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Abstract

Background: Biomedical literature is expanding rapidly, and tools that help locate information of interest are
needed. To this end, a multitude of different approaches for classifying sentences in biomedical publications according
to their coarse semantic and rhetoric categories (e.g., Background, Methods, Results, Conclusions) have been devised,
with recent state-of-the-art results reported for a complex deep learning model. Recent evidence showed that
shallow and wide neural models such as fastText can provide results that are competitive or superior to complex deep
learning models while requiring drastically lower training times and having better scalability. We analyze the efficacy
of the fastText model in the classification of biomedical sentences in the PubMed 200k RCT benchmark, and introduce
a simple pre-processing step that enables the application of fastText on sentence sequences. Furthermore, we
explore the utility of two unsupervised pre-training approaches in scenarios where labeled training data are limited.

Results: Our fastText-based methodology yields a state-of-the-art F1 score of .917 on the PubMed 200k benchmark
when sentence ordering is taken into account, with a training time of only 73 s on standard hardware. Applying
fastText on single sentences, without taking sentence ordering into account, yielded an F1 score of .852 (training time
13 s). Unsupervised pre-training of N-gram vectors greatly improved the results for small training set sizes, with an
increase of F1 score of .21 to .74 when trained on only 1000 randomly picked sentences without taking sentence
ordering into account.

Conclusions: Because of it’s ease of use and performance, fastText should be among the first choices of tools when
tackling biomedical text classification problems with large corpora. Unsupervised pre-training of N-gram vectors on
domain-specific corpora also makes it possible to apply fastText when labeled training data are limited.

Keywords: Natural language processing, Text classification, Neural networks, Word vector models, FastText, Scientific
abstracts

Background
Biomedical literature is vast and rapidly expanding. With
over 27 million articles currently in PubMed, it is increas-
ingly difficult for researchers and healthcare professionals
to efficiently search, extract and synthesize knowledge
from diverse publications. Technological solutions that
help users locate text snippets of interest in a quickly and
highly targeted manner are needed. To this end, a mul-
titude of different approaches for classifying sentences
in PubMed abstracts according to their coarse semantic
and rhetoric categories (e.g., Introduction/Background,
Methods, Results, Conclusions) has been devised. Many
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different methodological approaches to this task have
been described in literature, including naive Bayes [1–4],
support vector machines [2, 3, 5], Hidden Markov
models [6], Conditional Random fields (CRFs) [7–9], and
advanced, semi-automatic engineering of features [10].
Recently, a new state-of-the-art methodology for

the task of sequential sentence categorization in
PubMed abstracts based on a deep learning model
has been reported [11]. The model is based on a
sophisticated architecture with bi-directional Long
short-term memory (LSTM) layers applied to char-
acters and word tokens, taking sentence ordering in
the abstract into account. The authors demonstrate
superior results of this deep model on the established
NICTA-PIBOSO corpus [9, 11], as well as the
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newly created, larger PubMed 200k RCT benchmark
dataset [12].
Training deep neural networks on large text data is

often not trivial, since they require careful hyperparame-
ter optimization to provide good results, require the use
of graphics processor units (GPUs) for performant train-
ing, and often take a long time to train. Recent evidence
showed that shallow and wide neural models such as
the fastText model [13] based on token embeddings can
provide results that are competitive with complex deep
learning models while requiring drastically lower train-
ing times and having better scalability [13, 14] without
necessitating the utilization of GPUs.
In this work, we analyze the applicability of the fast-

Text model on the classification of biomedical sentences
in the PubMed 200k RCT benchmark. Specifically, we
demonstrate how simple corpus preprocessing can be
used to train fastText on sentence sequences instead
of singular sentences, and how such an approach can
yield state-of-the-art results while retaining very short
training times. Furthermore, we explore approaches of
semi-supervised learning, where models are pre-trained
through unsupervised training on predicting word con-
texts or sentence reconstruction tasks, and demonstrate
that unsupervised pre-training greatly improves clas-
sification quality when the labeled training data are
limited.

Methods
Datasets
PubMed 200k RCT is a new dataset derived from PubMed
that is intended as a benchmark for sequential sentence
classification. It is made up of two subsets, PubMed 200k
and PubMed 20k. PubMed 200k contains approximately
200,000 abstracts of randomized controlled trials (RCTs),
with a total of 2,2 million sentences. PubMed 20k is a
smaller version of the PubMed 200k dataset, containing
only 20,000 abstracts. Each sentence in the datasets is
labeled with one of five labels (‘objective’, ‘background’,
‘method’, ‘result’ or ‘conclusion’). The datasets are divided
into predefined training, validation and test data splits.
Details about the construction of the datasets and dataset
statistics can be found in [11].
To investigate if additional and more diverse training

data could further improve classification results, we also
created an extended corpus, where the training data of
the PubMed 200k dataset were augmented with addi-
tional structured abstracts derived from journals with a
medical focus indexed by PubMed. The training split of
this extended corpus contains 872,000 abstracts (com-
pared to only 190,000 abstracts in the training split of
PubMed 200k). Validation and test data for the extended
corpus remained the same as for the PubMed 200k
dataset.

All corpora were lower-cased and punctuation was
separated from words through added whitespace.
Statistics of all datasets are summarized in Table 1.

Neural embeddingmodels for n-gram embeddings
Recently introduced neural embedding word vector mod-
els are based on the so-called matrix factor models (some-
times also referred to as bi-linear models). The models are
flexible as they can be easily adapted to both supervised
and unsupervised learning, and can also be extended to
n-gram embedding problems by simply creating addi-
tional embeddings for encountered n-grams. Embedding
vectors are learned through a shallow neural network
with a single hidden layer. These embedding vectors are
learned implicitly, and collected in the weight matrix of
the hidden layer (Fig. 1).
To simplify the notation, we present below the

most general formalized form of these models, adapted
from [15]:

argmin
U,V

∑

S∈C
fS(UVιS). (1)

The goal of this optimization problem is to find the
parameter matrices U ∈ R

k×h,V ∈ R
h×|V| (V - vocab-

ulary, set of all words or n-grams) that minimize (1).
Learned embedding vectors will have dimension h and
will be stored as columns in the matrix V. S are either the
fixed-length context windows in the corpus C in the con-
tinuous bag-of-words (CBOW) model [16, 17], or entire
sentences in the sent2vec model. ιS ∈ 0, 1|V| (binary indi-
cator vector) is the bag-of-words encoding of S. In the case
of supervised learning k � |V| is the number of class
labels, analogously k = |V| in the unsupervised case. The
cost functions fs : Rk �→ R only depend on a single row of
its input matrix (as a result of UV), and will have different
forms depending on the learning task (we will detail this
aspect below).

Supervised versus unsupervised training
In the following sections we describe the application
of fully supervised learning as well as a mix of unsu-
pervised learning followed by supervised learning. In
the fully supervised training setup, a completely unini-
tialized embedding model was trained to predict labels

Table 1 |V| denotes vocabulary size. For train, validation and
test datasets, the number of abstracts followed and the number
of sentences (in parentheses) are shown

Dataset |V | Train Validation Test

PubMed 20k 68k 15k (180k) 2.5k (30k) 2.5k (30k)

PubMed 200k 331k 190k (2.2M) 2.5k (29k) 2.5k (29k)

Extended corpus 451k 872k (10,3M) 2.5k (29k) 2.5k (29k)
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Fig. 1 Schematic representation of the neural embedding model for sentences (supervised and unsupervised) consisting of two embedding layers
and a final softmax layer over k classes (for the supervised case). In the unsupervised case k = |V | and the softmax outputs the probability of the
target word (over all vocabulary, as in C-BOWmodel) given its context: fixed-length context for fastText and entire sentence context for sent2vec.
Independently of the training mode (e.g., supervised vs unsupervised) word embeddings are stored as columns in the weight matrix V of the first
embedding layer. Note that in the unsupervised case the rows of the weight matrix U of the second embedding layer represent the embeddings for
the “negative” words; these embeddings however are not used for the downstream machine learning tasks. In all instances the averaging of
embeddings of constituent tokens (ι̂S) is performed by fastText (sent2vec implementation is based on fastText)

and the resulting model was evaluated. In mixed setups,
an unsupervised pre-training step was used to gen-
erate models that would then be used as the basis
for supervised training in a second step. In unsuper-
vised learning, the model was trained to predict the
internal structure of the text, without requiring explicit
labels (i.e., ‘without supervision’). Such unsupervised
pre-training can induce useful representations of the
content of sentences so that downstream supervised
classification can potentially succeed with fewer training
examples.

Supervised n-grammodel of fastText
We used the fastText natural language processing library
for sentence classification of biomedical text [13]. The
methodology for sentence classification relies on the
supervised n-gram classification model from fastText,
where each sentence embedding is learned iteratively,

based on the n-grams that appear in it. To this end
each sentence is represented as a normalized bag of
n-grams that capture the local word order. The fast-
Text model can be seen as a shallow neural network
that derives its capabilities by scaling up the num-
ber of learnable vector embeddings of n-gram features
that are fed into the network. By adapting straight-
forwardly (1), we can represent this supervised clas-
sification model as a minimization of the negative
log-likelihood over the class labels problem, as shown
below:

argmin
U,V

− 1
N

∑

S∈C
yS log(fS(UVι̃S)). (2)

We note that yS is the label of the fixed-length context
S, k � |V| is the number of class labels, and ι̃S is the nor-
malized bag of features encoding of S (i.e.,

∑
x∈ι̃S

x = 1).
Despite the simplicity of the model, it was shown to be



Agibetov et al. BMC Bioinformatics          (2018) 19:541 Page 4 of 9

competitive or superior to many deep neural architectures
in text classification tasks [13], but also other tasks such as
knowledge-base completion [14], with training times and
resource requirements that are of often superior by orders
of magnitude.
The fastText library was downloaded from GitHub

(November 14, 2017) and compiled. For each experiment,
an exhaustive hyperparameter grid search was con-
ducted, hyperparameters considered were dimensionality
of the n-gram embedding (10, 20 and 50 dimensions),
word N-gram sizes (1, 2, 3 or 4 words), and number
of training epochs (between 1 and 8 training epochs
for 20k datasets and between 1 and 4 training epochs
for larger datasets). All other hyperparameters were
left at their default settings. All experiments were run
on a machine with the Ubuntu 16.04 operating sys-
tem, Intel Core i7-6700 4x3.40 Ghz processor and 32
GB RAM. Experiments were run in Jupyter notebooks
[18] under Python 3.6. The scikit-learn package [19]
was used for statistical analyses. Jupyter notebooks
used for the experiments are available on GitHub [20]
and include detailed information on hyperparamter
sweeps and performance for each hyperparameter
setting.
We investigated classification quality based on F1

scores weighted by the support of each label (i.e.,
how frequent each label occurred in the dataset).
The scikit-learn package [19] was used for statistical
analysis.
Since fastText is based on a relatively simple bag-

of-N-grams model, it cannot utilize data on sentence
sequences as-is. To utilize the sequential nature of
sentences in PubMed abstracts, we devised a sim-
ple pre-processing step that gives fastText informa-
tion about the position of a sentence in the abstract,
as well as the content of preceding and following
sentences in the abstract through additional tokens.
These additional tokens are added to the sentence
that is to be classified, and the standard bag-of-
N-grams model of fastText is then trained on this
enhanced sentence representation. Even though this
increases the vocabulary of N-grams and the num-
ber of N-grams used to classify each sentence, fast-
Text still remains highly performant. In pre-processing,
the sentence representation was augmented by adding
numeric sentence position information, as well as rep-
resentations of the two preceding and trailing sen-
tences. Tokens in these context sentences are altered
by adding prefixes (e.g., ’-1_’ for the directly pre-
ceding sentence so that sentence sequence information
is preserved in the fastText model). As an abstract
example, the following represents a sequence of five
sentences, with ‘aaa’, ‘bbb’ exemplifying tokens in each
sentence:

Label:BACKGROUND aaa bbb ccc
Label:BACKGROUND ddd eee fff
Label:OBJECTIVE ggg hhh iii
Label:METHODS jjj kkk lll
Label:RESULT mmm nnn ooo

The preprocessing algorithm turned the third sentence
(with the ‘objective’ label) into the following representa-
tion with additional tokens for training fastText (added
tokens representing numeric sentence position and con-
text sentences):

Label:OBJECTIVE ggg hhh iii
sentence_3 of_5
-2_aaa -2_bbb -2_ccc
-1_ddd -1_eee -1_fff
1_jjj 1_kkk 1_lll
2_mmm 2_nnn 2_ooo

We also conducted ablation experiments where we
removed parts of the preprocessing algorithm to quantify
the benefit of each part of the algorithm.

Unsupervisedmodel for sentence embeddings with sent2vec
and fastText
sent2vec is an unsupervised model for learning universal
sentence embeddings. It is an extension of the fixed-
length word-contexts from CBOW to a larger sentence
context of variable length. This extension allows for learn-
ing sentence embeddings in an additive manner by mini-
mizing the unsupervised objective loss function (3). Thus,
a sentence embedding vS is generated by averaging the
word (or n-gram) embeddings of its constituents.

vS := 1
|R(S)|VιR(S) = 1

|R(S)|
∑

w∈R(S)
vw,

where R(S) is the list of n-grams (including unigrams)
present in the sentence S. In the process of minimiza-
tion we learn source vw and target uw embeddings for
each word w in the vocabulary V as in (1). Similar to
CBOW, sent2vec predicts a missing word from the con-
text (which in the case of sent2vec is the entire sentence)
via an objective function that models the softmax out-
put approximated by negative sampling. Coupled with the
logistic sigmoid function l(x) = log

(
1

1+e−x

)
, the unsuper-

vised training objective function is formulated as follows

argmin
U,V

∑

S∈C

∑

wt∈S

⎛

⎝l
(
uwt

TvS\wt

)
+

∑

w′∈Nwt

l
(
uw′TvS\wt

)
⎞

⎠ ,

(3)

where S corresponds to the current sentence and Nwt
is the set of words sampled negatively for the word wt .
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This unsupervised model can also be used with fastText,
however, the main difference will be in the definition of
the context: fixed-length context for fastText and entire
sentences (variable length context) for sent2vec. Detailed
comparison and the evaluation of the two models can be
found in [15].
To simulate settings in which limited training data were

available, we created limited training datasets by ran-
domly sampling sentences from the PubMed 200k training
corpus. The number of sampled sentences for training was
varied from 100 as the lowest to 180 000 as the highest
sentence count, the latter being roughly equivalent to the
number of sentences in the PubMed 20k training corpus.
Three classifier setups were compared:

• fastText: The standard, fully supervised fastText
algorithm

• fastText, pre-trained: A semi-supervised fastText
model where N-gram embeddings were pretrained in
an unsupervised way on the full PubMed 200k
training text corpus (disregarding any labels) before
switching to supervised training for sentence
classification

• sent2vec + multi-layer perceptron (MLP): whole
sentence embeddings were trained in an
unsupervised way on the full PubMed 200k training
corpus, vector representations of sentences generated
by sent2vec were then used to train a multilayer
perceptron with a single hidden layer (size 100
neurons) in a supervised way

Single sentences without sentence context or ordering
were used for the evaluations of semi-supervised train-
ing. Hyperparameter settings for the fastText models were
taken from the best-performing model established in the
unsupervised task. The test set for each run consisted of
20 000 randomly sampled sentences that did not overlap
with the training set sentences. For each training set size,
each classifier was run on five random samples of training
and test sentence sets, and the median weighted F1 scores
on the test sets were calculated.

Code availability
Jupyter notebooks with code for training, testing and sta-
tistical analysis procedures, as well as trained models are
available on GitHub [20].

Results
Fully supervised training
An overview of the results of our fastText models com-
pared to other published results is shown in Table 2. The
fastText model with sentence context and numeric sen-
tence position provides a result for the PubMed 200k
benchmark that outperforms the current state-of-the-art

model by a small margin (F1 score of .917 vs. F1 score of
.916 reported in [11] for the sophisticated bi-ANN deep
learningmodel), while retaining a short training time of 73
s. For the smaller PubMed 20k corpus, fastText results are
slightly worse than those of the bi-ANN model (.896 vs.
.900), while completing training in only 11 s. Expectedly,
the fastText classifier based only on single sentences
(without taking information on sentence sequence, sen-
tence context or sentence position into account), yields
lower F1 scores (.852 for PubMed 200k and .825 for
PubMed 20k).
fastText with sentence context and numeric text posi-

tion trained on the extended corpus and evaluated on
the PubMed 200k dataset achieves an F1 score of .919,
showing that utilizing a larger training corpus can further
improve classification quality. The extended training set
size did not yield an improvement for the single-sentence
fastText model.
Ablation experiments on the PubMed 200k benchmark

showed that both the numeric sentence position and the
addition of context sentences greatly benefitted classi-
fication quality, with the removal of context sentences
yielding a greater degradation of quality than removal of
numeric sentence positions (Table 3).
To further analyse the results of our best fastText clas-

sifier on the PubMed 200k dataset, we calculated the
confusion matrix for the predictions on the test data split
(Table 4). We found that while classification of methods,
results and conclusion sentences is almost perfect, objec-
tive and background sentences are often mixed up. This
problem has also been noted with the predictions of the
deep bi-ANN model of [11].

Semi-supervised training
We found that the semi-supervised approaches and the
fully unsupervised approach yield equal classification
qualities for larger training set sizes of > 50000 training
examples, where classification performance approached a
ceiling with an F1 score of approximately 0.84 (Fig. 2).
However, unsupervised pre-training yields a decisive
advantage at smaller training set sizes. When train-
ing on a small training set of 1000 sentences, the
fully unsupervised model did not yield useful results
(weighted F1 of 0.21), while sent2vec+MLP and fast-
Text with pre-trained word vectors yield far supe-
rior F1 scores (0.74 and 0.73, respectively). At even
smaller training set sizes, fastText with pre-trained N-
gram vectors was superior to sent2vec+MLP, while the
two methodologies yielded similar results for training
set sizes of 1000 sentences and above. Given these
results and the greater ease of use of the methodol-
ogy of using fastText with pre-trained, domain-specific
N-gram vectors, this appears to be the methodology of
choice.
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Table 2 Weighted F1 scores for various models trained on single sentences. Best results for each dataset are printed in bold. For our
models, training time is given (for hyperparameter settings yielding the shown score)

Model PubMed 20k PubMed 200k Extended corpus

Logistic regression model (LR) [11]a .831 .859 (33,006 s) -

Forward artificial neural network (ANN) [11]a .861 .884 -

Conditional random field (CRF) [11]a .895 .915 (4867 s) -

bi-ANN [1]a .900 .916 -

fastText single-sentence (ours) .825 (5 s) .852 (13 s) .852 (61 s)

fastText with sentence context and numeric sentence position (ours) .896 (11 s) .917 (73 s) .919 (183 s)
aResult and runtime reported by [11]; the reported runtimes given by authors include both training and testing time while we report only training time. Testing of a trained
fastText model took approx. 15 s with the evaluation tool supplied by the fastText library.

Discussion
fastText yielded good results with very low training times
for both unsupervised and semi-supervised training.
While we introduced a simple pre-proces5sing algorithm
for utilizing sentence sequence information, it is notewor-
thy that fastText functioned well without much additional
pre-processing (e.g., rare words and numbers were not
removed from the corpora, resulting in a very high num-
ber of tokens fed into fastText that were not relevant to the
classification task). Results were good across a wide vari-
ety of hyperparameter settings, demonstrating that the
algorithm is quite robust. The main determinant of clas-
sification performance was the number of epochs, where,
expectedly, low epoch numbers led to underfitting and
higher numbers led to overfitting. Since fastText does
not have an in-built methodology for early stopping, it is
therefore indispensable to set up external scripts that do
this hyperparameter optimization.
fastText requires little data pre-processing, little hyper-

parameter tuning, does not require a GPU, optional engi-
neering of task-specific pre-processing steps is simple
and intuitive, and training of models is very fast. We
therefore suggest that fastText should be among the first
methodologies to consider in biomedical text classifica-
tion tasks. Overall, the robustness of results across a
wide range of hyperparameter settings makes it possible
to achieve good results with less hyperparameter tun-
ing, which can further ease training when compared to
more complex deep-learningmethods that usually require
extensive hyperparameter tuning.

Table 3 Ablation experiments based on PubMed 200k dataset

Weighted F1 score

Full model .917

Removed numeric sentence position .912

Removed sentence context .904

Removed both sentence context and numeric
sentence position (single sentence model)

.852

The finding that the bag-of-N-grams model of fastText
achieved similar classification quality as more detailed
representations of sentence structure (e.g. precise word
sequences as captured by recurrent neural networks) sug-
gests that these detailed representations are not required
for classification tasks. The bag-of-N-grams model cap-
tures enough of the “rough content” of a specific sentence,
which seems to be sufficient for most classification tasks.
Providing contextual information, such as the content of
preceding and following sentences and the position of the
sentence within the abstract improve classification quality,
but can also also be captured through a bag-of-N-grams
representation through the pre-processing algorithm we
introduced.
How is fastText able to tackle difficult classification

tasks with such short CPU training time? While other
more complex neural network architectures capture word
combinations and n-gram patterns through a cascade of
recurrent or convolutional layers, fastText relies solely on
scaling up the “width” of the shallow neural network, and
on the distributional hypothesis of semantics of the words
and n-grams within a given context. The neural embed-
dingmodel includes two embedding layers, and the weight
matrices of these embedding layers are the parameters of

Table 4 Confusion matrix for test results for the PubMed 200k
dataset, yielded by the fastText model with sentence context and
numeric sentence position

True label Predicted label

Objective Background Methods Results Conclusions

Objective 1704
(72%)

573 98 0 2

Background 471 2051
(77%)

91 8 42

Methods 25 36 9375
(96%)

296 18

Results 3 3 395 9744
(95%)

131

Conclusions 1 23 13 203 4186
(95%)
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Fig. 2Weighted F1 score of test set predictions for different training set sizes

the model. The parameters are updated when the neu-
ral network is trained through the gradient descent-based
optimization methods. At the end of training the columns
of the weight matrix of the first embedding layer represent
the final learned word embeddings (latent vector repre-
sentations). The implementation of this tool is optimized
to fast updates of the model parameters (i.e., embeddings
of words and n-grams), in such a way that it scales very
well for a very large number of tokens (“rows” in the
weight matrix of the first embedding layer). While other
models scale exponentially as we increase the number of
tokens to capture the semantics of sentence embeddings,
fastText scales linearly. Finally, provided that abstract texts
use different n-gram patterns, for the different parts of
the abstracts (e.g., conclusions, results), the classification
task boils down to capturing the most salient features to
discern these n-gram patterns. fastText is able to capture
those features by increasing the width instead of the depth
of its neural network architecture, which is why it is able
to deal with the classification task on the subparts of the
biomedical abstracts so quickly.
The ability of the fastText model to scale to very large

vocabularies and n-grams can be used to represent more
complex structures by simply representing them as addi-
tional entities that can be embedded. In the context of this
work, we represented words in context sentences as sepa-
rate entities, which multiplied the number of entities that
are embedded, but was nonetheless easily handled by the
algorithm.

Limitations
A limitation of the fastText algorithm is that is not easily
applicable to multi-label prediction (i.e., settings where a

varying number of labels apply to one input text, instead
of precisely one label per input text). fastText generates a
single probability distribution over all labels with a soft-
max function (i.e. probability of all labels adding up to 1),
which is not ideal if multiple labels can be correct for the
same input text. While workarounds for this problem are
available, it remains a limitation in use-cases that require
multi-label prediction.
Another potential limitation of this work lies in the

PubMed 200k RCT benchmark dataset. Both the models
of [11] and our models have difficulty discerning sen-
tences from the background and objective classes, and a
sizable fraction of the difference between perfect F1 scores
and observed F1 scores is caused by this difficulty. Review-
ing a sample of abstracts in the dataset suggests that these
classes are used in an inconsistent manner, and success-
fully discerning these classes might be difficult even for
human expert annotators. This could imply that current
best results of automated classifiers are already very close
to the best possible scores that can be achieved, which
would limit the utility of the benchmark dataset. Ideally,
a gold-standard score based on the performance of expert
human curators should be established for this benchmark.

Future work
The presented methodology should be evaluated with
other sentence classification use-cases and benchmarks.
Further research should also be devoted to the exploration
of semi-supervised approaches that combined unsuper-
vised pre-training on large text corpora with supervised
training on smaller corpora. Of special interest in this
regard might be methods that are based on ensem-
bles of different unsupervised sentence representations,
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such as an ensemble of the sent2vec model trained
on single sentences with other models that work on
sentence sequences, such as the deep Skip-Thoughts
model [21]. The classifiers developed in this work could
also be integrated into larger natural language pro-
cessing pipelines for biomedical information extraction.
For example, selecting only sentences that are classified
as conclusion sentences might provide a better signal-
to-noise ratio than using full abstracts for term co-
occurrence analysis and other text extraction approaches.
In terms of software for end-users (i.e., medical profes-
sionals and biomedical researchers) we plan to integrate
the classifiers created in this work into a new version
of the FindMeEvidence search system [22]. The goal
of this search system is to provide users with a quick
overview of the main findings of biomedical PubMed
research articles. The classifier will be used to provide a
condensed overview of the key findings of articles that
matched a user query. It has also recently been demon-
strated that fastText can provide competitive results at
low training times when applied for link prediction in
knowledge graphs [14], a domain that is fundamentally
different from text classification. In future research we
will further investigate if fastText can be successfully
applied to more such types of data through preprocess-
ing tricks similar to the ones we demonstrated in this
paper.

Conclusion
We demonstrated that through utilizing a simple pre-
processing algorithm, the fastText model can provide
state-of-the-art results in biomedical sentence classifica-
tion at low computational cost. We characterized semi-
supervised approaches based on neural embeddings that
enable good classification results with a lower number
of training examples compared to a fully supervised
approach. We suggest that highly performant, shallow
neural embedding models such as fastText should be
among the first methodologies to be considered when
classification needs to be made on data that can be
represented as bags of tokens. We demonstrated that
more structured data can be utilized through pre-
processing. Future work should investigate the poten-
tial of this approach for a wide variety of data that
go beyond simple text, such as structured knowledge
graphs.
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