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Abstract

Background: The use of whole genome sequence has increased recently with rapid progression of next-
generation sequencing (NGS) technologies. However, storing raw sequence reads to perform large-scale genome
analysis pose hardware challenges. Despite advancement in genome analytic platforms, efficient approaches remain
relevant especially as applied to the human genome. In this study, an Integrated Genome Sizing (IGS) approach is
adopted to speed up multiple whole genome analysis in high-performance computing (HPC) environment. The
approach splits a genome (GRCh37) into 630 chunks (fragments) wherein multiple chunks can simultaneously be
parallelized for sequence analyses across cohorts.

Results: IGS was integrated on Maha-Fs (HPC) system, to provide the parallelization required to analyze 2504 whole
genomes. Using a single reference pilot genome, NA12878, we compared the NGS process time between Maha-Fs
(NFS SATA hard disk drive) and SGI-UV300 (solid state drive memory). It was observed that SGI-UV300 was faster,
having 32.5 mins of process time, while that of the Maha-Fs was 55.2 mins.

Conclusions: The implementation of IGS can leverage the ability of HPC systems to analyze multiple genomes
simultaneously. We believe this approach will accelerate research advancement in personalized genomic medicine.
Our method is comparable to the fastest methods for sequence alignment.
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Background
The declining cost of generating a DNA sequence is pro-
moting an increase in the uptake of whole genome se-
quencing (WGS), especially when applied to the human
genome. Consequently, the 1000 Genomes Project [1] in
the past had integrated the functional spectrum of hu-
man genetic variation for approximately 1092 genomes.
On the other hand, the genome-wide association studies
(GWAS) [2] and the HapMap project [3, 4] have already
characterized many sequence variants and their associ-
ation to match disease phenotypes. Although many se-
quenced genomes already exist, whole genome and

exome sequencing projects [5] have doubled with more
data expected to accumulate in the future. A fundamen-
tal challenge is the availability of infrastructure and effi-
cient storage designs to aid multiple sequence analyses
[6]. Much work is been done in recent years to improve
the infrastructure to integrate and process large se-
quenced data. However, processing the data is computa-
tionally resource-intensive, since numerous intermediate
analyses require different applications, often having a
large size of input data. In this regard, most sequencing
studies seek a method that has both higher accuracy and
faster speed of performance.
To optimize the computational environment for gen-

etic analysis, we present Integrated Genome Sizing
(IGS), a method that splits a full genome sequence into
tiny sizable fragments to speed-up genome analysis. The
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IGS approach is useful in two ways i) It provides lever-
age on the scalability of high-performance computing
(HPC) platforms to improve the NGS processing time
through parallel computing, ii) It organizes genome in-
formation in a matrix format enabling easy selection of
genome portions of interest for analysis. Genome frag-
ments for analysis are chosen in relation to the topic of
interest and the total number of fragments used depends
on the available computing nodes. Two fundamental as-
pects - genome sizing and system performance – were
considered in IGS. Firstly, the genome sizing uses a con-
cept of storing and localizing sequence data, which seeks
to reduce the size of input data for improving the system
performance. Each genome is split into 630 chromosome
fragments called chunks (Additional file 1: Table S1). A
chunk is a nucleotide sequence with an average size of
approximately 5MB. The principle behind choosing the
appropriate chunk size was based on the expectation to
extend the IGS database with more samples in the fu-
ture. Considering the size of a single genome, the as-
sumption to assemble about 10,000 full genome samples
in a matrix format, ignited the cognition that the esti-
mated minimum size for each chuck should be 5MB,
since 5MB * 10,000 samples are approximately 50 GB.
Therefore, with a 64 GB memory, we can assemble over
10 thousand samples in a matrix. In addition, if the data
is further compressed to binary format, more memory
will be saved. The concept is feasible as it will allow
more data expansion over a period of time. The current
chunk data represents the Human assembly version
GRCh37. We have equally fragmented the genome ver-
sion GRCh38. Though some very slight changes were
observed at some chromosome regions, the complete
comparison for both versions will be made available in
the future upgraded version of IGS.
Storage is provided by Maha-Fs (ETRI, Korea) [7], a

system build on the Remote Direct Storage Management
[8] which enables an effective processing of files and
storage on a client server. Maha-Fs can process 200 jobs
simultaneously consisting of 1600 cores of CPUs, 8
cores, and 64 GB memory per node (default setting), 1.4
petabytes of hard drives, and 10 GB of Ethernet. The
metadata server of Maha-Fs supports multiple disks
types including solid-state drives and hard disk drives.
About 2504 whole genomes are currently hosted on
Maha-Fs. Nevertheless, such a dataset is too large to be
processed by sheer computational power alone, and it is
practically difficult for conducting association studies
across samples using a single computer. Analyzing a
genome sequence implies that one needs to trace loca-
tions of over 3 billion nucleotide bases from raw se-
quence reads. This results in significant bottlenecks due
to a limited and inefficient storage management system.
A systematic storage approach should be able to

organize data for easy extraction and subsequently im-
prove data communication across different programs dur-
ing data processing. In a typical genome fragmentation
report, a method called MegaSeq [9] was designed to har-
ness the size and memory of the Cray XE6 supercomputer,
which greatly sped up the variant calling time for 240 ge-
nomes through parallel analysis. When implementing the
MegSeq workflow, each genome was split into 2400 units
to take advantage of the Cray XE6 system.
In the past, genome analysis relied on publicly avail-

able platforms that integrated sequence data stored
across several biological databases [10–12]. Each genome
sequence is presented using different data formats and
structures, and each distinct data type provides a unique,
partly independent and complementary view of the
whole genome [13]. The ClinVar database, for instance,
stores relationships among sequence variation and hu-
man phenotypes [14], dbSNP archives genetic variations
[15], and the Human Gene Mutation database collates
sequence variation responsible for inherited diseases
[16–19]. When segments of the whole genome are
stored in separate locations, indexing and manipulating
data can be challenging especially when dealing with a
complex project such as GWAS experiments. However,
in IGS, segments of the full genome are systematically
organized in a relational database fashion where IDs
(keys) are assigned for efficient data indexing (Fig. 1c).
The IDs allows mapping of related data sets. In this per-
spective, three distinct IDs were assigned based on the
data content including; (1) Marker ID with Chunk ID,
(2) sample ID and (3) Phenotype ID. The Biomarker/
chunk ID denotes a specific bounded region represent-
ing an interval of loci in a given chromosome region.
Sample IDs are specific identifiers for every sample
stored in the database. The IGS sample IDs are automat-
ically updated when new samples are deposited. On the
other hand, the phenotype ID represents the phenotypic
information for each sample used to index specified
marker(SNV) with Chunk ID. This matrix design pro-
vides flexibility and benefits to statistical tools for index-
ing precise information of a queried region of interest.
Thus, effective data communication is ensured across all
datasets within the system. As a backend package, we
designed and adapted an Integrated Genome Scanning
(IGscan) package for statistical analysis. It should be
noted that, based on IGS setup, researchers, groups, and
institutions can easily design tools or customized exist-
ing packages to mine data stored herein. The default set-
ting of IGscan algorithm employs; ‘mkey’, ‘skey’ and
‘pkey’ keys, which denote the IDs for Marker with
Chunk, samples, and phenotype respectively.
In the next section, we have provided a detailed de-

scription of the storage and data structure of IGS with
an example of its applications. In the Results section, we
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have outlined the scalability of IGS as a strategy for
comparing the performances of Maha-Fs and
SGI-UV300 (HP, USA California) systems using a refer-
ence genome, NA12878. A brief outline of an exemplary
usage of the IGScan QC (analytic) module, a customized
statistical toolbox, is also provided.

Methods
Genome sizing approach
As shown in Fig. 1a, the IUPAC binary alignment map
(BAM) sequence reads for 2504 genomes [20] generated
by BWA-MEM [21] were extracted. Each genome was
split by chromosome irrespective of size, by setting up ini-
tial points for a virtual cut. An intergenic interval included
a nucleotide sequence of specific length of 5Mb, and a
2.5Mb distance was added to both ends of the initial cut
points (Fig. 2a). From here, we examined the fragments by
recalculating the cut points based on biologically relevant
information (Fig. 2b). Next, the Haploview analysis (Fig.
2c) was performed by only using SNP information, with
the following criteria for marker selection: (1) Minor allele
frequency (MAF) > 0.05; (2) Call rate > 0.75 and (3)
Hardy-Weinberg P-value < 0.001. After identifying the re-
lationships between the selected SNPs, we set the mid-
point of the region with the longest distance between the
markers as a new virtual cut point. Finally, we identified
annotated information relevant to biological functions,
such as (1) Cytoband region related to diseases and certain

functions from the CytoOneArray Phalanx database
(Additional file 2: Table S2), (2) Copy number variation
(CNV) related to rare diseases obtained from two sources;
CNV in Clinvar database (Additional file 3: Table S3) and
CNVD:- copy number variation in disease database
(Additional file 4: Table S4), (3) NCBI Map Viewer for
mapping phenotype information (Additional file 5: Table
S5) and finally, (4) Genetic information. The information
was synthesized to set and rearrange the cut points such
that the average distances between them fell in the range
4MB to 6MB. The Cytoband regions within lengthy
chunks were divided and the new cut points were carefully
made to avoid affecting genes. In this sense, a chunk is a
specific chromosome portion measuring about 5Mb of
the base sequence that may contain known functional re-
gions of a genome. It can also be viewed as a fraction of a
given chromosome length out of the total size of the gen-
ome. The configuration of a chunk was necessary to solve
the limitation of computational resource that arises when
constructing and using the database. In addition, the con-
figuration of the database into chunks preserved the infor-
mation about biological function relevant to the genome.
Of the 630 chunks, 82% fell between 4Mb and 6Mb in

length (Fig. 2d), and about 43% had known biological
functions as shown chunk list (Additional file 1: Table S1).
For example, the human leukocyte antigen (HLA) system
is the major histocompatibility complex (MHC), involved
in recognition of exogenous proteins or peptides by the

Fig. 1 Basic communication and data processing in IGS. A BAM file (a) used for generating three major databases (b). The data is organically
arranged and cloned into four-dimensional (4-D) information (Phenotype variable ID, Marker ID, Sample ID, and Function annotation) as shown in
panel (c). In each request, IGS extracts 4-D data. All extracted information is a sub-clone (d), and the data is subjected to an in-house statistical
tool, IGscan (e), which provides statistical analyses
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immune system. The HLA varies from person to person
and is related to certain diseases [22, 23] and drug reactiv-
ity [24, 25], as well as immunity. The whole HLA region is
located on the short arm (6p21.2–21.3) of chromosome 6.
In IGS, the region (6_29,678,325-6_35,156,630) is mapped
to the chunk ID ‘6_7_220’ (Table 1). It becomes substan-
tially more efficient to handle the HLA allele information
by selecting the specific chunk from its location, bypassing
the querying process of the entire database. Moreover, a
database of selected chunks can easily be used for disease
association amongst them.
The above partial table depicts detailed information

for 10 selected chunks in chromosome 6. The full list is
provided in the Additional file 1:Table S1, consisting of
six columns and 630 rows. The first column represents
the chunk ID and is composed of three subentries sepa-
rated by an underscore ‘_’. The first entry stands for a
chromosome from which the chunk was obtained. The

second entry represents a chunk number within that
chromosome, and the third entry is a global chunk num-
ber within an entire whole genome. The second column
stands for a chromosome type. The third and fourth col-
umns are the chromosome Start and End positions re-
spectively, while the fifth column is the curated
function-related data of the designated chunk. If its
functional role is not determined, a minus sign ‘-’ is
assigned to this field. Finally, the sixth column (not
shown) is the specific functional chunk region. Each
complete row represents a single independent chunk.

Structure of IGS and data storage
Figure 3a shows dots representing individual chunks. To
organize and store sequenced data pertaining to each
chunk, a genotyping algorithm ADIScan 2 [26] was used
to extract genotype information. The same process can
be achieved using known genotyping software. In IGS,

Fig. 2 Schematic representation of genome chunking workflow. a A step-by-step procedure involved in creating 630 chunks from a genome.
b Generation of chunks by setting cut points, and practical steps involved in creating chunks from a given chromosome length. The entire
genome is divided into 5 Mb segments (n = 630) by making virtual cuts. Next, a 2.5 Mb distance is added to both ends of the initial cut point to
determine the presence of functional sites and to allow Haploview interval analysis among intergenic regions. c Haploview analysis: The three
distinctive regions, marked 1, 2, and 3 are the new cut points of a chunk selected by Haploview analysis to identify the relationships among the
selected SNPs. We recalculated the length of each cut point to include related biological information to obtain informative chunks (as denoted by
20_6_7_hap.LD.PNG, 20_7_8_hap.LD.PNG, and 20_8_9_hap.LD.PNG, respectively). These regions represent a precise sequence information ranging
from 4 to 6Mb in length, which could be information related to CNV or genes. d Distribution of chunks. The graph illustrates the distribution of
functionally related chunks along with functionally unrelated chunks and the classification of chunks based on their respective numbers of markers
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the variant calling algorithm ADIScan 1 [27] and the
haplotyping algorithm HLAscan [28] were used to ex-
tract strings of genotype, allele depth, and IUPAC haplo-
type from each dot respectively. This process was
repeated continuously by adding a dot sequentially to

build three distinctive databases that are coordinated in
a fully related manner, similar to a relational database
(Fig. 3b). The first is the ‘Allele Depth’ database which
comprises information about allele depth and quality in-
formation for each sample at a specific chromosome

Fig. 3 Three mosaic structures representing the organization of chunks. a A data point of allele depth, genotype, or haplotype. Each dot
designates a single chunk entity. Repeated addition of chunks yields (b) a matrix of three databases

Table 1 Example of chunk distribution of chromosome 6 of the reference genome

Chunk ID Chrs Start End Related Function

6_7_220 6 29,678,325 35,156,630 HLA region

6_8_221 6 35,156,631 40,140,014 –

6_9_222 6 40,140,015 46,461,804 Microvascular_complications_of_diabetes_1

6_10_223 6 46,461,805 49,686,975 –

6_11_224 6 49,686,976 55,283,232 –

6_12_225 6 55,283,233 60,365,606 –

6_13_226 6 60,365,607 66,419,118 Epilepsy/Dysle23ia/EYES SHUT /DROSOPHIL

6_14_227 6 66,419,119 67,721,229 –

6_15_228 6 67,721,230 73,114,845 –

6_16_229 6 73,114,846 77,870,236 –
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position. This information can be used to predict the
phenotype of selected samples in relation to a variety of
disease episodes by calculating the reliability and rarity
of variation at a given position using statistical tools.
The second is the ‘Haplotype’ database, which consists
of IUPAC codes and the causes of various phenotypes,
such as eye and hair color, personal constitutions, ethnic
characteristics, and diseases, which can be predicted
using haplotype information. The last is the ‘Genotype’
database which hosts genetic trait information for each
location of a chromosome, the function of each gene
within this location, the phenotypic information, and the
relationship among the samples. Based on the Genotype
database, statistical analysis can be performed using
IGscan tool (IGScan- freely available on request for
non-commercial purposes) for thousands of control and
disease cases of selected sequence regions and which
can also generates input file formats of popular applica-
tions such as Fbat [29], Plink [30], Merlin [31, 32],
Linkage [33], Phase [34], and Structure [35]. This data-
base is also compatible with most integrated genetic
database applications.
Currently, the IGS supports 2504 individual genomes

from 26 ethnic populations. Researchers can take advan-
tage of IGS to perform a wide range of genetic analysis
focusing on any chosen genome region of interest. Fur-
thermore, patient stratification for fast-track drug dis-
covery can be performed on a selected disease, involving
all samples within the database.

Application of IGS
The IGS data is organized in four-dimensional (4-D)
indexing matrix (Fig. 1c). The design allows rapid data
retrieval from specific sequence regions across multiple
samples using statistical tools (Fig. 1e). This was illus-
trated by implementing an in-house statistical tool de-
signed with a number of APIs for accessing IGS
databases and generate statistical results. Each API mod-
ule produces different statistical output based on its pa-
rameters and the type of results expected. Being a
multi-functional algorithm, IGScan can be implemented
in several ways including (1) building newly integrated
databases; (2) statistical analysis that can determine the
quality of a marker according to samples in a constituent
database; and (3) generation of standard input file for-
mats for the previously cited standard software packages
widely employed in bioinformatics and so on. All the
three IDs of IGS for data mapping are organized in a
three-dimensional (3-D) correlation matrix: the x-axis
refers to a genotyped marker (mkeys), the y-axis refers
to a phenotype (pkeys), and the z-axis represents a sam-
ple (skeys). Therefore, given the coordinates (x, y, z) of a
defined genome region (“mkeys”, “pkeys”, and “skeys”),
including functional annotation information (or even

their input files), IGScan can recognize 3-D relationships
among the samples, phenotypes, and markers of geno-
types and utilize them in calculating the statistical rela-
tionships of their 3-D correlation matrices, as well as
generating annotations. The application of a particular
module depends on research interest. Another important
feature of IGS is accounting for the properties of a
matrix as an integrated whole and generating basic statis-
tics, such as quality control of genotype, phenotype, and
functional annotation. For instance, given a pathway in-
volved in a drug-targeting mechanism, one can extract in-
formation of genes related to a target pathway and of their
genotypes, along with examining the statistical significance
of their association. Taking advantage of the system’s abil-
ity to rapidly access information of the relevant phenotype,
genotype, and function annotation, one can extract the
data simultaneously with a single API command.

Results
The IGS is a whole-genome sizing approach, which in-
corporates 630 small datasets and provides several ad-
vantages: (1) reduction of data size and convenient
storage; (2) specific localization of data; (3) direct access
to target data; and (4) fast NGS processing time with
parallelization of ~ 600 distributed jobs.

Comparison of NGS processing speed across HPC systems
To perform computation and store data for NGS process-
ing with HPC system, it requires not only specialized algo-
rithms but also appropriate hardware. Two main
hardware-related problems that must be addressed are -
the time-cost of data analysis in processing steps; and the
security and protection against failure of hardware storage
[36]. To resolve the former, we conducted a pilot test
using our NGS pipeline to evaluate the processing speed
for analyzing a reference genome, NA12878 [37], using
two different infrastructures - Maha-Fs (ETRI, Korea) and
SGI-UV300 (HP, USA California) - both with 4 or 16 CPU
cores and 12 or 64GB of memory per node. When a
FASTQ file was divided into 630 chunks, processing of
the whole-genome sequence took approximately 55.2
mins using Maha-Fs and 32.2 mins using SGI-UV300.
Table 2 shows the speed results of ten processing steps

(mapping and recalibration) in both hardwares. The re-
sults show that the SGI-UV-300 was approximately
twice as fast as Maha-Fs. The high performance of
SGI-UV300 is related to its solid-state drive (SSD) stor-
age design, wherein information is stored in a microchip
memory. This yielded an improved performance when
compared to the network file system (NFS) and the dis-
tributed parallel architecture-based SATA hard disk
drive (HDD) of Maha-Fs. In particular, the splitting
process (step 1) of SGI-UV300, regardless of the number
of CPU cores, was five times faster than that of
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Maha-Fs. The result implies a five-fold reduction in the
I/O dependency of SGI-UV300 simply because it only
involves splitting one full genome into tiny chunks
(630). However, the results of BWA-MEM in step 3,
Picard-fix mate information in step 4, and GATK-related
issues in steps 6 to 10 revealed that the performance of
both systems was dependent on the number of CPU cores
and size of memory. Maha-Fs, which uses a distributed
parallel computing in multi-core dependency steps, exhib-
ited slightly better performance, implying that the issue of
multi-core traffic is less critical in Maha-Fs than in SGI-
UV300 system. In addition, we conducted an experiment
to determine the optimal memory usage and other param-
eters for analyzing one chunk using nine pipeline pro-
cesses except for the split step (1.split). Here, we
employed two resource environments (local disk and
Maha). We set up three different parameters for both sys-
tems. Para 1: 4cores/20GB memory, para 2: 8cores/30GB
memory and para 3: 8cores/64GB memory respectively.
The para 3 was the default setting and this parameter was
common on both systems. However, the para 1 and para 2
were unique for the local disk and maha environment re-
spectively. We then created four experimental cases,
where the local disk was entitled to para 1 (case 1) and
para 3 (case 2), while maha was set to para 2 (case 3) and
para 3 (case 4) respectively. While cases 2 & 4 parameters
were set at default, cases 1 & 3 were used for evaluation.
The maximum network used was 1GB (Max 120MB re-
ceive/send) in all cases. For cases 1 & 3 analyses, it was
confirmed that only an average of 12GB memory was uti-
lized. Addition of more memory produced no gain. The
optimal processing parameters recorded were 4cores/
12GB memory across all steps even though the amount of
memory available was large. For instance, the read trim-
mer (sickle – step 2) depicts 4GB memory used on the
local disk environment, while, only 1GB memory was uti-
lized by maha (Additional file 6: Figure S1).

Currently, the field programmable gate array (FPGA)
is the fastest microchip in whole-genome NGS data pro-
cessing. A previous study showed that implementing
FPGA in the Dragen pipeline took approximately 40 min
for WGS alignment and variant calling [38] using the
same NA12878 genome. In view of our results, we can
conclude that, depending on the application and scal-
ability, SGI-UV300 (with SSD, multiple cores, and mem-
ory), Dragen (with advanced FPGA-chip), and Maha-Fs
(with distributed parallel computing) were reasonably
comparable in terms of high-performance computing in
NGS processing.
The varying levels of speed between Maha-Fs and

SGI-UV300 HPC systems using a reference genome in the
same pipeline are shown in Table 2. Maha-Fs consists of a
SATA hard disk drive (HDD) storage, while SGI-UV300
has a solid state drive (SSD) memory which runs faster
than the former. In the results, SGI-UV300 completed the
job in 32.2 mins and Maha-Fs in 55.2 mins. The first two
columns stand for methods and steps used in the pipeline
process, whereas the last two are the performance statis-
tics of Maha-Fs and SGI-UV300, respectively.
By default, it takes an average of 7 h to consolidate

one independent chunk after separation of a genome
sequence into 630 units. Consolidating 630 chunks of
2504 genomes using 1 Maha-Fs unit of hardware took
3.5 days in total, but the theoretical estimated time was
21 h ([630 chunks * 7 h] / 200 jobs). Both of the average
times spent in consolidating all chunks and a single
chunk (7 h) were nearly four times longer than the esti-
mated times due to the heavy load on storage I/O, and
such issues are commonly encountered in whole-gen-
ome analyses. The huge I/O cost probably occurred
due to use of 1GB (gigabyte) network card mounted at
the time. This was concordant with an earlier I/O stress
experiment conducted to show the stress levels when
the load (job) size increases progressively. At a certain
point of job count, no I/O issues were recorded. How-
ever above this limit, load increment causes disk delay
due to simultaneous reading and writing processes
eventually taking up more time.

Example of statistical test
Statistical tools can be deployed or integrated with the
IGS to take advantage of its data pattern. Using IGscan,
we performed a statistical test to determine the quality
of information on the BRCA1 gene across 2504 samples
(Additional file 7: Table S6). Here, an example of IGScan
command $ ‘IGscan –a QC mkey_file [input 1] skey_-
file [input 2] –r /DB/path……/’, would provide statis-
tical analysis of a selected region of interest. Where –a
stands for analysis, QC is the API for mining quality in-
formation a chosen genome region of interest. The
mkey_file denotes the biomarker input file (input 1)

Table 2 Performance comparison of Maha-Fs and SGI-UV300

Method Process Steps Maha-Fs SGI-UV300

Core:Memory 4:12 16:64 4:12 16:64

mapping 1. split 35.1 37.7 7.1 7.1

2. sickle 1.2 0.4 2.2 0.2

3. BWA-MEM 9.4 2.5 7.6 3.1

4. Picard-Fix Mate Information 2.6 1.9 4.3 2.7

recalibration 5. Picard-Mark Duplicates 1.5 1.1 7.3 2.7

6. GATK-RealignerTarget Creator 2.9 1.8 4.2 2.7

7. GATK-Indel Re-aligner 1.6 1.1 2.7 1.7

8. GATK-Base Re-calibrator 2.1 1.0 5.5 1.1

9. GATK-Print Reads 2.9 2.2 7.4 3.2

10. GATK-Haplotype Caller 8.0 5.6 10.8 8.1

Time Total process time (min) 79.8 55.2 59.0 32.5
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and skey_file represent the sample input file (input 2)
respectively. Lastly, −r/DB/path…/ is the database path.
First, all the sequence loci along the selected BRCA1
gene portion are extracted. The said sequence corre-
sponds to a specific chunk within the IGS database. Sec-
ondly, using a Python script, the chunk representing the
region is automatically indexed [input 1]. The sample
input file [input 2] is created by collecting all sample
IDs for cross analysis. Running the QC analysis on a sin-
gle chunk took 15min (Table 3). Meanwhile, it took
roughly 60 min to analyze 630 chunks across 2504 sam-
ples in 4 cycles (200 nodes per cycle). An example of
generated QC results (data not shown) is found in the
Additional file 8: Table S7. The QC module can be re-
placed by other APIs to generate different statistics.
IGscan is capable of handling multiple logistic or linear
regressions, and all types of chi-squares (including co-
variance operations) against a single genotype, multiple
genotypes, a single phenotype, or multiple phenotypes.
This tool will be made freely available to the research
community in the future to facilitate genome studies.
The table shows the variation of time for analyzing a

varying number of chunks. The QC operation took 60
min for full genome (630 chunks) as opposed to 15
when a single chunk is used.

Discussion
Precision medicine uses the personal medical information
to diagnose and tailor medications and management plans
for treating diseases and improving health [39]. This ap-
proach is expected to enable the medical community to
select the best clinical practice for individual patients
based on their genetic information. As the use of NGS
grows, the scope of its application is also expanding, espe-
cially in the areas of clinical diagnosis and validation [40].
Converting 1D nucleotide sequence to 2D image with
genetic variants and phenotypes is standardized and dif-
ferentiated from one another for deep learning analysis
with a convolutional neural network (CNN). In this re-
gard, IGS is very useful as any genomic region of interest
can be easily selected and filtered by statistics,
pathway-related genes, targeted genes, phenotype, sex,
ethnic group and diploid-based variants [41–44]. As per-
sonalized healthcare relies on accurate analytics to guide
decision-making, it creates a high demand for more prac-
tical ways of handling WGS. Nevertheless, the evolution
of WGS has been partially hindered by the challenges to

store and manipulate large nucleotide strings. The most
commonly applied approach to date has been the use of a
central system to integrate data residing in remote re-
sources [45]. Unfortunately, this method is not adequate
for handling multiple cohort analysis. Another challenge
is related to the high heterogeneity of data in such data-
bases, which could compromise the quality of data [46].
The goal of IGS is to allow efficient management,

processing, and analysis WGS of multiple subjects in a
simultaneous manner. When a long genome sequence
is organized into small units within the same schema,
the overall communication speed required for data ex-
traction becomes significantly faster, which suits the
analysis of larger datasets. In terms of HPC of NGS
processing, our results demonstrated that the
Maha-Fs, SGI-UV300, and advanced FPGA-chip were
all comparable, only differing on their application and
scalability. Contrasting the IGS with a similar approach
by Puckelwartz et al., the Cray XE6 supercomputing
system was adapted for whole-genome parallelization.
This system comprises of 726 nodes with 34 GB and 24
cores per node. Similar to the work reported here, the
study implemented a concept of splitting the whole
genome into smaller pieces. Computational speed was
doubled, and efficient parallelization was achieved.
Nevertheless the method, unlike IGS, focus on variant
calling rather than multiple genome integration. Fur-
thermore, the number of whole genomes used (240)
was small relative to that used in the current study.
Several requirements exist to implement IGS - a

user to be trained in how to operate the system, ma-
nipulate data, and interpret results, as well as a stor-
age facility to be available in hosting data for more
than 1000 genomes. The latter requirement could be a
major block for private researchers and organizations
with less robust infrastructure. Nevertheless, full func-
tionality of IGS is sure to benefit larger organizations
capable of providing the required storage, since IGS
can provide accurate and detailed information of the
whole genome. Moreover, it will allow predicting nu-
merous phenomena in genome association studies.
For example, genome integration may provide predic-
tions regarding which illnesses a patient may experi-
ence in the future, thus ensuring better management
strategies to prevent diseases.

Conclusion
As genome-sequencing techniques currently guide pre-
cision medicine, demands for reliable and rapid NGS
methods are gaining momentum in medical profes-
sions and manufacturers of therapeutic agents. Al-
though we are witnessing an ongoing development of
the infrastructural aspect of the method, efficient ma-
nipulation of NGS data for the whole human genome

Table 3 IGscan QC analysis Vs number of chunk use

Module No. samples No. chunks Time (mins)

QC 2504 1 15

QC 2504 630 60
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still remains a challenge. IGS enables convenient ana-
lyses of whole sequences across multiple samples,
markedly improving the computation time. We believe
that IGS could open new avenues for rapid and multi-
functional genome sequencing that can deal with large
volume of data.
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