups. That is, for any sample of a mini-group, its nearest
neighbor was in the mini-group also. Moreover, we used t-
SNE-SSPmaps to display the relationships of mini-groups,
where t-SNE-SSP map was selected from a series of t-
SNE maps of standardized samples, these t-SNE maps
had different perplexity parameter, and the initialization
dimensions of these t-SNE maps were thirty. In t-SNE, the
perplexity might be viewed as a knob that sets the number
of effective nearest neighbors. It was comparable with the
number of nearest neighbors that was employed in many
manifold learners [21, 22].
Furthermore, for gene clusters that were generated from

PCC, we attempted to use t-SNE-SGI maps to display
them, where t-SNE-SGI maps were selected from a series
of t-SNE maps of standardized genes. Compared to t-
SNE-SSP maps, t-SNE-SGI map was selected from these
t-SNE maps that had the same perplexity parameter, but
different initialization dimensions, where the perplexity
parameter of these t-SNE maps were the dimensions of
genes. In fact, for gene expression data sets under different

samples, their genes were mass and dense, and the per-
formance of t-SNE with these data sets required a larger
perplexity.
Here, we used A-value to select the t-SNE-SSP and t-

SNE-SGI maps, where A-value was modeled from areas of
clustering projections, and a t-SNE map was selected as
t-SNE-SSP(or t-SNE-SGI) if its A-value was the smallest
compared to others. Furthermore, for clusters with differ-
ent clustering number, their t-SNE-SGI maps might come
from the different t-SNE maps.
To evaluate the reliability of the MG-PCC and t-SNE-

SSP, we applied them to gene expression data sets of lung
cancers [23, 24]. Results showed that MG-PCC algorithm
was able to put tumor and normal samples into their
respective mini-groups, and t-SNE-SSP maps gave these
mini-groups clear boundaries also, which helped us to
mine the subtypes of cancers. Moreover, for PCC clusters
of genes, t-SNE-SGI maps gave them better visualizations
compared to t-SNE of the original and normalized genes,
which made clustering and visualizing techniques better
integration. Furthermore, for the nearest sample(or gene)
neighbors, t-SNE-SS(m)(or t-SNE-SG(n)) maps were able
to give them independent tree diagrams, where each tree
diagram was corresponding to a mini-group of samples
(or genes).

Materials andmethods
Data and data source
The first data set GDS3837 provides insight into potential
prognostic biomarkers and therapeutic targets for non-
small cell lung carcinoma, where it has 54674 genes, 60
normal and 60 tumor samples that are taken from non-
smoking females [23, 24]. The second data set GDS3257
provides insight into the molecular basis of lung car-
cinogenesis induced by smoking, where it has a total of
22283 genes, and contains 107 samples that are taken
from former, current and never smokers [23, 24], where
GDS3837 and GDS3257 can be downloaded from NCBI’s
GEO Database.
Here, we firstly use GDS3257 andGDS3837 to construct

5 matrixes, where Ak(k=1, 2, 3, 4 and 5) is the k-th matrix,
the i-th row of Ak represents the i-th gene, the j-th col-
umn represents the j-th sample, genes of Ak are filtered
by T-test(Hypothesis testing for the difference in means
of two types of samples), and the detail of Ak is summa-
rized in Table 1. Then, 5 sample data sets are constructed
by Ak , where data-k(k=1, 2, 3, 4 and 5) is the k-th sam-
ple data set, and data-k is transposed matrix of Ak . And
then, 5 gene data sets are constructed by Ak , where data-
(k+5)(k=1, 2, 3, 4 and 5) is the k-th gene data set, and
data-(k+5) only contains tumor samples of Ak . That is,
Ak is represented by (Bk ,Ck), and data-(k+5)(k=1, 2, 3, 4
and 5) is Bk , where Bk and Ck contains tumor and normal
samples, respectively.
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Table 1 The details of Ak(k=1, 2, 3, 4 and 5)

Ak NO. of NO. of Tumor Control P-value
genes samples samples(Bk) samples(Ck) P-value

A1 1355 31 16 TN-smokers 15 NN-smokers <10−5

(GDS3257) (GDS3257)

A2 1129 36 18 TF-smokers 18 NF-smokers <10−5

(GDS3257) (GDS3257)

A3 2055 40 24 TC-smokers 16 NC-smokers <10−5

(GDS3257) (GDS3257)

A4 817 76 18 TF-smokers, 18NF-smokers <10−5

24 TC-smokers 16NC-smokers <10−5

(GDS3257) (GDS3257) ∗
A5 1739 120 60 TN-smokers 60 NN-smokers <10−12

(GDS3837) (GDS3837)

TN-smokers: tumor never-smokers; TF-smokers: tumor former-smokers; TC-smokers:
tumor current-smokers; NN-smokers: normal never-smokers; NF-smokers: normal
former-smokers; NC-smokers: normal current-smokers. ∗ was that P-value of the
mixing samples was less than <10−5 also

Table 2 Statistics of the mini-groups of 5 sample data sets

data-i Algorithm:
MG-

NO. of
mini-groups

NO. of
misjudged
tumor
samples

NO. of
misjudged
normal
samples

data-1 PCC 4 0 0

Euclidean-1 3 0 0

Euclidean-2 4 0 0

Euclidean-3 4 0 0

data-2 PCC 7 0 3

Euclidean-1 6 0 3

Euclidean-2 6 0 2

Euclidean-3 7 0 0

data-3 PCC 5 0 0

Euclidean-1 5 0 0

Euclidean-2 4 0 0

Euclidean-3 6 0 0

data-4 PCC 13 0 1

Euclidean-1 13 0 1

Euclidean-2 12 0 1

Euclidean-3 10 0 0

data-5 PCC 23 2 2

Euclidean-1 23 2 3

Euclidean-2 24 2 2

Euclidean-3 24 0 4

Euclidean-1: Euclidean distance of O-samples; Euclidean-2: Euclidean distance of
the standardized samples; Euclidean-3: Euclidean distance of N-samples

Table 3 Statistics of Accuracy, F-Measure, RI and NMI of S-genes,
N-genes and O-genes

Data NO. of clusters Genes Accuracy F-Measure RI NMI

data-6 6 S-genes 0.956 0.956 0.323 0.888

7 S-genes 0.794 0.788 0.092 0.672

8 S-genes 0.803 0.799 0.094 0.660

6 N-genes 0.321 0.267 -0.084 0.422

6 O-genes 0.318 0.263 -0.081 0.240

data-7 6 S-genes 0.901 0.897 0.237 0.744

7 S-genes 0.825 0.814 0.119 0.742

8 S-genes 0.811 0.813 0.096 0.683

6 N-genes 0.305 0.271 -0.079 0.487

6 O-genes 0.308 0.264 -0.079 0.284

data-8 5 S-genes 0.956 0.956 0.293 0.911

6 S-genes 0.947 0.947 0.257 0.782

7 S-genes 0.937 0.937 0.181 0.733

8 S-genes 0.884 0.882 0.137 0.718

6 N-genes 0.275 0.251 -0.084 0.540

6 O-genes 0.281 0.249 -0.089 0.340

data-9 5 S-genes 0.977 0.977 0.503 0.842

6 S-genes 0.827 0.830 0.126 0.814

7 S-genes 0.947 0.947 0.374 0.741

8 S-genes 0.962 0.962 0.575 0.693

9 S-genes 0.893 0.891 0.224 0.692

8 N-genes 0.258 0.245 -0.070 0.442

8 O-genes 0.229 0.225 -0.086 0.3043

data-10 3 S-genes 0.901 0.897 0.132 0.902

4 S-genes 0.829 0.824 0.083 0.807

5 S-genes 0.716 0.669 0.054 0.601

6 S-genes 0.779 0.776 0.115 0.714

7 S-genes 0.895 0.894 0.092 0.683

8 S-genes 0.593 0.623 -0.008 0.674

3 N-genes 0.299 0.290 -0.087 0.637

3 O-genes 0.277 0.203 -0.081 0.088

Methods
Here, we use Xi to represent the i-th sample of data-
k(k=1, 2, 3, 4 and 5), and Yj to represent the j-th gene of
data-(k+5). That is, Xi is the i-th row of data-k(k=1, 2, 3,
4 and 5), and Yj is the j-th row of data-(k+5), where

{
Xi = {xi1, xi2, · · · , xim},
Yj = {yj1, yj2, · · · , yjn}. (1)

S-points
Here, Xi and Yj are standardized into SSi and SGj, where
SSi and SGj are called as S-sample and S-gene of Xi and Yj
respectively, and
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Fig. 1 The boundary-lines of data-5. The samples of data-5 were divided into 5 and 3 clusters by K-means with PCC. a The boundary-lines of 5
clusters. The X-axis represented the first projections(FP) of t-SNE-SS(20). The Y-axis represented the second projections(SP) of t-SNE-SS(20). b The
boundary-lines of 3 clusters. The X-axis represented the first projections(FP) of t-SNE-SS(30). The Y-axis represented the second projections(SP) of
t-SNE-SS(30)

⎧⎪⎪⎪⎪⎨
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SSi={ssi1, ssi2, · · · , ssim}, ssit =xit − EXi√
DXi

, t=1, 2, · · · ,m,

EXi =

m∑
l=1

xil

m
,DXi =

m∑
l=1

(xil − EXi)2

m − 1
.

(2)

MG-PCC algorithm
Here, for Xj1 and Xj2, they are used to construct the first
mini-group, where

ρ(Xj1,Xj2) = max
1≤i<j≤u

{ρ(Xi,Xj)}, (3)

ρ(Xi,Xj) is PCC between Xi and Xj, and u is the number
of samples. For Xj3, it is put into the first mini-group if it
satisfies

max{ρ(Xj3,Xj1), ρ(Xj3,Xj2)} = max
1≤i≤u

{ρ(Xi,Xj3)}. (4)

When the first mini-group contains (t − 1)(t > 3)
samples, Xjt is put into the first mini-group if it satisfies

max
1≤i≤u,i�=jt

{ρ(Xjt ,Xi)} = max{ρ(Xjt ,Xj1), ρ(Xjt ,Xj2), · · · ,
ρ(Xjt ,Xj(t−1))}, (5)

where Xj1, Xj2, · · · , Xj(t−1) belong to the first mini-group.
Continuously, the first mini-group is completely built until
no sample satisfies Eq. (5).
The remaining samples repeat above step until all

mini-groups are completely built. For a mini-group,
it is completely built if no sample satisfies Eqs. (4)
or (5), that is, a mini-group contains two genes at
least. Similarly, MG-Euclidean algorithm can be used
to construct mini-group also, where the algorithm
uses Euclidean distance to define the similarities of
samples.

The A-value
For samples of each mini-group, we plot the boundary
of their projections by a closed line, where the closed
line is called as boundary-line of the mini-group, the
boundary-line forms a convex hull of their projections,
and the area of the convex hull is called as A-value
of the mini-group. Here, we use A-value to describe
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the consistency between samples and their projections,
where

A =
∑v

i=1 ai
a

, (6)

ai is A-value of the i-th mini-group, a is A-value of the
data set, v is the number of mini-groups.
In general, for adjacent mini-groups, there is often some

overlap for their convex hulls. Thus, A-value is smaller, the
consistency between points and projections is more valid.

The t-SNE-SSP and t-SNE-SGI
Using t-SNE requires tuning some parameters, notably
the perplexity and initialization dimension. Although t-
SNE results are robust to the settings of parameters, in
practice, we still have to interactively choose parameters
by visually comparing results under multiple settings. For
mini-groups and clusters of samples that are generated
from PCC, we empirically validate that t-SNE maps of
the standardized samples with an appropriate perplexity
can clearly display them, where the initialization dimen-
sion of these t-SNE maps is thirty. But for PCC clusters
of genes, t-SNE maps of S-genes with an appropriate ini-
tialization dimension can give them good visualizations,
where the perplexity parameter of these t-SNEmaps is the
dimensions of genes.
Here, for mini-groups and clusters of samples that are

generated from PCC, their t-SNE-SSP map is selected
from a series of t-SNE-SS(k) maps by A-value, where t-
SNE-SS(k) is t-SNE map of the standardized samples, its
initialization dimensions are thirty, its perplexity param-
eter is k, and the value of k ranges from 3 to 30. That
is, for t-SNE-SS(t), it is selected as t-SNE-SSP if its A-
value is the smallest compared to other t-SNE-SS(k). Sim-
ilarly, for PCC clusters of genes, their t-SNE-SGI map is
selected from a series of t-SNE-SG(i) maps by A-value
also, where t-SNE-SG(i) is t-SNE map of S-genes, its per-
plexity parameter of these t-SNE maps is the dimensions
of genes, its initialization dimensions is i, the value of i
ranges from 3 to the dimensions of genes.

Accuracy, F-Measure, RI and NMI
For t-SNE maps, since they are able to give good visu-
alizations for clusters of Euclidean distance, they can
be successful in complementing these PCC clusters
that are relative consistency with Euclidean ones. Here,
we use Accuracy, F-Measure, RI(Rand index) and
NMI(Normalized mutual information) [25, 26] (http://
nlp.stanford.edu/IR-book/html/htmledition/evaluation-
of-clustering-1.html) to evaluate the consistency of clus-
ters between PCC and Euclidean distance, where clusters
of Euclidean distance are seen as the gold standard of
genes. In general, Accuracy is a simple and transparent
evaluation measure, RI penalizes both false positive and

false negative decisions during clustering, F-Measure
in addition supports differential weighting of these two
types of errors, and NMI can be information theoretically
interpreted, where the detailed explanation of these four
criteria are explained see in [25, 26], (http://nlp.stanford.
edu/IR-book/html/htmledition/evaluation-of-clustering-
1.html) and their matlab codes are available at Additional
file 1. Furthermore, the higher value of these four criteria
means that the more consistency of clusters between PCC
and Euclidean distance.

Results
The reliability of mini-groups
To test the reliability of mini-groups, we applied MG-
PCC and MG-Euclidean algorithms to 5 sample data sets,
whereMG-Euclidean applied to the standardized samples,
O-samples and N-samples simultaneously, O-samples and
N-samples were the original and normalized samples
respectively, and results of mini-groups were summarized
in Table 2. Here, for a mini-group, it was regarded as
tumor group if its tumor samples were more than nor-
mal ones, otherwise, it was a normal one. Moreover, for a
tumor(or normal) sample, it was misjudged if it was put
into a normal(or tumor) group. For MG-PCC and MG-
Euclidean, Table 2 showed that they correctly judged all
samples of data-1 and data-3, and only a few samples of
data-2, data-4 and data-5 were misjudged. For instance,
only 2 normal and 2 tumor samples of data-5 were mis-
judged byMG-PCC algorithm, where data-5 contained 60
normal and 60 tumor samples. That is, MG-PCC algo-
rithmwas able to put tumor and normal samples into their
respective mini-groups, which could help us to compare
in different diseased states and normal samples.

The clustering feature of S-genes
Here, for data-6, 7, 8, 9 and 10, their S-genes, N-genes
and O-genes were divided into clusters by K-means with
Euclidean distance and PCC, respectively, where N-genes
and O-genes were the original and normalized genes,
respectively. Then, Accuracy, F-Measure, RI and NMI
were used to demonstrate the consistency of clusters
between PCC and Euclidean distance, where clusters of
Euclidean distance were seen as the gold standard of
genes. For comparison, Accuracy, F-Measure, RI and NMI
of these PCC clusters were summarized in Table 3. For
clusters of any data set, Table 3 showed that their Accu-
racy, F-Measure, RI and NMI of S-genes were far more
than N-genes and O-genes. That is, for S-genes, their
clusters of PCC and Euclidean were more consistent com-
pared to O-genes and N-genes.
In general, for data with a normal distribution, the pat-

terns revealed by the clusters under PCC and Euclidean
roughly agreed with each other. But for O-genes and
N-genes of complex gene expression data sets, results

http://nlp.stanford.edu/IR-book/html/htmledition/evaluation-of-clustering-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/evaluation-of-clustering-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/evaluation-of-clustering-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/evaluation-of-clustering-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/evaluation-of-clustering-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/evaluation-of-clustering-1.html
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Fig. 2 The A-values of t-SNE-SS(k) and t-SNE-SG(i) maps. a The A-value of t-SNE-SS(k) maps of data-4. The A-value of 5 PCC clusters were displayed
by blue lines, and ones of normal and tumor samples were displayed by red lines. b The A-value of t-SNE-SS(k) maps of data-5. The A-value of 5 PCC
clusters were displayed by blue lines, and ones of normal and tumor samples were displayed by red lines. c The A-value of t-SNE-SG(i) maps of
data-7. The A-value of 5 PCC clusters were displayed by blue lines, and ones of 3 PCC clusters were displayed by red lines. d The A-value of
t-SNE-SG(i) maps of data-9, The A-value of 5 PCC clusters were displayed by blue lines, and ones of 3 PCC clusters were displayed by red lines

showed that their PCC and Euclidean clusters had signifi-
cant differences.

The reliability of A-value
Here, we used clusters of data-5 to exemplify that A-value
was able to quantify the validity of projecting maps, where
samples of data-5 were divided into 5 and 3 clusters by
K-means with PCC. For 5 and 3 clusters of data-5, they
were displayed on t-SNE-SS(20) and t-SNE-SS(30) maps
(Fig. 1(a) and 1(b)) respectively, and the boundary-lines of
clustering projections were showed on Fig. 1(a) and 1(b)
also. For t-SNE-SS(30) map of data-5, it gave good visu-
alizations for 3 clusters (Fig. 1(b)), but t-SNE-SS(20) had
slightly intermixing for 5 clusters (Fig. 1(a)). Moreover, for
the boundary-lines of t-SNE-SS projections, 5 clusters had
more significant overlaps than ones of 3 clusters, while A-
value increased with area of overlap. That is, A-value was
larger, the consistency between points and projections
was more invalid.

Selecting t-SNE-SSPmaps by A-value
Here, for data-4 and data-5, their O-samples were divided
into 5 clusters by K-means with PCC, respectively. Then,
for clustering results of data-4 and data-5, their A-values

of different t-SNE-SS(k) maps were obtained by Eq. (6),
where these A-values were showed by blue lines in Fig. 2
(a) and (b), respectively. For different t-SNE-SS(k) maps,
Fig. 2 (a) and (b) showed that their A-values had sig-
nificant difference, A-values of t-SNE-SS(20) and t-SNE-
SS(25) were the minimum for 5 clusters of data-4 and
data-5, respectively. That is, t-SNE-SS(20) and t-SNE-
SS(25) were the optimal 2D maps for 5 clusters of data-4
and data-5, respectively.
Moreover, for 2 clusters of data-4 and data-5 accord-

ing to normal and tumor samples, their A-values of
different t-SNE-SS(k) maps were showed in Fig. 2 (a)
and (b) also, where these A-values were showed by
red lines. From Fig. 2 (a) and (b), t-SNE-SS(30) was
not the optimal 2D maps for any data set also. For
2 clusters of data-5, A-values of its t-SNE-SS(30) was
0.58779, while t-SNE-SS(18) was 0.52373. That is, t-SNE-
SS(18) was more appropriate for displaying 5 clusters of
data-5.

Selecting t-SNE-SGI maps by A-value
Here, for gene clusters of data-7 and data-9, their A-values
of t-SNE-SG(i) maps were showed in Fig. 2 (c) and (d)
respectively, where O-genes of each data set were divided
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Fig. 3 The t-SNE-SSP maps of tumor and normal samples of data-1, 2, 3 and 4. The samples were colored according to their population
membership. The X-axis represented the first projections(FP) of t-SNE-SSP. The Y-axis represented the second projections(SP) of t-SNE-SSP. a The
t-SNE-SSP map of tumor and normal samples of data-1. b The t-SNE-SSP map of tumor and normal samples of data-2. c The t-SNE-SSP map of tumor
and normal samples of data-3. d The t-SNE-SSP map of tumor and normal samples of data-3

into 3 and 5 clusters by K-means with PCC. Figure 2 (c)
and (d) showed that t-SNE-SG(m) maps were not the opti-
mal 2D maps for any clustering result, t-SNE-SG(4) maps
were t-SNE-SGI maps of 3 clusters of data-7 and data-
9, t-SNE-SG(7) map was t-SNE-SGI maps of 5 clusters of
data-7, and t-SNE-SG(8) map was t-SNE-SGI maps of 5
clusters of data-9, respectively.
By Accuracy, F-Measure, RI and NMI, we demon-

strated that PCC and Euclidean clusters of S-genes
were relative consistent, which enabled t-SNE-SG(i) maps
for displaying PCC clusters. But for t-SNE map with
the randomly choosing parameters, it could give poor
visualization for PCC clusters, which could lead to
misinterpretation of clusters. Here, we used A-value
to quantify the quality of t-SNE-SG(i) maps, which
enabled t-SNE-SGI maps to project genes of the same
clusters together, and neighbor clusters in adjacent
regions.

The biological reliability of t-SNE-SSPmaps
Here, we used data-1, 2, 3 and 4 to assess the biological
reliability of t-SNE-SSP maps. According to population
membership of samples, these four data sets were mapped
on t-SNE-SSP maps respectively (Fig. 3), where t-SNE-SSP

maps of data-1, 2, 3 and 4 were t-SNE-SS(20), t-SNE-
SS(19), t-SNE-SS(30) and t-SNE-SS(18), respectively. In
fact, for tumor and normal samples of different pop-
ulations, their biological partitioning were not always
obvious from those differentially expressed genes, but
Fig. 3 clearly showed that t-SNE-SSP maps were able to
project samples of the same populations into the same
together, which could help us to understand the relation-
ships between different populations.

The consistency between MG-PCC algorithm and
t-SNE-SSPmaps
Here, for mini-groups of data-1, 2, 3 and 4, they were
used to assess the consistency between MG-PCC algo-
rithm and t-SNE-SSP maps, where and data-1, 2, 3 and 4
were divided into 4, 7, 5 and 13 mini-groups by MG-PCC
algorithm, respectively. According to mini-group mem-
bership of samples, these four data sets were mapped
on t-SNE-SSP maps (Fig. 4), where t-SNE-SSP maps of
data-1, 2, 3 and 4 were t-SNE-SS(6), t-SNE-SS(8), t-SNE-
SS(12) and t-SNE-SS(12), respectively. From Fig. 4(a), (b)
and (c), t-SNE-SSP maps of data-1, 2, and 3 were able
to project samples of the same mini-groups together. But
for mini-groups of data-4, the seventh mini-group had
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Fig. 4 The t-SNE-SSP maps of mini-groups of data-1, 2, 3 and 4. These mini-groups were generated from MG-PCC algorithm, where samples were
colored according to their mini-group memberships. The X-axis represented the first projections(FP) of t-SNE-SSP. The Y-axis represented the
second projections(SP) of t-SNE-SSP. a The t-SNE-SSP map of 4 mini-groups of data-1. b The t-SNE-SSP map of 7 mini-groups of data-2. c The
t-SNE-SSP map of 5 mini-groups of data-3. d The t-SNE-SSP map of 13 mini-groups of data-4

slightly intermixing with others (Fig. 4(d)), where the sam-
ples of the seventh mini-group were marked by black
points. In fact, for 23 mini-groups of data-5 that were
generated from MG-PCC algorithm, their relationships
were not obvious displayed by their t-SNE-SSP map also.
That is, the exhibition effects of t-SNE-SSP maps might
weaken when the number of mini-groups was relatively
large.

Comparison of t-SNE-SSP and PCA-S
Here, for tumor and normal samples of data-5, they
were mapped on PCA-S and t-SNE-SSP maps (Fig. 5
(a) and (b)) according to their population memberships,
where PCA-S is PCA of samples, and t-SNE-SSP map
of data-5 were t-SNE-SS(18). Then, samples of data-
5 were divided into 4 clusters by K-means with PCC,
and the clustering result was overlaid on PCA-S and t-
SNE-SSP(t-SNE-SS(19)) maps (Fig. 5 (c) and (d)) also.
For biological classifications and PCC clusters of data-
10, Fig. 5 showed that t-SNE-SSP maps provided them
good 2D projections (Fig. 5 (b) and (d)), but PCA-S
maps had significant intermixing for them (Fig. 5 (a)
and (c)). For biological classifications and PCC clusters
of other data sets in this paper, PCA-S gave them poor
visualization also.

In fact, for the optimization criterion of PCA, the rela-
tionship of distant points was able to depict as accurately
as possible, while small inter-point distances might be
distorted [14]. Moreover, there might be no single linear
projection that gave a good view for most gene expression
data [14]. Thus, for complex gene expression data sets,
many linear projection methods might fail.

The reliability of t-SNE-SGI maps
For 3, 4, 5 and 6 clusters of data-9 that were generated
from K-means with PCC, they were shown on t-SNE-SGI
maps (Fig. 6), where t-SNE-SGI maps of 3, 4, 5 and 6
clusters were t-SNE-SG(4), t-SNE-SG(5), t-SNE-SG(8) and
t-SNE-SG(9), respectively. Figure 6 showed that t-SNE-
SGI gave the relatively clear 2D projections for 3, 4 and
5 clusters, but had significant intermixing for 6 clusters.
That is, t-SNE-SGI maps might weaken when the number
of clusters was relatively large.
Compared to K-means clustering analysis, MG-PCC

algorithm does not estimate the number of clusters. But
for genes, MG-PCC algorithm generates a large num-
ber of mini-groups, which can make genes with the
similar biological function into different mini-groups.
Thus, MG-PCC algorithm is not appropriate to cluster
genes.
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Fig. 5 The t-SNE-SSP and PCA-S maps of data-5. The X-axis represented the first projections(FP) of t-SNE-SSP(or PCA-S). The Y-axis represented the
second projections(SP) of t-SNE-SSP(or PCA-S). The samples were colored according to their cluster membership. a PCA-S map of tumor and normal
samples. b The t-SNE-SSP map of tumor and normal samples. c PCA-S map of 4 clusters, where clusters were generated from K-means with PCC. d
The t-SNE-SSP map of 4 clusters, where clusters were generated from K-means with PCC

Comparison of t-SNE-SGI, t-SNE-N and t-SNE-Omaps
Here, O-genes data-7 and data-8 were firstly divided into
3 clusters by K-means with PCC, and then these clus-
tering results were overlaid on t-SNE-SGI, t-SNE-N and
t-SNE-O maps (Fig. 7), where t-SNE-N and t-SNE-O
maps were t-SNE maps of O-genes and N-genes respec-
tively, and their initialization dimensions were the same as
t-SNE-SGI. Figure 7 showed that t-SNE-SGI provided
these clustering results good 2D projections, but t-SNE-N
and t-SNE-O maps had significant intermixing.
For PCC clusters of data-6, 9 and 10, when t-SNE-N and

t-SNE-O maps gave them poor visualizations also. The
reason was that PCC and Euclidean clusters of O-genes
and N-genes had significant differences.

Constructing the nearest sample neighbor map by
t-SNE-SS(m)
For gene expression data sets under samples, the hier-
archical clustering were used to display their sample
neighbors usually [27], but the method was likely to
cause loose sample neighbors. By D-plots [19], t-SNE-
SS(m) maps were able to generate more valid gene
neighbors compared to t-SNE-SSP, where m was the

dimension of samples. Here, we constructed of the
nearest sample neighbors by t-SNE-SS(m) map, where
sample neighbors were defined by PCC. For sample
neighbors of data-1, 2, 3 and 4, they were displayed on
Fig. 8, where the nearest gene neighbor were lined by
red line.
Figure 8 showed that sample neighbors had created

several independent tree diagrams. In fact, each tree dia-
gram was corresponding to a mini-group of samples.
Thus, the combination of t-SNE-SS(m) map and MG-
PCC algorithm was able to help us to search subtypes of
samples.

Constructing the nearest gene neighbor map by
t-SNE-SG(n)
In fact, for t-SNE method that had used to construct gene
neighbors, where the initialization dimension of these
t-SNE was dimension of genes [14, 20]. Here, we con-
structed of the nearest gene neighbors by t-SNE-SG(n),
where gene neighbors were defined by PCC, and we
focused our attention on data-6. For gene neighbors of
data-1, they were displayed on Fig. 9(a). From Fig. 9(a),
gene neighbors had created many independent tree



Jia et al. BMC Bioinformatics          (2018) 19:512 Page 10 of 13

Fig. 6 The t-SNE-SGI maps of data-9. The genes of data-9 were divided into 3, 4, 5 and 6 clusters by K-means with PCC, where genes were colored
according to their cluster membership. The X-axis represented the first projections(FP) of t-SNE-SGI. The Y-axis represented the second
projections(SP) of t-SNE-SGI. a The t-SNE-SGI map of 3 clusters. b The t-SNE-SGI map of 4 clusters. c The t-SNE-SGI map of 5 clusters. d The t-SNE-SGI
map of 6 clusters

diagrams also, and these tree diagrams were correspond-
ing to mini-groups that were generated from MG-PCC
algorithm.
Based on GDS3837, GDS3257 and GDS3054, nine dif-

ferentially expressed genes that were associated with lung
cancer had been extracted, where these 9 genes that
were smoking independent, and they were AGER, CA4,
EDNRB, FAM107A, GPM6A, NPR1, PECAM1, RASIP1
and TGFBR3 [16]. Here, we used t-SNE-SG(n) map to
display these nine mini-groups that contained nine spe-
cific genes (Fig. 9(b)). From Fig. 9(b), these nine indepen-
dent tree diagrams might help us to search correlation
genes.

Discussion
For samples of gene expression data sets of cancers, there
are no clear boundary between subtypes of samples usu-
ally [7]. The reason is that the high dimensions of samples
often results in the different subtypes to be isometric
[9]. Here, we use MG-PCC algorithm to divide samples
into mini-groups, and results show that the algorithm
can put tumor and normal samples into their respec-
tive mini-groups. In fact, MG-PCC algorithm puts the
nearest neighbors in the same mini-groups, which can

distinguish the inconspicuous differences of different sub-
types of samples. However, when MG-PCC algorithm
applies genes, it generates a large number of mini-groups.
That is, for genes with similar expression patterns, they
may be put to different mini-groups, which make diffi-
cult to group genes with the similar biological function
together. The reason is that MG-PCC algorithm does not
presuppose the number of mini-groups, and the similar
genes are not necessarily the nearest neighbors. More-
over, for the large number of mini-groups, any dimension
reduction technique may give messy visualizations for the
entire data set. Thus, MG-PCC algorithm is not appropri-
ate to divide genes.
To efficiently display mini-groups of samples that are

generated from MG-PCC algorithm, we firstly verify that
PCC and Euclidean clusters of the standardized samples
are more consistent compared to the original and nor-
malized ones, and PCC of the standardized samples are
the same as the original and normalized ones. Since t-
SNE maps have been successful in displaying clusters of
Euclidean distance, t-SNE maps of the standardized sam-
ples can give good visualizations for mini-groups also.
However, for t-SNE maps of the standardized samples,
they have significant difference for different parameters,
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Fig. 7 The t-SNE-SGI, t-SNE-N and t-SNE-O maps of data-7 and data-8. The genes of data-7 and data-8 were divided into 3 clusters by K-means with
PCC, where genes were colored according to cluster membership. The X-axis represented the first projections(FP) of t-SNE. The Y-axis represented
the second projections(SP) of t-SNE. a The t-SNE-SGI map of 3 clusters of data-7. b The t-SNE-N map of 3 clusters of data-7. c The t-SNE-SGI map of 3
clusters of data-8. d The t-SNE-O map of 3 clusters of data-8

Fig. 8 The nearest sample neighbors maps. The X-axis represented the first projections(FP) of t-SNE-SS(m). The Y-axis represented the second
projections(SP) of t-SNE-SS(m). The nearest gene neighbor were lined by red line. a The nearest sample neighbors of data-1. bThe nearest sample
neighbors of data-2. c The nearest sample neighbors of data-3. d The nearest sample neighbors of data-4
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Fig. 9 The nearest gen neighbor maps. The X-axis represented the first projections(FP) of t-SNE-SG(n). The Y-axis represented the second
projections(SP) of t-SNE-SG(n). The nearest gene neighbor were lined by red line. a The nearest gene neighbors of data-6. bThe nearest neighbors of
9 specific genes that were smoking independent

andmost of them give poor visualizations for mini-groups
also. To select the optimal t-SNE maps of mini-groups,
t-SNE-SSP are constructed secondly, where t-SNE-SSP
maps are selected from these t-SNE maps of the standard-
ized samples with different perplexity parameter. Results
show that that t-SNE-SSP maps give mini-groups of sam-
ples good visualizations, and give PCC clusters of sam-
ples good visualizations also. However, for t-SNE-SSP
maps, when we use them to display PCC clusters of
genes, they give fuzzy visualizations. The reason may be
that the dimensions of samples are far more than ones
of genes. To efficiently map PCC clusters of genes, t-
SNE-SGI maps are constructed, where t-SNE-SGI maps
are selected from these t-SNE maps of the standard-
ized genes with different initialization dimensions. By
several gene expression data sets of cancers, we verify
that SNE-SGI maps can give PCC clusters of genes good
visualizations. Furthermore, we use t-SNE-SS(m) and t-
SNE-SG(n) maps to display the nearest neighbor of sam-
ples and genes respectively, which make the relationships
between samples(or genes) easy to visualize and under-
stand. In total, for gene expression data sets of cancers,
these four types of t-SNE maps identify them easy and
intuitive.

Conclusion
In this article, we use MG-PCC algorithm to divide sam-
ples of gene expression data sets into mini-groups, and
t-SNE-SSP to display the relationships of these mini-
groups. Moreover, we provide t-SNE-SGI maps to display
PCC clusters of genes, and t-SNE-SS(m) and t-SNE-SG(n)
maps to display the nearest neighbor of samples and genes
respectively. In total, for MG-PCC algorithm and these
four types of t-SNE maps, they can help us to understand
the entire gene expression data sets when they coordinate
with each other.
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