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Abstract

Background: Single Nucleotide Variants (SNVs), including somatic point mutations and Single Nucleotide
Polymorphisms (SNPs), in noncoding cis-regulatory elements (CREs) can affect gene regulation and lead to disease
development. Several approaches have been developed to identify highly mutated regions, but these do not take
into account the specific genomic context, and thus likelihood of mutation, of CREs.

Results: Here, we present SMuRF (Significantly Mutated Region Finder), a user-friendly command-line tool to identify
these significantly mutated regions from user-defined genomic intervals and SNVs. We demonstrate this using publicly
available datasets in which SMuRF identifies 72 significantly mutated CREs in liver cancer, including known mutated
gene promoters as well as previously unreported regions.

Conclusions: SMuRF is a helpful tool to allow the simple identification of significantly mutated regulatory elements.
It is open-source and freely available on GitHub (https://github.com/LupienLab/SMURF).
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Background
With the advent of next-generation sequencing tech-
nologies, a growing catalogue of genome-wide datasets
has become available. This includes whole-genome se-
quencing to detect single nucleotide variants (SNVs) in
diseased tissue (eg: TCGA Research Network: http://can-
cergenome.nih.gov/) as well as maps of histone variants
and chromatin accessibility [1]. Using these datasets, nu-
merous cis-regulatory elements (CREs) have been identi-
fied as recurrently mutated in cancer and other diseases.
A notable example is the TERT promoter in glioma,
melanoma, medulloblastoma, hepatocellular carcinoma,
lung adenocarcinoma, thyroid and bladder cancers [2].
The mutations in this promoter create new transcription
factor binding sites [3, 4], leading to increased TERT
expression and ultimately immortalization and genomic
instability [5]. Enhancers and anchors of chromatin
interaction can also display recurrent mutation, such as the
* Correspondence: Mathieu.Lupien@uhnresearch.ca
1Princess Margaret Cancer Centre, The MaRS Center, University Health
Network, 101 College Street, Toronto, ON M5G 1L7, Canada
2Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
Full list of author information is available at the end of the article

© The Author(s). 2018 Open Access This artic
International License (http://creativecommons
reproduction in any medium, provided you g
the Creative Commons license, and indicate if
(http://creativecommons.org/publicdomain/ze
PAX5 enhancer in chronic lymphocytic leukemia [6, 7] and
CTCF binding sites in colorectal cancer [8].
Others have previously developed methods to identify

important clusters of somatic point mutations based on
proximity [9] or an enrichment compared to the local
background [10]. However, the mutation rate of a CRE is
impacted by its chromatin accessibility and the binding
of transcription factors, as demonstrated by a lower rate
of mutation in open compared to closed chromatin [11].
Therefore, recurrently mutated CREs should be identi-
fied against a background of other regulatory elements
with a matched chromatin accessibility in the same cell
or tissue type. To achieve this, SMuRF receives a
user-defined set of regions of interest as the input rather
than relying on a proximity clustering of SNVs and pro-
vides a user-friendly tool to identify, filter, and annotate
significantly mutated genomic regions.

Implementation
SMuRF consists of two main steps. The first filters,
counts, annotates, and intersects the list of SNVs with
the set of genomic coordinates, using a custom Bash
script and the BEDTools suite [12]. The second consists
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in running a binomial test in R followed by a mutation
rate filter to determine which genomic intervals are sig-
nificantly enriched in SNVs and producing output fig-
ures as well as files for downstream analyses.

Input processing
The SNVs in BED or vcf format, are optionally filtered for
known SNPs. This will remove either all known SNPs or
only those with a minor allele frequency above 1% to pre-
serve potentially interesting acquired SNVs that also occur
as extremely rare polymorphisms in the population.
Subsequently, the input genomic regions are annotated

as either gene promoter regions or as distal regulatory
elements. This is done by overlapping those genomic in-
tervals with a catalogue of gene promoters, derived from
Gencode transcription start site annotations [13].
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Fig. 1 Overview of SNVs and their genomic distribution. a) The total numb
They range from 1344 to 25,012. b) Percentage of SNVs falling within HepG
the fraction that fall within the input genomic regions remains stable acros
Finally, the input SNVs and genomic intervals are
intersected to map all SNVs to unique genomic inter-
vals, and the resulting data structure forms the starting
point of the statistical analysis for mutation enrichment.
All of the above filtering and annotating can be achieved

with data from any genome for which the required anno-
tation files are available. Those for human builds hg19 and
hg38 are supplied with the tool for convenience.

Identifying significantly mutated regions
The binomial test used by SMuRF to determine whether a
given genomic region is significantly enriched for muta-
tions requires an expected mutation rate. Depending on
the sample cohort, the user can choose how this mutation
rate is calculated. For each sample, the average number of
mutations per base pair in input regions is calculated first.
H
X

5T
R

K
07

5_
C

01
R

K
04

6_
C

01
R

K
05

0_
C

01
R

K
10

0_
C

01
H

X
11

T
R

K
08

3_
C

01
H

X
9T

R
K

04
2_

C
01

R
K

02
5_

C
01

R
K

13
7_

C
01

R
K

04
7_

C
01

R
K

01
6_

C
01

H
X

18
T

H
X

15
T

R
K

02
9_

C
01

R
K

01
2_

C
01

H
X

4T
R

K
00

3_
C

01
R

K
01

0_
C

01
R

K
10

8_
C

01
R

K
09

9_
C

01
R

K
03

1_
C

01
H

X
16

T
R

K
09

8_
C

01
R

K
05

4_
C

01
R

K
06

3_
C

01
R

K
02

6_
C

01
R

K
13

3_
C

01
H

X
20

T
R

K
10

9_
C

01
R

K
02

0_
C

01
R

K
03

7_
C

01
R

K
14

1_
C

01
R

K
13

0_
C

01
R

K
03

4_
C

01
R

K
02

4_
C

01
H

X
25

T
R

K
03

6_
C

01
R

K
06

9_
C

01
R

K
03

3_
C

01
H

X
22

T
H

X
23

T
R

K
13

8_
C

01
R

K
00

5_
C

01
R

K
06

8_
C

01
R

K
04

9_
C

01
R

K
05

5_
C

01
R

K
01

8_
C

01

R
K

07
5_

C
01

R
K

04
6_

C
01

R
K

05
0_

C
01

R
K

10
0_

C
01

H
X

11
T

R
K

08
3_

C
01

H
X

9T
R

K
04

2_
C

01
R

K
02

5_
C

01
R

K
13

7_
C

01
R

K
04

7_
C

01
R

K
01

6_
C

01
H

X
18

T
H

X
15

T
R

K
02

9_
C

01
R

K
01

2_
C

01
H

X
4T

R
K

00
3_

C
01

R
K

01
0_

C
01

R
K

10
8_

C
01

R
K

09
9_

C
01

R
K

03
1_

C
01

H
X

16
T

R
K

09
8_

C
01

R
K

05
4_

C
01

R
K

06
3_

C
01

R
K

02
6_

C
01

R
K

13
3_

C
01

H
X

20
T

R
K

10
9_

C
01

R
K

02
0_

C
01

R
K

03
7_

C
01

R
K

14
1_

C
01

R
K

13
0_

C
01

R
K

03
4_

C
01

R
K

02
4_

C
01

H
X

25
T

R
K

03
6_

C
01

R
K

06
9_

C
01

R
K

03
3_

C
01

H
X

22
T

H
X

23
T

R
K

13
8_

C
01

R
K

00
5_

C
01

R
K

06
8_

C
01

R
K

04
9_

C
01

R
K

05
5_

C
01

R
K

01
8_

C
01

er of SNVs in each sample considered in the analysis after filtering.
2 open chromatin regions. Despite the range of total SNV numbers,
s the dataset, at 1.2% on average
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Fig. 2 Significantly mutated regions identified by SMuRF. Each of
the 72 genomic intervals that passed the significance (q-value ≤0.05)
and mutation rate filters are represented. The negative log of the
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against the number of unique samples with a mutation within that
region. The most frequently and most significantly mutated regions
include the promoters of both known and novel genes of interest in
liver cancer
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The “allsamples” option uses the average of those individ-
ual mutation rates across the entire sample cohort. How-
ever, if a subset of samples is more or less mutated than
the rest, this could lead to biased results when a particular
region contains mutations from that subset. For example,
if a subset of samples is hypermutated relative to the rest
of the cohort, this would artificially raise the background
mutation rate, in effect reducing the number of signifi-
cantly mutated elements identified. In these cases, the
“regionsamples” option can be used, and the expected mu-
tation rate when testing a particular region will be the
average of the mutation rates for the individual samples
mutated within that region only.
In both cases, the resulting p-value is then adjusted for

multiple testing and the final set of regions is further fil-
tered to include only those that pass a mutation rate
threshold. This threshold is defined for each cohort by
ranking the mutation rates for each region and identify-
ing the inflection point, as previously described [14].
A number of output files are generated and these are

detailed within the manual; they include a list of genes
whose promoters are significantly mutated for use in
gene ontology analyses, as well as a bed-formatted list of
mutated regions annotated as distal regulatory elements
to allow the user to associate them to target genes through
GREAT [15] or C3D [16]. The main output figure is a
scatter plot of -log10(q-value) against the number of
unique samples mutated in the region, and color-coded to
distinguish gene promoters from distal regulatory
elements.
Results and discussion
To illustrate the above steps, we used publicly available ac-
quired SNVs from 88 liver cancer samples [17] and chro-
matin accessibility data from HepG2 [1] that provides a
reference set for CREs. The total number of SNVs per
sample used in the analysis after filtering ranged from
1344 to 25,121 (Fig. 1a), with an average of 1.2% falling
within one of the 278,135 CREs (Fig. 1b) as identified in
HepG2. While the input SNV numbers covered a wide
range, no subset of patients was abnormally hyper or
hypomutated, so we selected the “allsamples” mode to
calculate the background mutation rate for each CRE. In
total, 9485 individual CREs contained at least one
mutation, of which 72 (6 promoters and 66 distal regula-
tory elements) were found to be significantly enriched for
mutations (q-value ≤0.05 and peak mutation rate ≥ thresh-
old) (Fig. 2 and Additional file 1: Table 1). These
regulatory elements were each recurrently mutated in
2–5 samples.
Among the highly mutated promoters were those for

the TERT, TP53, ACSM1, TNFRSF8, and PCGF5 genes,
all previously reported recurrently mutated regions in
liver cancer [18]. Also significantly mutated, however,
was the promoter of a gene with unknown function,
RP11-484D2.2, highlighting the potential of this type of
analysis for uncovering novel regions of interest.
To further assess the ability of this approach to iden-

tify mutated regulatory elements that are relevant to the
samples of interest, we compared the number of signifi-
cantly mutated CREs identified in HepG2 to those found
in other tissue types when using the same liver cancer
mutation data. Chromatin accessibility data from eight
ENCODE cell lines [1], including HepG2, was randomly
sampled five times, matching for peak number and peak
length, and SMuRF was run on each iteration using the
same settings detailed above (Fig. 3). Significantly fewer
(Mann-Whiney U test p-value range: 0.007–0.012) mu-
tated CREs were identified in each of the seven other
cell lines compared to HepG2.
Conclusions
Whole-genome sequencing and chromatin accessibility
data sets in numerous normal and diseased tissues are
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becoming more commonly available. SMuRF aims to
help further our understanding of the importance of
non-coding elements in disease initiation and progres-
sion, by highlighting those regulatory elements most
likely to have a functional importance due to their high
burden of mutation.

Additional file

Additional file 1: SMuRF output for the 72 significantly mutated CREs in
liver cancer. (TXT 13 kb)
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